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Abstract. In this paper a robust topology optimization algorithm for linear elastic structures
in unilateral contact is presented. The deformation of the linear elastic structure is constrained
by support structures that are modeled with the help of Signorini’s contact conditions. The
contact conditions in turn are enforced with the augmented Lagrangian approach. Doing so,
the robust optimization considers uncertainties at the support such as manufacturing tolerances
and its local friction behavior. Due to high numerical costs in robust optimization, the first-
order second-moment approach is used to approximate the mean and variance of the objective.
This approximation results in minimal additional costs to approximate the mean, the variance
and their gradients. Consequentially, a gradient-based optimization algorithm can be used
to minimize a weighted sum of both. The results show that the presented approach indeed
improves the robustness with respect to uncertain contact conditions compared to a deterministic
optimization.

1 INTRODUCTION

Robust topology optimization allows that defined uncertainties are taken into account dur-
ing the optimization. This is crucial, since an optimized component can be highly sensitive
against small environmental variations. These can occur, for example, through manufacturing
tolerances, local material inhomogeneities or modeling assumptions such as the usage of ideally
rigid, friction-less and clearance-free bearings in the model. In order to guarantee that the opti-
mized component performs as expected, its sensitivity against such unknown must be minimized.
This is of utmost importance at the support, since Dirichlet boundary conditions cannot capture
the unilateral behavior between the support and the component. Due to this observation, the
work of Strömberg and Klarbring [6] was developed, where an efficient framework for topology
optimization with unilateral contact constraints is presented. However, this framework did not
allow to consider uncertainties.

A general drawback of robust topology optimization is its numerical performance. In fact,
its costs can exceed today’s computational limits quickly, which is why, a first-order second-
moment approach (FOSM) is used in this paper. FOSM is a linear approximation of the first
two stochastic moments in particular the mean and variance. Thus, gradient information can
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be provided so that deterministic optimization algorithms can be used for robust topology
optimization. Furthermore, the linear approximation leads to small additional numerical costs,
so that a robust design can be found in reasonable time.

2 Robust Topology Optimization

Robust Topology Optimization applies the concepts of robust design optimization. An
overview of these concepts is provided in Zang et al. [7]. In doing so, the design variables
y and the random vector z are introduced. Next, the objective f(y, z) is replaced by its mean
µf and its standard deviation σf . The robust optimization problem states

min
y

µf (y) + κσf (y),

s.t.

{
g(y) ≤ 0

h(y) = 0

(1)

where κ > 0 is a weighting factor, g are inequality constraints and h are equality constraints.
Consequentially, the mean and the standard deviation or the variance of f must be computed.
They are defined as

µf =

∞∫
−∞

f(z)p(z)dz and σ2
f =

∞∫
−∞

(f(z)− µf )
2p(z)dz, (2)

where p(z) is a defined probability density function.
Monte Carlo simulations can be used to approximate both, but this leads to tremendous

numerical costs in structural optimization. Nonetheless, the mean and the variance can be
approximates as

µf (y) ≈
nMCS∑
i=1

f(zi) and σ2
f ≈ 1

nMCS − 1

nMCS∑
i=1

(f(zi)− µf )
2, (3)

where zi is a set of randomly sampled variables and nMCS is the total number of Monte Carlo
samples.

Another way to approximate the mean and the variance provides the first-order second-
moment method (FOSM). It was introduced by Cornell [1] in 1969 and is based on a Taylor
series of the mean and variance. Using this approach, the mean is

µf ≈ f(µz), (4)

where µz is the mean of the random vector z. Next, the variance is

σ2
f ≈

n∑
i=1

n∑
j=1

∂f(µz)

∂zi

∂f(µz)

∂zj
cov(zi, zj), (5)

where n is the number of random quantities and cov(zi, zj) is an entry of the covariance matrix,
see e.g. [2, 3].
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3 System Equations

The system equations for a linear elastic body in contact can be derived from the equilibrium
equations of the finite element method and are given as

Kd+ fcon − q = 0, (6)

where K is the stiffness matrix, d is the displacement field, fcon are the nodal contact forces
and q are the external forces acting at the linear elastic body. The stiffness matrix is calculated
based on the modified SIMP approach [5], so that the elements stiffness Ei depends on its
normalized density φi ∈ [0, 1]

Ei = Emin + φp
i (Emax − Emin), (7)

where the penalization factor is p = 3. The Young’s modulus of the void elements is defined by
Emin, while Emax is the modulus of the material.

