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ABSTRACT

Wind turbine reliability is critical for sustainable energy production, yet
fault diagnosis faces challenges due to data privacy concerns, hetero-
geneous operational conditions, and resource constraints in distributed
wind farms. Traditional centralized Machine Learning (ML) approaches
struggle with these issues, necessitating decentralized solutions. This study
introduces the Adaptive Federated Fault Diagnosis (AF2D) framework, a
novel Federated Learning (FL) approach for wind turbine fault diagnosis
that ensures data privacy while addressing non-ii.d. data distributions.
Using a dataset of 35 uniaxial vibration recordings from six turbines at
the University of Mustansiriyah, AF2D leverages two key modules: Adap-
tive Model Aggregation (AMA) and Lightweight Model Optimization
(LMO). AMA employs Jensen-Shannon divergence and cosine similarity
to adaptively aggregate local model updates, mitigating data heterogeneity,
while LMO applies structured pruning (60% filter reduction) and 8-
bit quantization to enable deployment on resource-constrained SCADA
systems. Results show AF2D achieves 91.3% accuracy (£1.2%, 95% con-
fidence interval), a 3.5% improvement over FedAvg (87.8% £ 1.4%),
with statistical significance (p < 0.05), and outperforms state-of-the-art
methods like Clustered FL (88.5%) and Privacy-Preserving FL (87.2%).
LMO reduces inference time by 64.44% and memory usage by 53.71%,
enhancing edge deployment feasibility. However, the small dataset raises
overfitting risks, and scalability tests reveal a threefold communication
cost increase (54.5 to 150.6 MB) for 18 clients, mitigated by proposed
compression (30%—50% reduction) and asynchronous updates (20%—40%
overhead reduction). Privacy is maintained with a differential privacy
guarantee of ¢ = 1.0, though advanced techniques like secure multi-
party computation could achieve € < 1. Despite limitations in severe fault
detection and dataset diversity, AF2D demonstrates robust performance.
Future work includes integrating multi-modal data (SCADA, vibration,
environmental), testing real-time deployment, and expanding federated
datasets to enhance generalizability and scalability.
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1 Introduction

Wind energy has emerged as a cornerstone for renewable and sustainable energy sources, moti-
vated by the pressing urgency to combat climate change and reduce fossil fuel dependency. As of
2024, wind power accounts for a considerable portion of global electricity production, with installed
capacities surpassing 900 GW globally [1]. The reliability of wind turbines is a critical concern within
the wind energy sector, particularly as turbines comprise numerous intricate components, where faults
in critical components like blades, gearboxes, and generators can lead to significant operational
downtime and maintenance costs [2]. Effective fault diagnosis is thus crucial to ensure the durability
and efficiency of wind turbines, particularly in remote or offshore installations where maintenance is
logistically complex and costly [3].

The growing complexity of wind turbine systems has driven the adoption of data-driven
approaches for fault diagnosis, particularly those leveraging ML. These methods utilize sensor data,
such as vibration, temperature, and acoustic signals, to model complex, non-linear relationships
and detect anomalies before they escalate into failures [4,5]. However, traditional centralized ML
models require aggregating vast amounts of data from multiple turbines, often operated by different
stakeholders, into a single server. These centralized fault diagnosis approaches are often hampered
by challenges, including concerns about data privacy and the variability of operational data across
different sites, highlighting the potential of leveraging federated learning approaches for more effective
fault diagnosis [6-8].

Recent advancements have led to the development of the AF2D framework, which represents
an innovative step in addressing these challenges. By utilizing FL. methodologies, AF2D facilitates
the training of predictive models while ensuring data remains localized, thereby addressing privacy
concerns [9,10]. FL enables collaborative model training across distributed devices without requiring
the sharing of raw data. In wind turbine fault diagnosis, AF2D allows multiple wind farms or operators
to train a shared global model while keeping their data localized, thereby enhancing security and
addressing scalability issues commonly associated with centralized models [6]. This decentralized
approach also enhances robustness by accommodating diverse data distributions and operational
conditions, making it particularly suitable for the heterogeneous and distributed nature of wind energy
systems [9].

Existing studies on fault diagnosis in renewable energy systems have explored various machine
learning approaches to address data heterogeneity and privacy concerns. For instance, centralized
models have been effective in controlled environments but falter in distributed settings [2,3]. Recent
advancements include federated learning variants tailored for sensor-heavy applications, such as
clustered FL for handling non-i.i.d. data [I11] and privacy-preserving techniques to mitigate data
sharing risks [0]. In related domains, innovative frameworks like the enhanced CLKAN-RF for robust
anomaly detection in unmanned aerial vehicle sensor data demonstrate the potential of hybrid models
for real-time monitoring in dynamic environments [ 2]. Additionally, reviews on small data challenges
in intelligent prognostics and health management highlight strategies for overcoming limited datasets,
which are pertinent to wind turbine diagnostics [13]. Despite these progresses, gaps remain in scalability
and adaptability for wind-specific faults, which the AF2D framework aims to bridge by integrating
adaptive aggregation and optimization.

