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Abstract. We consider waveform iterations for dynamic coupled problems with respect to the
role of time window length. We review existing theoretical results about the error of waveform
iterations and the role of the time window length. Furthermore, we present numerical results
for waveform iterations with both time adaptive sub solvers and with fixed time steps. This
way, we are able to give a recommendation on the choice of the time window. The use of time
windows can lead to an increase in efficiency. For fixed time grids, we can reliably achieve a
small performance increase. For time adaptive solvers, more research is needed.

1 Introduction

We are interested in coupled partial differential equations defined on two domains that
interact with each other on a lower dimensional interface. Examples are steel quenching where
hot steel is cooled down by blowing cold air over it, or a feather moving in the wind. Here we use
a partitioned algorithm where two different solvers are used for the sub problems. Furthermore,
the two sub problems are not necessarily on the same time scale, thus one wants to allow for
different timestep sizes in the two solvers. Also, using a constant timestep for transient problems
is not efficient. Thus, one wants to use a time adaptive solver, which automatically chooses the
timestep based on a local error estimate instead.

This can be achieved by so called waveform iterations. They where originally developed to
solve systems of coupled ODEs coming from electrical circuits in the 1970s ([10, 11]) to allow
for parallelization. They have also been successfully applied to coupled PDEs, for example in
[13, 5, 9], where applications in heat transfer and fluid structure interaction were studied.

Convergence of waveform iterations has mostly been studied for the ODE case in various
continuous and discrete settings see, [10, 11]. For ODEs, waveform iterations achieve superlinear
convergence. In [1], convergence of the waveform iteration is proven for time adaptive sub solvers
under the assumption of the time grid’s convergence.
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The convergence theory for PDEs is not as exhaustive as for ODEs. Convergence conditions
for linear PDEs were derived in [2] and [3] for both the semi discrete case as well as the
fully discrete case. One of the big challenges for many coupled PDEs, such as coupled heat
equations, is that waveform iterations do not converge for all material parameters. To obtain
fast convergence one has to use some kind of acceleration like under relaxation. This is done
in [9] and [5] for the fully discrete case. In [12], super linear convergence is proven for the fully
continuous linear heat equation in 1D with all material parameters equal to 1.

In both the ODE and PDE case, the error increases with the simulation time Tf , which may
cause instabilities as well as slow convergence. To avoid these instabilities, it is common practice
to split the whole time interval into multiple shorter time windows, onto which the waveform
iterations are successively applied. Whilst the time window length affects the convergence
speed, it is not clear how large or short the time windows should be to maximize efficiency.
The other aspect is that for every time window, we make a coupling error that is controlled
by the tolerance in the termination criterion. It is thus possible that the accumulation of this
coupling error affects the time integration error, forcing one to reduce the tolerance, effectively
negating all positive benefits of using shorter time windows. In [14], it is shown that shorter
time windows can increase the energy efficiency for the ODE case. For PDEs, there has been
little research on how to choose the size of the time window.

In this article, we review existing theoretical results about the error of waveform iterations
and the role of the time window length. Furthermore, we present numerical results for waveform
iterations with both time adaptive sub solvers and with fixed time steps. This way, we are able
to give a recommendation on the choice of the time window for fixed time grids. For our test,
case the experiments show that shorter time windows require fewer waveform iterations, yielding
an increase in performance for the fixed time step case. A small increase in performance can
also be observed for the adaptive time case. However, one would have to use non equidistant
time windows to achieve this increase in performance reliably, which is beyond the scope of this
article.

2 Waveform iterations

Consider the following ODE on the interval [0, Tf ]:

ẇ = g(w, v), w(0) = w0, (1)

v̇ = h(v, w), v(0) = v0. (2)

To define our waveform iteration, we divide the interval [0, Tf ] into a finite number of time
windows [Tw−1, Tw]. In the following, without loss of generalization, we assume that there is
only one time window [0, Tf ]. The continuous Gauß-Seidel or serial waveform iteration is then
given by

ẇk+1 = g(wk+1, vk), wk+1(0) = w0, (3)

v̇k+1 = h(vk+1, wk), vk+1(0) = v0, (4)

where the starting guess v0(t) = v0 is commonly used. In this paper we use the termination
criterion

||vk+1(Tw)− vk(Tw)||/||v0|| ≤ TolWR, (5)
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where Tw denotes the end of the time window and ‖ · ‖ is a vector norm.
A discrete waveform iteration is given by discretizing both sub problems in time on the time

grids {ti,kw }
Nk

w
i=0 and {ti,kv }

Nk
v

i=0 respectively. The two time grids are not assumed to be matching.