In order to compute the nodal contact forces fcon, Signorini’s contact condition must be
met. A detailed derivation of the condition inside a contact-constraint topology optimization
algorithm is provided in the work of Stromberg and Klarbring [6]. In summary, the following
non-smooth contact condition must be fulfilled at all contact nodes

ΦA = −ξA +max(0, ξA + r(gA − nA · dA)) = 0, (8)

where ξA is the contact force of the A-th contact node, nA is the associated contact normal
direction, dA is the nodal displacement and gA is the initial distance between the A-th node of
the elastic body and the support. Finally, r > 0 is a factor increasing numerical performance.

The Eq. (6) and Eq. (8) are used to derive the KKT condition, that must be meet to solve
the non-linear contact system equations. They read

hc(d, ξ,φ) =

{
K(φ)d+ fcon(ξ)− q

Φ(d, ξ)

}
= 0, (9)

hc(x,φ) =

 K(φ) (N + {µT })T
∂Φ(x)

∂d

∂Φ(x)

∂ξ


︸ ︷︷ ︸

Jc

d
ξ


︸︷︷︸
x

−

 q

Φc(x)


︸ ︷︷ ︸

rc

= 0, (10)

where Jc is the contact Jacobian, x is the state vector and rc holds the external forces q and
the state independent part of the contact law. Note that, the lower rows of Eq. (10) depend
on the current state of the contact nodes. In doing so, a non-linear solver such as a line-search
algorithm can be used to calculate the solution of displacement field d and the contact forces ξ.

4 Robust Compliance Optimization Problem

The compliance of a contact-constrained linear-elastic structure is minimized and is defined
as

c = qTd =

[
q
0

]
︸︷︷︸
r

T

x. (11)
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The design variables are the normalized densities φ of the finite element discretization, so that
the optimization problem reads

min
φ

µc(φ) + κσc(φ)

s.t.


hc(φ,x) = 0,

V (φ)− V0 ≤ 0,

0 ≤ φ ≤ 1.

(12)

The system equations of the contact problem hc as well as a volume constraints must be fulfilled.
The initial gap gA between the A-th contact node and the support structure as well the nodal
friction coefficient µA are assumed to be random. Hence, the random vector consists of both

z =

[
zg

zµ

]
∈ R2ncon , (13)

where the subvector zg = [g1, . . . , gncon ]T holds all random gaps and zµ = [µ1, . . . , µncon ]T holds
all random friction coefficients of the contact nodes. The described setup is shown in Fig. 1,
where the surface of the support structure scatters. The ideal form of the support is shown in
gray and locally described by the mean values µA

zg
and µA

zµ
of the random variables. Next to

that, the actual random support structure is shown, where the gap and friction coefficient of the
A-th contact node are zAg and zAµ .

Last, the scattering of the random variables must be defined. The random variables zg and
zµ are assumed to be spatially correlated by an exponential correlation function. Therefore, a
set of normal distributed random variables z̃ is generated. Each independent variable z̃i has a
mean of zero and variance is one. The exponential correlation function for the contact nodes i
and j is

Ci,j = exp

(
−||di − dj ||2

l2c

)
, (14)

where lc is the correlation length. If the standard deviation of the random variables σ(z) is
given, the covariance is

cov(zi, zj) = Ci,jσ(zi)σ(zj), (15)

and the covariance cov(zi, zj) is stored in the covariance matrixΣz . Consequentially, the random
contact gaps zg and the random friction coefficients zµ are defined as

zg = Σ
1
2
zg

z̃g + µzg and zµ = Σ
1
2
zµ

z̃µ + µzµ . (16)

Note, the random gap zAg and the friction coefficient zAµ of the A-th node are independent of
each other, while both the gaps and the friction coefficients are correlated to their neighbor gaps
and friction coefficients.
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Figure 1: A linear elastic body unilaterally constrained by a non-ideal rigid support.