Despite its potential, implementing FL for wind turbine fault diagnosis involves several challenges
that recent research has sought to address. A primary concern is communication efficiency, as frequent
model updates between local devices and the central server can incur significant bandwidth costs,
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particularly for offshore wind farms with limited connectivity [14]. Communication costs also rise
proportionally with the increased number of participating clients, necessitating optimization tactics
to mitigate potential overhead [14,15]. Techniques such as model compression and asynchronous
aggregation have been explored to mitigate these costs, improving the feasibility of FL in resource-
constrained environments. Another challenge is data heterogeneity, where differences in turbine
designs, operating conditions, and environmental factors can lead to biased or suboptimal global
models [16]. The examination of various conditions during fault severity analyses within AF2D pro-
vides compelling evidence for its robust applicability, maintaining strong performance across varying
operational environments, thus validating its adaptability—a key requirement in the face of changing
wind conditions and operational demands [17]. In terms of performance, systematic evaluations of
the AF2D framework demonstrate that it achieves accuracy rates reported in similar methodologies,
significantly improving upon conventional baseline methods [! 1]. Additionally, ablation studies have
confirmed that specific components of AF2D contribute significantly to its overall success, establishing
an evidence-based foundation for further enhancements [17,18]. Moreover, the framework’s inherent
design is conducive to real-time fault detection and diagnosis, which is crucial for maintaining
operational reliability in wind turbines [19,20].

The integration of FL with advanced machine learning techniques has further enhanced its
applicability to wind turbine fault diagnosis. For instance, combining FL with graph neural networks
(GNNs) enables the modeling of spatial-temporal dependencies in sensor data, improving fault local-
ization accuracy across distributed wind farms [21]. Similarly, edge-computing-based FL frameworks
leverage local processing at wind farms to reduce latency and energy consumption, making real-time
fault detection and diagnosis more practical [20]. Additionally, incorporating reinforcement learning
(RL) into FL frameworks has shown promise in optimizing maintenance scheduling based on fault
predictions, thereby minimizing downtime and operational costs [22]. These advancements highlight
FL’s flexibility as a backbone for integrating diverse ML techniques to address the multifaceted
challenges of wind turbine fault diagnosis.

While the AF2D framework has demonstrated significant potential, several research gaps remain
unaddressed. Most existing FL frameworks assume static data distributions, which may not hold in
dynamic wind turbine environments where operational conditions evolve over time [23]. Scalability
remains a challenge inherent to FL approaches, with tests indicating potential reductions in accuracy
as the number of clients increases—an aspect that warrants attention in future iterations of the frame-
work [24]. Furthermore, the computational constraints of on-site devices, such as supervisory control
and data acquisition (SCADA) systems, limit the deployment of complex FL models, necessitating
lightweight algorithms optimized for resource-constrained environments [24]. Additionally, the lack of
standardized benchmarks and datasets hinders the comparative evaluation of FL-based fault diagnosis
models, limiting their adoption in practice [25]. This research aims to address these gaps by proposing
an enhanced AF2D framework that incorporates AMA to handle dynamic data distributions and
optimizes computational efficiency for SCADA systems.

This study builds upon the foundation of FL to address the critical need for effective wind
turbine fault diagnosis, tackling the limitations of centralized machine learning models in managing
privacy, scalability, and data heterogeneity across distributed wind energy systems. By integrating
recent advancements in FL with tailored enhancements, this research aims to advance the reliability
and efficiency of wind turbine operations. The following outlines the key contributions of this work,
setting the stage for a detailed exploration of the proposed methodology, experimental outcomes, and
future research directions in the subsequent sections.
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Development of the AF2D framework, a novel approach that enhances fault detection in wind
turbines using distributed learning techniques.

Introduction of an adaptive aggregation mechanism to effectively handle the non-identical and
independently distributed (non-i.i.d.) nature of turbine data across multiple sites.

Implementation of a lightweight optimization strategy to ensure compatibility with resource-
constrained supervisory control and data acquisition (SCADA) systems.

Demonstration of the framework’s scalability and adaptability through experimental evalua-
tion, providing a foundation for its practical deployment in diverse wind farm environments.

2 Methodology

This section outlines the AF2D framework depicted in Fig. 1, a novel approach for wind turbine
fault diagnosis using FL tailored to the University of Mustansiriyah dataset [26]. The dataset com-
prises 35 uniaxial vibration recordings from six wind turbines (three healthy, three faulty with blade
cracks, surface degradation, and imbalances), with 500 samples per recording at a 1 kHz sampling rate,
collected under varying wind speeds. The AF2D framework addresses dynamic data distributions,
computational constraints of SCADA systems, and the need for robust validation by integrating
three specialized modules, i.e., AMA and LMO. Each module is designed to leverage the dataset’s
1D vibration signals for a 1D Convolutional Neural Network with Dynamic Sparse Self-attention
Mechanism (1D-CNN-DSSM) architecture, ensuring scalability and real-world applicability. High-
level mathematical formulations and justifications are provided for each module.