Thus, one has to use interpolation I(wk, {ti,kw }
Nk

w
i=0) in the discrete waveform iteration, yielding

ẇk+1,n+1 = g(wk+1, I(vk, {ti,kv }
Nk

v
i=0), wk+1(0) = w0, (6)

v̇k+1,n+1 = h(vk+1, I(wk, {ti,kw }
Nk

w
i=0)), vk+1)(0) = v0. (7)

The sub problems are then discretized using any time integration method.
The simplest way to speed up the convergence is to use under relaxation where the next WR

iterate is given as a weighted average of the previous iterates, yielding

ẇk+1,n+1 = g(wk+1, I(vk, {ti,kv }
Nk

v
i=0), wk+1(0) = w0, (8)

˙̂vk+1,n+1 = h(v̂k+1, I(wk, {ti,kw }
Nk

w
i=0)), v̂k+1 = v0, (9)

vk+1 = θv̂k+1 + (1− θ)vk, (10)

with the relaxation parameter θ ∈ [0, 1]. The optimal relaxation parameter θ is problem and
discretization dependent.

2.1 Convergence results for waveform iterations

Convergence of waveform iterations has mostly been studied for the ODE case in various
continuous and discrete settings, see for example [10, 11]. For ODEs, waveform iterations
achieve superlinear convergence with an error bound of the form

||ek||[0,Tf ] ≤
(CTf )k

k!
||e0||[0,Tf ],

where C > 0 is a constant depending on the Lipschitz-constant of the coupled ODEs as well
as their time discretization. The norm ||.||[0,Tf ] is defined as ||ek||[0,Tf ] := supt∈[0,Tf ] ||ek(t)||. In
[1], convergence of the waveform iteration is proven for time adaptive sub solvers under the
assumption of the time grid’s convergence.

The convergence theory for PDEs is not as exhaustive as for ODEs. One of the big challenges
for many coupled PDEs, such as coupled heat equations, is that waveform iterations do not
converge for all material parameters. To obtain fast convergence one has to use some kind of
acceleration like under relaxation. This is done in [8, 9, 5] for the fully discrete case. In [12],
two coupled 1D heat equation with all material parameters equal to one are analyzed in the
fully continuous setting and super linear convergence is proven for the relaxation parameter
θ = 1/2. Furthermore, it is shown that the waveform iteration converges to the exact solution
in two iterations if the domains are of the same size.

The semi discrete and discrete case for linear PDEs was analysed in [2] and [3]. The PDEs
are discretized in space by linear finite elements to yield an IVP of the form

Au̇+Bu = f(t). (11)

Then, a general splitting of the form

MAu̇
k+1 +MBu

k+1 = NAu
k +NBu

kf(t), (12)
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where MA +NA = A and MB +NB = B is studied. The main idea is to analyse the waveform
operator by splitting it into one linear part K = M−1

B NB and one nilpotent part

Kc = e−M
−1
B MAtM−1

B (NA −MAM
−1
B NB), (13)

yielding

uk+1 = Kuk +

∫ t

0

Kc(t− s)u(s)ds+ F (t). (14)

The error estimate is then given by

||ek||[0,Tf ] ≤

(
k∑

j=0

(
k

j

)
||K||k−j||Kc||j[0,Tf ]

T j
f

j!