4.1 Objective

In contrast to the standard compliance optimization, it is not trivial to calculate the objective
with FOSM. The FOSM approximation states that the mean of the compliance is

µc(φ) ≈ c(x(φ),µz). (17)

However, the standard deviation must be derived from the variance approximation of Eq. (5),
where the partial derivative of the compliance c(µz) with respect to the random variables z is
needed. The computation of this partial derivative is costly, which is why an adjoint variable ζ
is introduced.

If the adjoint ζ is chosen such that(
rT − ζTJc(x(µz))

)
= 0, (18)

the derivative simplifies to

∂c(x,µz)

∂zi
= −ζT

(
∂Jc(x(µz))

∂zi
x(µz)−

∂rc(µz)

∂zi

)
. (19)

Note, the adjoint equation (18) is independent of zi, meaning that the adjoint is the same for all
partial derivatives of z. As a result, only one additional set of linear equations must be solved
to calculate the FOSM approximation of the variance of the compliance. Next, the variance is
calculated as stated in Eq. (5) and the objective of the defined optimization problem given by
Eq. (12) is approximated with FOSM. The optimization problem using FOSM reads

min
φ

c(x,µz)︸ ︷︷ ︸
µFOSM
c

+κ

√√√√2ncon∑
i=1

2ncon∑
j=1

∂c(x,µz)

∂zi

∂c(x,µz)

∂zj
cov(zi, zj)︸ ︷︷ ︸

σFOSM
c

s.t.


hc(φ,x) = 0,

V (φ)− V0 ≤ 0,

0 ≤ φ ≤ 1

(20)
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where
∂c(x,µz)

∂zi
is defined by Eq. (19) and the covariance is obtained from the covariance matrix

Σz =

[
Σzg 0
0 Σzµ

]
. (21)

If the weighting factor κ is κ = 0, the robust optimization problem simplifies to the deterministic
contact-constrained topology optimization problem of Strömberg and Klarbring [6].

4.2 Gradient of the approximated Objective

In order to use gradient-based optimization algorithms, the derivative of the objective with
respect to the design variables must be computed. Therefore, the objective of Eq. (20) is sub-
divided into its two parts and the derivatives are derived separately.

The first part corresponds to the approximation of the mean of the compliance. It turns out,
that the same adjoint system known from Eq. (18) must be solved to avoid computing the costly

derivative
∂x(µz)

∂φe

. If the adjoint equation is chosen such that

(
rT − ζ̃TJc(x(µz))

)
= 0, (22)

no further computational costs occur for the first part of the derivative, since this equation has
been solved to calculate the standard deviation. The derivative reads

∂c̃(x,µz)

∂φe

= −ζT
(
∂Jc(x(µz))

∂φe

x(µz)

)
. (23)

The derivative of the Jacobian with respect to the elements density is

∂Jc(x(µz))

∂φe

=

∂K(φ)

∂φe

0

0 0

 , (24)

where the derivative of the stiffness matrix with respect to the e-th element is the derivative
of the elements local stiffness matrix including the SIMP approach of Eq. (7). A more detailed
derivation can be found in [6].