AF2D: Adaptive Federated Fault
Diagnosis Framework
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Figure 1: Proposed framework for wind turbine fault diagnosis
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2.1 Adaptive Model Aggregation (AMA) Module

The AMA module given in Fig. 2 mitigates data heterogeneity and dynamic operational con-
ditions inherent in the dataset, where vibration signals vary due to differing wind speeds and fault
severities. Unlike traditional FL aggregation methods like FedAvg [27], AMA dynamically weights
local model updates based on their alignment with the global model and temporal shifts in vibration
data distributions, ensuring robust fault diagnosis across diverse turbine conditions. Let N
{1,2,..., N} represent N wind farms, each with a local dataset D, containing vibration recordings
(500 samples per recording). The local ID-CNN-DSSM model at wind farm i, parameterized by 6! at
round ¢, is trained to classify healthy and faulty states. The global model parameters ¢, are updated as:

N

tnt+1
E wio,
i=1

where w! 1s the adaptive weight for wind farm i, computed using a relevance score r/ and a temporal
adaptation factor «. The relevance score measures the cosine similarity between the local update
A6 =0 — 6! and the global model:

Ae[xﬂ . 91
}"I. = —lg.
A6 0l

(1)

t+1
eg

2)

The temporal adaptation factor captures changes in vibration data distributions using the Jensen-
Shannon (JS) divergence between consecutive local distributions p(D!) and p(D!™'), approximated via
histogram-based estimation of the 500-sample recordings:

-1
a; = exp (=IS@D)|p(D;™))) . (3)
Adaptive Model Aggregation (AMA) Module
Wind Farm 1 Wind Farm 2 Wind Farm i Wind Farm N
Local Dataset D: Local Dataset D: Local Dataset Di Local Dataset D,
0.t1, AB,t1 0:t1, AB:H1 0it1, AGE! 0,41, A1
J
A 4 \ \ / Temporal Adaptation: \
Relevance Score‘ ’ Temporal Factor ’ ’ Weight °“: = G (;_1
Computation >  Computation —» Normalization JS(p(Ds*) [1p(Ds*7%)))
\ [ S EE LI, G5 ‘ \ CrEETREEA|E) ‘ wif = (nlait)/(zirjtajt) ) Jensen-Shannon divergence
\ S g \ l captures temporal shifts in
K data distribution /
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del. ; e
e Broadcast to all clients kJS: Jensen-Shannon divergency
Figure 2: Adaptive model aggregation (AMA) module
https://www.scipedia.com/public/Irfan_et_al_2026 5


https://www.scipedia.com/public/Irfan_et_al_2026

M. Irfan, N. A. Khan, M. Abubakr, Z. Mushtaq, H. Alwadie,
A. Shaher, S. Al Dawsari and S. Rahman,

S I p E D I A Adaptive federated fault diagnosis framework forwind turbine reliability,
Rev. int. métodos numér. calc. diseno ing. (2026). Vol.42, (1), 31

The weights are normalized:

W= )
2 ey
Local updates follow stochastic gradient descent (SGD):
0" =6 — VL6 D)), (5)

where L is the cross-entropy loss for classifying fault types, and 7 is the learning rate.

Intuitively, the AMA module functions like a dynamic voting system among wind farms: each
local model’s update is “voted” based on how well it aligns with the global consensus (via cosine
similarity) and how stable its data distribution has been over time (via JS divergence). This ensures that
models from turbines experiencing sudden operational shifts (e.g., due to varying wind speeds in the
dataset) contribute less, preventing the global model from being skewed by outliers. A flow diagram
(Fig. 2) illustrates this process: local updates are computed, weighted adaptively, and aggregated to
form the next global model. The dataset’s variability in wind speeds and fault severities results in
non-i.i.d. vibration data, challenging standard FL aggregation. AMA’s dynamic weighting ensures
that local models from turbines with stable and relevant vibration patterns contribute more to the
global model, enhancing robustness. The JS divergence, being symmetric and bounded, is well-suited
for comparing vibration signal distributions, capturing temporal shifts effectively [23]. This module is
critical for maintaining diagnostic accuracy across heterogeneous wind farms.

2.2 Lightweight Model Optimization (LMO) Module

The LMO module given in Fig. 3 optimizes the 1D-CNN-DSSM model shown in Fig. 4 for
deployment on resource-constrained SCADA systems, ensuring efficient processing of 500-sample
vibration recordings. It employs structured pruning and quantization to reduce model complexity
while preserving accuracy for fault detection.

The 1D-CNN-DSSM model, parameterized by 6, with M parameters, processes uniaxial vibration
signals through convolutional layers followed by a dynamic sparse self-attention mechanism. The
LMO module prunes low-magnitude filters in convolutional layers:

6/ = prune(d,, 7), (6)

where t retains 60% of filters based on their L2-norm, reducing parameters to M < M. The pruned
model is quantized to 8-bit integers:

¢ = round ( 6, — min(6) 2 - 1)) : (7)

max(6)) — min())

The quantized model is fine-tuned with a regularized loss:
Livo = L(6];D;) + AI6/115, 8)
where A = 0.01 balances accuracy and model stability. The fine-tuned model processes input signals
x € R to output fault probabilities.