)
||e0||[0,Tf ]. (15)

The asymptotic convergence behavior is only determined by K and in [2] it is shown that this
iteration converges linearly if the spectral radius fulfills ρ(K) = ρ(K) < 1 and super linearly if
ρ(K) = 0. However, due to the nilpotent operator, the iteration does not necessarily converge
monotonously and the error could even increase in the first few iterations. It is difficult to get
a better understanding of the convergence behavior, since this involves the pseudo spectra for
the operators K and Kc. The fully discrete case where the IVP (11) is discretized by a multi
step method is analysed in [3]. There it is shown that the waveform iterations converge if the
one step method converges.

These results show that the length of the time window effects the convergence of the waveform
iteration. However, there are to our knowledge no further results detailing the convergence of
waveform relaxation for the fully discrete case. Thus, we investigate the effect of time window
length numerically.

3 Model problem and discretization

As a model problem we use two coupled linear heat equations, given as follows:

α1u̇1(t, x)− λ1∆u1(t, x) = 0, x ∈ Ω1, (16)

u1(x, t) = 0, x ∈ ∂Ω1 \ Γ, (17)

u1(x, t) = u2(x, t), x ∈ Γ, (18)

u1(x, 0) = u01(x), x ∈ Ω1, (19)

α2u̇2(t, x)− λ2∆u2(t, x) = 0, x ∈ Ω2, (20)

u2(x, t) = 0, x ∈ ∂Ω2 \ Γ, (21)

λ2
∂u2(x, t)

∂n
= λ1

∂u1(x, t)

∂n
, x ∈ Γ, (22)

u2(x, 0) = u02(x), x ∈ Ω2, (23)

where t ∈ [0, Tf ], Ω1 = [−1, 0]× [0, 1], Ω2 = [0, 1]× [0, 1] and Γ = Ω1∩Ω2. The constants λ1 and
λ2 denote the thermal conductivities for the materials Ω1 and Ω2. Likewise, αm for m = 1, 2
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Material α [J/(Km3)] λ [W/(mK)]
Steel 3 471 348 49
Water 4 190 842 0.58

Air 1 299 465 0.024

Table 1: The different material parameters.

are constants defined by αm = cmρm, where ρm is the density and cm the specific heat capacity
of the material. The different material parameters used in the study are shown in Table 1. The
initial value is given by u(x, t) = 500 sin(πy) sin(π(x+ 1)/2).

This coupled problem will be solved iteratively using Dirichlet-Neumann waveform relax-
ations, see e.g. [6]. Here, we use the so called Gauß-Seidel variant, which solves the problems
in sequence. First, the continuous Dirichlet problem on the time window [0, Tf ] is given by

α1u̇
k+1
1 (t, x)− λ1∆uk+1

1 (t, x) = 0, x ∈ Ω1, (24)

uk+1
1 (x, t) = 0, x ∈ ∂Ω1 \ Γ, (25)

uk+1
1 (x, t) = ukΓ, x ∈ Γ, (26)

uk+1
1 (x, 0) = u01(x), x ∈ Ω1, (27)

where ukΓ denotes the interface temperature. Second, the Neumann problem on [0, Tf ] is given
similarly by

α2u̇
k+1
2 (t, x)− λ2∆uk+1

2 (t, x) = 0, x ∈ Ω2 (28)

uk+1
2 (x, t) = 0, x ∈ ∂Ω2 \ Γ (29)

λ2
∂uk+1

2 (x, t)

∂n
= qk+1, x ∈ Γ, (30)

uk+1
2 (x, 0) = u02(x), x ∈ Ω2, (31)

where qk+1 = λ1
∂uk+1

1 (x,t)

∂n
denotes the heat flux from the Dirichlet domain. Lastly, the relaxation

step is given as

uk+1
Γ = (1− θ)ukΓ + θuk+1

2 |Γ. (32)

Both differential equations are discretized in space by a linear finite element method, yielding
the IVP for the Neumann problem as: Find uh2 ∈ V , s. t.∫

Ω2

α2(u̇h2 , v) + λ2(∇uh2 ,∇v)dx+

∫
Γ

(qh, v)dS = 0, ∀v ∈ V, (33)

where v is a test function, V is our finite element space, and qh the discrete heat flux from the
Dirichlet problem. The weak form of the Dirichlet problem is given similarly to the Neumann
problem where the heat flux qh has been replaced by a Dirichlet boundary condition. The
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resulting IVPs for both sub problems are discretized with SDIRK2, as in [8] and [6]. For a
general initial value problem u̇ = f(u), the SDIRK2 method is given by