For the second part of the objective, the approximation of the standard deviation σFOSM
c

must be derived with respect to the elements densities as well. Consequentially, it is necessary
to compute

∂σFOSM
c

∂φe

=
∂

∂φe

√√√√2ncon∑
i=1

2ncon∑
j=1

∂c(x,µz)

∂zi

∂c(x,µz)

∂zj
cov(zi, zj)

=
1

2σFOSM
c

∂

∂φe

2ncon∑
i=1

2ncon∑
j=1

∂c(x,µz)

∂zi

∂c(x,µz)

∂zj
cov(zi, zj)


︸ ︷︷ ︸

(σFOSM
c )2

. (25)
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It turns out, that the computational costs of Eq. (25) are reduced to a minimum, if the chain
rule is applied inside the double sum. As a result, the partial derivatives with respect to z are
replaced by the adjoint Eq. (19). In combination with two additional adjoint equations and the
corresponding adjoint variables η and γ, the FOSM approximation of the variance reads(

σ̃FOSM
c

)2
=

(
σFOSM
c

)2 − ηT hc(x(µz))︸ ︷︷ ︸
=0

−
(
rT − ζTJc(x(µz))

)
︸ ︷︷ ︸

=0T

γ. (26)

As a result, the derivative simplifies to

∂σFOSM
c

∂φe

=
∂σ̃FOSM

c

∂φe

=
1

2σFOSM
c

[
− ηT∂Jc(x(µz)

∂φe

x(µz) + ζT
∂Jc(x(µz)

∂φe

ξ

]
, (27)

where the following adjoint equations must be satisfied

0 = −
2ncon∑
i=1

2ncon∑
j=1

[
cov(zi, zj)ζ

T

(
∂c(x,µz)

∂zj

∂Jc(x(µz))

∂zi
+

∂c(x,µz)

∂zi

∂Jc(x(µz))

∂zj

)]
− . . .

. . .ηTJc(x(µz), (28)

0 = Jc(x(µz)γ +

2ncon∑
i=1

2ncon∑
j=1

[
cov(zi, zj)

(
∂c(x,µz)

∂zj

(∂Jc(x(µz)

∂zi
x(µz)−

∂rc
∂zi

)
+ . . .

. . .
∂c(x,µz)

∂zi

(∂Jc(x(µz)

∂zj
x(µz)−

∂rc
∂zj

))]
. (29)

Note, Eq. (27) is derived by observing, that the following partial derivatives are zero

∂r

∂φe

= 0,
∂rc
∂φe

= 0,
∂2rc

∂zi∂φe

= 0 and
∂2Jc(x(µz)

∂zi∂φe

=

[
0 0
0 0

]
. (30)

Finally, the derivative of the objective with respect to the design variables φ is defined as the
sum of Eq. (23) and Eq. (27). It reads

∂(µFOSM
c + κσFOSM

c )

∂φe

= ζT
(
∂Jc(x(µz))

∂φe

x(µz)

)
+ . . . (31)

. . .
κ

2σFOSM
c

[
− ηT∂Jc(x(µz))

∂φe

x(µz) + ζT
∂Jc(x(µz))

∂φe

γ

]
,

where the adjoint equations (18), (28)and (29) must be satisfied.

4.3 Gradient of the Volume Constraint

The volume constraint was introduced in Eq. (12) and its derivative with respect to the
density of the e-th element is

∂V (φ)

∂φe

= Ve, (32)

where Ve is the volume of the e-th element. The sensitivity of the volume constraint is indepen-
dent of the design variables.
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Figure 2: Cantilever beam with the concept of form closure.

Parameter Meaning Value

Emin min. Young’s Modulus 1MPa
Emax max. Young’s Modulus 210000MPa
rmin truncation radius of filter 10.5mm
lcorr correlation length 25mm
κ objective’s weighting factor 3

Table 1: Parameters of the optimization.

5 Numerical Examples

The introduced robust optimization algorithm is applied to a cantilever beam as shown in
Fig. 2. The cantilever beam is hold in place by the contact support structures on the left hand
side and a vertical force of fy = −490.5N is applied on the right hand side. The geometry of the
contact support structures and the local friction coefficients are considered to be random. The
contact gaps are normally distributed with zero mean and a standard deviation of 30 µm. The
friction coefficients are uniformly distributed between 0.15 and 0.25. The material parameters
of the beam as well as the optimization parameters are given in table 1. The domain is dis-
cretized into 6026 elements, which corresponds to 75 contact nodes. Thus, the robust topology
optimization considers 150 uncertain parameters.