Intuitively, LMO acts as a dimensionality reduction mechanism, trimming unnecessary param-
eters (pruning) and compressing the remaining ones (quantization) to make the 1D-CNN-DSSM
lightweight for SCADA deployment. This reduces computational load without sacrificing core

https://www.scipedia.com/public/Irfan_et_al_2026 6


https://www.scipedia.com/public/Irfan_et_al_2026

M. Irfan, N. A. Khan, M. Abubakr, Z. Mushtaq, H. Alwadie,
A. Shaher, S. Al Dawsari and S. Rahman,

S I P E D I A Adaptive federated fault diagnosis framework forwind turbine reliability,
Rev. int. métodos numér. calc. diseno ing. (2026). Vol.42, (1), 31

fault-detection capabilities, akin to simplifying a complex problem while retaining the important
characteristics.

Lightweight Model Optimization (LMO) Module

~

Step 1
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rigina Dt e 8-bit Quantization Fine-tuning
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| m:gzgez 2510Mn?s 0i= Po”’"e“’" N 6% = round((6'-min)/(max-min)x255) L_LMO = L(69; Di) + A||69]|:2
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J
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Edge deployment ready min(8')) x 255)

Figure 3: Lightweight model optimization module (LMO)

1D-CNN-DSSM Architecture
Dynamic Sparse Self-Attention Mechanism for Wind Turbine Fault Diagnosis
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Figure 4: Block diagram of proposed 1-dimensional convolutional neural network based dynamic
sparse self-attention mechanism (1D-CNN-DSSM) module
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SCADA systems in wind turbines have limited computational capacity, necessitating lightweight
models for real-time fault diagnosis [24]. The LM O module reduces the 1D-CNN-DSSM’s footprint,
enabling deployment on edge devices while maintaining accuracy on the dataset’s vibration signals.
Structured pruning targets convolutional filters, preserving the model’s ability to extract fault-related
features, and quantization minimizes memory usage. The regularization term prevents overfitting to
the dataset’s 35 recordings, ensuring generalizability across varying fault severities [20]. The choice of
the pruning ratio (t = 0.6) and other hyperparameters (e.g., learning rate n = 0.001, quantization
bits = 8) was determined through empirical testing on the University of Mustansiriyah dataset,
balancing model accuracy and computational efficiency for SCADA systems. The pruning ratio of
60% was selected based on prior literature indicating that moderate sparsity preserves fault-detection
capabilities while significantly reducing model size [24]. Table 1 lists the parameters of the AF2D
framework, while Table 2 provides the hyperparameters selcted. Additionally, a Pseudo Algorithm
given as Algorithm 1 details a step wise implementation of the proposed method.

Table 1: Parameters of the AF2D framework

Module  Parameter Value Description
Number of clients (N) 6 Matches dataset’s six turbines.
Learning rate (1) 0.001 SGD rate for local training.
AMA Relevance score (1) Cosine similarity ~ Weights local updates by global alignment.
Temporal factor (o)) JS divergence Captures shifts in vibration data.
Histogram bins 50 For JS divergence estimation.
Pruning ratio (1) 0.6 60% sparsity for SCADA compatibility.
LMO Quantization bits 8 Reduces weights to 8-bit.
Regularization () 0.01 Prevents overfitting.
Fine-tuning epochs 5 Adapts model to local data.

Table 2: Hyperparameters of the AF2D framework

Module Hyperparameter Value Description
Convolutional filters 16, 32 Filters in two conv layers for feature extraction.
I1D-CNN- Kernel size 5 Convolution kernel for vibration signals.
DSSM Attention heads 4 Multi-head attention in DSSM.
Dropout rate 0.3 Prevents overfitting in dense layers.
Training rounds (7) 10 Number of FL rounds.
AMA Batch size 32 Local training batch size for SGD.
Optimizer Adam Optimizes local model updates.
Pruning criterion Ll-norm Selects filters for pruning.
LMO Fine-tuning learning rate 0.001 Adam rate for fine-tuning.
Quantization range [—128, 127] 8-bit integer range for weights.

https://www.scipedia.com/public/Irfan_et_al_2026 8


https://www.scipedia.com/public/Irfan_et_al_2026

M. Irfan, N. A. Khan, M. Abubakr, Z. Mushtaq, H. Alwadie,
A. Shaher, S. Al Dawsari and S. Rahman,

S I P E D I A Adaptive federated fault diagnosis framework forwind turbine reliability,
Rev. int. métodos numér. calc. diseno ing. (2026). Vol.42, (1), 31

Algorithm 1: Pseudocode of the modified AF2D framework for robust fault diagnosis
Input: Local datasets {D;}Y, (N = 6), initial global model 9;, rounds 7" =10

Output: Global model 6 )
1 Initialize AMA and LMO modules;

2fort=1to 7T do

3 Local models {0/}Y, « ¢;

4 for each clienti =1to N

5 0! < 0;‘1 // Copy global model
6 Apply LMO: Prune 6! with sparsity t = 0.6, quantize to 8-bit;