5.1 Optimization results

The results of the robust optimization and the non-robust approach are shown in Fig. 3. They
are obtained by optimizations that started from a uniform density distribution of φi = 0.49 and
1000 optimization iterations have been computed. Figures 3a and 3b show the resulting topology
of the robust and non-robust compliance optimization. Both optimized domains have the same
strut positioning inside the beam, while the topology inside the flange is different. The robust
optimized domain has more material inside the flange and the contact areas with the support
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(a) Robust optimized topology (κ = 3). (b) non-robust optimized topology (κ = 0).
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(c) Compliance of robust and non-robust optimization.

Figure 3: Optimization results for frictional contact-constrained optimization.

structure are wider.
Figure 3c shows the progress of the compliance over the first 200 iterations and convergence

is observed. The compliance of the robust design is 877Nmm, while the non-robust approach
leads to a compliance of 871Nmm. The final compliance of the robust design is 867Nmm and
about 0.6% higher than the compliance of the non-robust approach with 862Nmm. It is to
be expected, that the non-robust topology optimization leads to a smaller compliance, since
increasing the robustness comes at the costs of increasing the average compliance.

The performance of the robust contact-constrained topology optimization approach is ana-
lyzed with the help of the Monte Carlo Simulations. Therefore, 7000 random samples of contact
gaps and friction coefficients are sampled and the compliance for the robust and non-robust
final topologies are computed. It turns out, that the used sliding friction approach leads to poor
convergence of the non-linear contact problem and sometimes even divergence is observed. The
tangential contact force of a contact node is

ξAt = zAµ ξ
A. (33)

The convergence issues are observed, because samples with high deformed contact support struc-
tures enforce high contact forces, which in turn leads to high and non-physical tangential forces.
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Therefore, Coulomb’s law considering a stick and slip case must be used to compute the Monte
Carlo samples. Hence, the tangential contact force of a contact node reads

ξAt = min(zAµ ξ
A, fA

t ), (34)

where fA
t is the tangential force acting at the contact node. Using Coulomb’s law, the non-

linear contact problem is solved without further problems and the compliance is computed for
all samples. However, Coulomb’s law is not applicable to the FOSM approach, since the resulting
tangential contact function depends only indirectly on the friction coefficient. As a result, all
partial derivatives with respect to the random friction coefficients cannot be determined. Due
to that necessary modification, the results of the robust topology optimization cannot be used
to determine the accuracy of the FOSM approach. Nonetheless the Monte Carlo samples show,
that the robust approach reduces the standard deviation of the compliance.

The Monte Carlo simulation lead to similar average values of the compliance for both topolo-
gies. The robust topology has an average compliance of 887Nmm, while the non-robust topology
has a compliance of 882Nmm. The obtained average values are higher than the values obtained
by the optimization, since different friction laws are used. However, the Monte-Carlo simulation
shows that the standard deviation of the robust optimized design is about 3% smaller, than the
standard deviation of the non-robust topology design. Thus, the robust design approach using
FOSM results in a less sensitive topology, even though a different and more realistic tangential
contact law has been used for the Monte Carlo samples.

6 Conclusion

In this work, the contact-constrained topology optimization framework of Strömberg and
Klarbring [6] is extended to robust topology optimization. The presented approach considers
uncertainties at the contact support structure, such as imperfect geometry and the local friction
behavior, which are unavoidable in real world applications due to manufacturing tolerances. The
robust optimization problem is efficiently solved using the first-order second-moment method
and the compliance is minimized. As shown in the numerical example, the risk of potential
failure of the component is reduced, since the sensitivity of the optimized topology against the
defined uncertainty is reduced. The presented algorithms are implemented in the in-house code
TOptiMuM solving 2D and 3D contact-constrained optimization problems.
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