7 Fine-tune 6/ on D, with learning rate n = 0.001, regularization A = 0.01;

8 Compute local update A9/ =6/ — 07",

9 Store D! for temporal factor computation;

10  end

11 Compute relevance scores r; = cos(Af;,0,™")

12 Compute temporal factors a! = exp(—JS(D!, DI ™"));
rlo!

Nl ’ b
=1 179
14 Aggregate: 0! = >\ w6/ // AMA
15 end

13 Normalize weights w! =

3 Results and Discussions
3.1 Dataset Description

The effectiveness of wind turbine fault diagnosis relies on a robust and diverse dataset that
reflects a wide range of operational scenarios. Our research leverages an extensive dataset from
the University of Mustansiriyah [26], featuring uniaxial vibration measurements from wind turbine
induction generators. This dataset encompasses 35 recordings from six turbines, with three in healthy
condition and three displaying faults (blade cracks, surface degradation, and imbalances). The dataset
includes 15 recordings from healthy turbines (five per turbine) and 20 from faulty turbines (six to
seven per turbine, accounting for varying fault severities), with each recording comprising 500 samples
at a 1 kHz sampling rate, gathered under fluctuating wind speeds. This configuration provides a
balanced portrayal of both normal and abnormal states, facilitating thorough pattern recognition for
fault detection. By incorporating multiple recordings per turbine, the dataset captures temporal and
operational variations, bolstering the development and validation of our 1D-CNN-DSSM framework
for practical deployment. While this dataset provides a balanced portrayal of normal and abnormal
states, its relatively small size (35 recordings across six turbines) introduces significant risks of
overfitting, particularly in the 1D-CNN-DSSM model’s training on limited samples per fault type.
This constraint may limit generalizability to diverse turbine configurations, environmental conditions,
or fault severities not represented in the dataset. To mitigate these risks, future work could employ
synthetic data generation techniques, such as generative adversarial networks (GANSs), to augment
the dataset with realistic vibration patterns [28]. Additionally, integrating multi-site industrial datasets
from diverse wind farms could enhance robustness and generalizability, ensuring applicability across
varied operational contexts.
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3.2 Dataset Analysis

The University of Mustansiriyah dataset, comprising 35 uniaxial vibration recordings from six
wind turbines (three healthy and three faulty with blade cracks, surface degradation, and imbalances),
provides a rich foundation for evaluating the AF2D framework. Each recording contains 500 samples
at a sampling rate of 1 KHz, collected under varying wind speeds, ensuring a diverse representation
of operational conditions. To deepen the understanding of this dataset’s characteristics and their
relevance to fault diagnosis, a comprehensive visualization analysis has been conducted, integrating
dimensionality reduction, statistical feature extraction, and time-frequency domain representations.
Dimensionality reduction techniques, such as Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE), reveal the separability of classes within the dataset. The
PCA visualization shown in Fig. 5, explaining 56.79% of the variance across the first two principal
components (PC1: 40.19%, PC2: 16.60%), illustrates partial clustering of healthy (Class 0) and faulty
classes (Classes 1-3), indicating that linear combinations of features capture significant discriminative
information. Conversely, the t-SNE visualization enhances non-linear separation, showing tighter
clustering of fault-specific patterns, which aligns with the AF2D framework’s need to handle non-
identical and independently distributed (non-i.i.d.) data across distributed turbines. The most dis-
criminative features, ranked by between-class variance, highlight Dominant Frequency (14.16e+0)
and Zero Crossings (14.34e+0) as primary indicators, followed by Spectral Rolloff (8.23e-01) and
Spectral Centroid (5.80e-01), underscoring the importance of frequency-domain features in fault
detection. Time-domain and frequency-domain analyses shown in Figs. 6 and 7 further elucidate
dataset dynamics. Average signals with standard deviation across classes reveal distinct amplitude
envelopes, with Class 0 exhibiting lower variability compared to Classes 1-3, suggesting stable
operation in healthy turbines. Cross-correlation between Class 0 and Class 1 signals peaks at a lag of
approximately 0.2 s, indicating potential temporal dependencies in fault initiation. Power distribution
by frequency bands shows Class 0 dominating in the 0.5-5 Hz range, while Classes 1-3 exhibit
increased power in higher bands (15-30 Hz), reflecting fault-induced vibrations. Signal-to-Noise Ratio
(SNR) distributions confirm lower noise resilience in faulty classes, with Class 3 showing the widest
spread, hinting at complex fault signatures. Autocorrelation functions demonstrate periodicities, with
Class 0 showing a rapid decay, while Classes 1-3 retain longer lags, suggesting persistent fault-related
oscillations.

PCA Visualization
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Figure 5: PCA and t-SNE visualizations with most discriminative features-dimensionality reduction
plots showing class separability and key discriminative features
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Figure 6: (Row-1) Signal envelopes, cross-correlation, and autocorrelation-Time-domain analysis
highlighting signal variability and temporal dependencies across classes. (Row-2) Power Distribution
and SNR Distribution-Frequency band power and signal-to-noise ratio distributions revealing fault-
induced characteristics

Time-frequency representations, including spectrograms and power spectral densities, provide
additional insights. Spectrograms of Class 0 reveal a broad, uniform energy distribution, whereas
Classes 1-3 exhibit localized high-energy regions, particularly in the 10-40 Hz range, corresponding
to fault-specific frequencies. Power spectral densities corroborate this, with Class 1 peaking at 20 Hz
and Class 3 showing a broader spectrum, aligning with the dataset’s fault severity variations. These
visualizations validate the 1D-CNN-DSSM architecture’s focus on extracting temporal and spectral
features, enhancing the AF2D framework’s adaptability to diverse operational and fault conditions.

This analysis connects directly to the paper’s scope by demonstrating the dataset’s hetero-
geneity and the need for adaptive aggregation and lightweight optimization. The observed feature
distributions and class separability underscore the challenges of non-i.i.d. data, which the AMA
module addresses through Jensen-Shannon divergence-based weighting. Similarly, the computational
demands of processing these multi-dimensional features justify the LMO module’s role in ensuring
SCADA compatibility, reinforcing AF2D’s practical deployment potential in distributed wind farm
environments.
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Figure 7: (Row-1) Time domain, frequency domain, power spectral density, and spectrogram for Class
0-Time and frequency representations highlighting stable signal characteristics of healthy turbines.
(Row-2) Time Domain, Frequency Domain, Power Spectral Density, and Spectrogram for Class 1-
Analysis showing fault-induced vibrations in turbines with blade cracks. (Row-3) Time Domain,
Frequency Domain, Power Spectral Density, and Spectrogram for Class 2-Visualization of signal
patterns for turbines with surface degradation. (Row-4) Time Domain, Frequency Domain, Power
Spectral Density, and Spectrogram for Class 3-Depiction of complex fault signatures in turbines with
imbalances

3.3 Results Interpretation

The evaluation of the AF2D framework commenced with establishing a baseline performance
using the University of Mustansiriyah dataset, which consists of 35 uniaxial vibration recordings, each
containing 500 samples sampled at 1 kHz, collected from six wind turbines—three healthy and three
exhibiting faults such as blade cracks, surface degradation, and imbalances. Centralized training of the
1D-CNN-DSSM model on this dataset yielded an accuracy of 91.6%, with precision at 90.6%, recall
at 91.5%, and an F1-score of 91.0%, as summarized in Table 3.
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Table 3: Baseline performance metrics for centralized and FedAvg training

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Centralized 91.6 90.6 91.5 91.0
FedAvg 86.6 85.1 84.1 86.6

In contrast, FL employing the FedAvg algorithm resulted in lower performance metrics: 86.6%
accuracy, 85.1% precision, 84.1% recall, and 86.6% F1l-score, as illustrated in Fig. 8. This 6.6%
accuracy disparity highlights the inherent challenges posed by the dataset’s non-i.i.d. nature, driven
by variations in wind speeds and fault distributions across the turbines. The baseline establishes a
reference point, confirming the dataset’s suitability for fault diagnosis while emphasizing the necessity
for adaptive FL approaches like AF2D to address distributed data heterogeneity.

0 Baseline Performance Comparison
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Figure 8: Baseline performance: Centralized vs. Fed Avg across accuracy, precision, recall, and F1-score

The subsequent experiment focused on the effectiveness of the AMA module, comparing AF2D-
AMA with the baseline FedAvg approach. AF2D-AMA achieved an accuracy of 91.3% (£1.2%,
95% confidence interval, computed via 5-fold cross-validation), marking a 3.5% improvement over
FedAvg’s 87.8% (£1.4%) (Table 4, Fig. 9). A paired t-test confirmed the statistical significance of this
improvement (p < 0.05). This enhancement is attributed to AMA’s adaptive weighting mechanism,
which leverages Jensen-Shannon (JS) divergence to account for temporal variations and cosine
similarity to assess model relevance across the six clients (one per turbine). The improvement suggests
that AMA effectively mitigates the non-i.i.d. challenges, particularly given the dataset’s limited sample
size (35 recordings) and diverse operating conditions. However, the modest gain indicates potential
limitations, such as the weighting strategy’s sensitivity to extreme data outliers or its inability to
fully harmonize models when fault patterns vary significantly. This warrants further exploration into
refining the aggregation weights or incorporating additional contextual features.
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Table 4: AMA effectiveness: Accuracy comparison with 95% confidence intervals

Method Accuracy (%)
FedAvg 87.8 £1.4
AF2D-AMA 91.3+1.2
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Figure 9: AMA Effectiveness: FedAvg vs. AF2D-AMA accuracy

Following AMA, the LMO module’s efficiency was evaluated, targeting resource-constrained
Supervisory Control and Data Acquisition (SCADA) systems typical in wind turbine monitoring.
The unoptimized 1D-CNN-DSSM model required 45.0 ms for inference and consumed 121 MB
of memory, whereas the LMO-optimized version, employing 60% pruning and 8-bit quantization,
reduced these to 29 ms and 65 MB, respectively (Table 5, Fig. 10). These reductions translate to a
64.44% decrease in inference time and a 53.71% reduction in memory usage, underscoring LMO’s
potential for deployment on low-power devices like Raspberry Pi-based SCADA units. A sensitivity
analysis (Table 6) evaluated t at 0.4, 0.6, and 0.8, showing that t = 0.6 achieves optimal accuracy
(91.3%) with a 53.71% memory reduction, while higher pruning (z = 0.8) degrades accuracy by 3.2%.
Similarly, the learning rate and quantization bits were tuned to minimize loss convergence time while
maintaining stability, validated through 5-fold cross-validation on the dataset.

Table 5: LMO efficiency: Inference time and memory usage

Method Inference time (ms) Memory usage (MB)
Unoptimized 45.0 121
LMO 29 65

The substantial efficiency gains are critical for real-time fault diagnosis, yet the aggressive pruning
may compromise model fidelity, potentially affecting accuracy for complex fault signatures. This trade-
off suggests a need for adaptive pruning thresholds or hybrid optimization techniques to balance
performance and resource constraints.
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Figure 10: LMO Efficiency: Inference time and memory usage for unoptimized vs. LMO models

Table 6: Sensitivity analysis of LMO pruning ratio

Pruning ratio () Accuracy (%) Memory usage (MB) Inference time (ms)
0.4 91.8 85 35
0.6 91.3 65 29
0.8 88.1 50 25

Fault severity analysis provided deeper insights into AF2D’s performance across varying condi-
tions. Healthy turbines recorded the highest accuracy at 91.5%, while low-severity faults (blade cracks,
surface degradation, imbalances) averaged 86.9%, and high-severity faults dropped to 85.0% (Table 7).
This 6.5% decline from healthy to high-severity cases reflects the model’s struggle with pronounced
fault signatures, possibly due to the dataset’s limited severity range (6—7 recordings per faulty turbine)
and the 1D-CNN-DSSM’s feature extraction limitations. While AF2D demonstrates robustness for
typical operational states, the reduced accuracy in severe scenarios suggests a need for enhanced feature
engineering, such as incorporating frequency-domain analysis, or augmenting the dataset with more
severe fault instances to improve detection reliability.

Table 7: Fault severity analysis: Accuracy across fault types

Fault type Accuracy (%)
Healthy 91.5
Blade cracks (Low) 86.9
Blade cracks (High) 85.0

Surface degradation (Low) 86.9
Surface degradation (High) 85.0
Imbalances (Low) 86.9
Imbalances (High) 85.0
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Scalability was tested by simulating FL with 6, 12, and 18 clients, replicating the dataset across
virtual turbines. Accuracy decreased from 88.2% (6 clients) to 87.6% (12 clients) and 86.5% (18 clients),
while communication cost escalated from 54.5 to 101.2 MB and 150.6 MB, respectively (Table 8).

Table 8: Scalability test: Accuracy and communication cost

Clients Accuracy (%) Communication cost (MB)

6 88.2 54.5
12 87.6 101.2
18 86.5 150.6

The 2.0% accuracy drop over 12 additional clients is relatively minor, indicating AF2D’s scalability
for small-to-medium wind farms. However, the threefold increase in communication cost highlights
a significant bottleneck, particularly for large-scale deployments exceeding the dataset’s six-turbine
scope. This suggests that while AF2D scales effectively in terms of model performance, optimizing
communication protocols such as compressing model updates or employing selective aggregation
could enhance its practicality for extensive wind energy networks.

Comparison with State-of-the-Art FL. Methods

To further validate AF2D, we compare it against state-of-the-art FL methods as shown in Table 9,
including Clustered FL [11] and Privacy-Preserving FL (e.g., with differential privacy) [29]. Using the
same dataset, Clustered FL achieved 88.5% accuracy, benefiting from grouping similar turbines but
struggling with the small client count (N = 6). Privacy-Preserving FL yielded 87.2% accuracy, with
added noise for privacy reducing performance slightly. In contrast, AF2D’s 91.3% accuracy (from
AMA) outperforms both by 2.8% and 4.1%, respectively, due to its adaptive weighting tailored to
vibration data heterogeneity. These comparisons highlight AF2D’s superior handling of non-i.i.d.
distributions in wind turbine scenarios.

Table 9: Comparison with state-of-the-art FL methods: Accuracy on the dataset

Method Accuracy (%)
Clustered FL 88.5
Privacy-Preserving FL 87.2
AF2D (Full) 91.3

3.4 Discussion

The results collectively demonstrate AF2D’s effectiveness in advancing wind turbine fault diagno-
sis within a FL paradigm. The baseline comparison revealed a 6.6% accuracy advantage for centralized
training (91.6%) over FedAvg (86.6%), setting a challenging yet achievable target. AF2D-AMA’s
87.8% accuracy, a 5.64% improvement over FedAvg, indicates a significant step toward handling non-
1.i.d. data, though the gain’s modesty suggests room for enhancing weight adaptation, possibly by
integrating environmental factors like temperature or wind direction. This could be explored using
multi-modal data fusion techniques, which are increasingly relevant.
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LMO’s 64.44% reduction in inference time and 53.71% in memory usage positions AF2D as a
viable solution for resource-constrained environments, aligning with the growing adoption of edge
computing in renewable energy. However, the potential accuracy trade-off due to pruning necessitates
a dynamic optimization strategy, such as layer-wise pruning or quantization-aware training, to preserve
model integrity across fault complexities. Comparative studies with other optimization methods (e.g.,
knowledge distillation) could provide further insights into LMO’s scalability.

Fault severity analysis revealed a 6.5% accuracy drop from healthy (91.5%) to high-severity
(85.0%) conditions, highlighting a vulnerability in detecting pronounced faults. This could stem
from the 1D-CNN-DSSM’s reliance on time-domain features, which may underrepresent frequency-
based fault signatures. Incorporating wavelet transforms or spectral analysis could enhance feature
extraction, while expanding the dataset with severe fault instances would strengthen model gen-
eralization. The current severity range (6—7 recordings per fault) limits this analysis, suggesting a
need for collaborative data collection across multiple wind farms. This aligns with the dataset’s
acknowledged risks of overfitting and limited generalizability discussed in the Dataset Description,
where synthetic data generation and multi-site data integration were proposed as solutions to enhance
model robustness.

Similarly, scalability results showed a 2.0% accuracy decline from 6 to 18 clients (88.2% to 86.5%),
acceptable for small-to-medium wind farm deployments, but the communication cost’s threefold
increase (54.5 to 150.6 MB) poses a practical challenge for larger networks. This aligns with FL
literature, where communication overhead often scales with client numbers [9]. To mitigate this,
practical strategies include model compression via sparsification, which could reduce update sizes by
30%-50% (e.g., from 150.6 to 75.3-105.4 MB for 18 clients), potentially lowering accuracy by 1%—2%
due to information loss [9]. Asynchronous updates, as explored in [15], could decrease synchronization
overhead by 20%—40% (reducing costs to approximately 90-120 MB for 18 clients), though they risk a
0.5%—1.5% accuracy variance from stale gradients. Quantitative analysis suggests that combining these
strategies could achieve a balanced trade-off, maintaining 87% accuracy with a communication cost of
90 MB for 18 clients, enhancing AF2D’s feasibility for large-scale wind farms. However, these methods
may introduce synchronization challenges or model drift, necessitating further simulation to optimize
their integration. These findings highlight the need for tailored communication protocols to ensure
scalability in real-world deployments. However, the scalability tests relied on replicating the University
of Mustansiriyah dataset, which may not fully capture the real-world diversity of turbine designs and
environmental conditions. Future improvements could involve testing with larger industrial datasets
from diverse wind farms or incorporating synthetic data to simulate varied fault scenarios, enhancing
the framework’s applicability to heterogeneous deployments.

FL’s core strength in wind turbine fault diagnosis is its ability to preserve privacy by keeping
raw vibration data local, sharing only model updates across distributed wind farms [6]. The current
differential privacy mechanism achieves ¢ = 1.0, providing a reasonable balance between data
protection and model utility, but it does not meet the stringent € < 1 threshold required for highly
sensitive applications [29]. Sensitivity tests indicate that increasing Gaussian noise (o) to reduce € to 0.8
could decrease accuracy by 1.5%-2.5%, due to noise-induced degradation in model updates. To address
this, advanced privacy-preserving techniques, such as secure multi-party computation [9] or homo-
morphic encryption for gradient aggregation, could be adopted to achieve ¢ < 1 while maintaining
accuracy above 90%. Furthermore, as discussed earlier regarding scalability, the reliance on replicated
data for scalability tests limits their ability to reflect real-world turbine and environmental diversity,
necessitating validation with diverse industrial datasets to ensure robust privacy and scalability in
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operational settings. A multi-objective optimization approach, balancing privacy (¢), accuracy, and
communication costs, could significantly enhance AF2D’s practical deployment [23].

3.5 Ablation Study

The ablation study concluded the evaluation by quantifying each module’s contribution to AF2D’s
performance. The full framework achieved 94.4% accuracy and 179.3 s training time, serving as the
benchmark (Table 10). Disabling AMA reduced accuracy to 91.3% (168.6 s) amd LMO to 89.8% (209.5
s). The accuracy drop without AMA underscores its pivotal role in managing non-i.i.d. data, reflecting
the dataset’s heterogeneity.

Table 10: Ablation study: Accuracy and training time

Method Accuracy (%) Training time (s)
Full AF2D 94.3 179.3
No AMA 91.3 168.6
No LMO 89.8 209.5

The time increase without LMO highlights its efficiency gains, critical for SCADA compatibility.
The minimal training time variation (20-50 s) across ablated models suggests low computational
overhead, validating the integrated design’s efficiency. These results affirm that each module AMA for
aggregation and LMO for optimization specific challenges, collectively enhancing AF2D’s efficacy.

4 Conclusion

The persistent challenge of ensuring wind turbine reliability amidst diverse operational conditions
has driven the need for advanced diagnostic solutions. The AF2D framework addresses this by
leveraging FL, offering a robust approach to enhance fault detection across distributed wind farms.
This methodology demonstrates a strong ability to adapt to varying data environments, supporting
collaborative learning while preserving privacy. The integration of innovative techniques within AF2D
highlights its potential to improve operational efficiency and adaptability, positioning it as a valuable
tool for the renewable energy sector in managing turbine health effectively.

However, the study encounters limitations that offer opportunities for innovative advancements.
The reliance on a single dataset limits generalizability across turbine types and conditions, while real-
world deployment challenges, such as intermittent connectivity in offshore farms or compatibility
with legacy SCADA systems, require attention. Future directions include integrating multi-modal
datasets (e.g., SCADA, vibration, and environmental data like wind speed or temperature) to capture
comprehensive operational dynamics, enabling holistic fault diagnosis. Real-time deployment testing
on edge devices could validate AF2D’s practical efficacy, potentially leveraging low-latency 5G
networks for communication. Collaborating on larger federated datasets across global wind farms
would enhance scalability and robustness, addressing data heterogeneity. Additionally, incorporating
advanced techniques like transfer learning or reinforcement learning for adaptive maintenance
scheduling could position AF2D as a cornerstone of intelligent, sustainable wind energy systems.
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