U1 = un + a∆tf(tn + a∆t, U1) (34)

un+1 = un + (1− a)∆tnf(t+ a∆t, U1) + a∆tf(un+1), (35)

where a = 1−
√

2/2.
To get to our discrete waveform iterations, the interface variables uk+1

hΓ
and qk+1

h are inter-
polated using piecewise linear interpolation as in [6] and [7]. The heat flux from the Dirichlet
problem is calculated using∫

Γ

(qk+1,n+1
h , v)dS =

∫
Ω1

α1

(
uk+1,n+1
h1

− U1h1

a∆t
, v

)
+ λ1(∇uh1 ,∇v)dx, (36)

and the initial flux is calculated using

qh(0) =

∫
Γ

∇u1(x, 0) · nds. (37)

The norm || · || for the convergence criterion (5) is in our case defined as
√∑

i ∆xv2
i , where

∆x is the spatial mesh width. To improve the convergence speed of the waveform iteration, we
use relaxation. Results for the optimal relaxation parameter in various continuous and discrete
settings for the heat equation can be found in [12], [9], [4] and [5]. We use the relaxation
parameter detailed in [6], which builds upon [8] for our test case, since it achieves a fast
convergence rate for the linear heat equation in 2D.

A local error estimate for the SDIRK2 method is given by

ln+1 = (a− â)∆tnf(t+ a∆t, U1) + (a− â)∆tf(U2), (38)

with â = 2 − 5
4

√
2. The timestep for the time adaptive solvers will then be given by a simple

dead beat controller defined as ∆tn+1 = ∆tn( TolTA

||ln+1||2 )1/2 together with a initial timestep of

∆t =
|Tf |Tol

1/2
TA

100(1+||f(u0)||2)
. The tolerance for time adaptivity is chosen as TolTA = TolWR/5 as done

in [6] and [9].

4 Numerical Results

We now investigate the effect of the time window length numerically. The test case was
implemented in Python by Peter Meisrimel and Azahar Monge with small modifications to
allow for multiple time windows and can be found here: [15]. The spatial mesh width ∆x was
set to 1/100. To solve the arising linear systems, a direct solver is used, implemented in Scipy’s
sparse linear algebra library.

4.1 Constant time grids

We first consider fixed time grids and compare error and number of waveform iterations
for different time steps and tolerances. The time grids were selected as in [6] such that both
sub problems have similar CFL numbers. This is achieved by setting the step size ratio to
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(a) Air-steel (b) Air-water (c) Water-steel

Figure 1: The average number of waveform iterations per time window over the number of time
windows for the fixed time grid case.

(a) Air-steel (b) Air-water (c) Water-steel

Figure 2: The time integration error over the number of time windows for the fixed time grid
case described above.

c1 = max(1, bD2/D1c) and c2 = max(1, bD1/D2c), where Di = λi/αi for i = 1, 2. The stepsize
for the sub solvers is then given by ∆ti = Tf/(ciN), where N denotes the number of base
time steps. We choose N = 32, 64 and 128 and the simulation time Tf was set to 104 seconds.
Instead of choosing the tolerance for the waveform iteration by trial and error, we computed the
time integration error and chose the tolerance to be the error divided by 10, since one normally
would want that the two error sources are comparable in magnitude. The error was measured
by using a reference solution that was calculated with N = 256 together with a waveform
tolerance of 10−8. We now divide the interval [0, Tf ] into up to Nw equally sized time windows,
where Nw divides N , since both solvers need to take an integer number of time step in each
time window. For the same reason Nw is assumed to be less than N . We then measure the
average number of iterations per time window as well as the time integration error for different
number of time windows as shown in Figures 1 and 2.

The number of time windows affects the error, since every time window has a coupling error
that is controlled by the tolerance TolWR. Thus, if the coupling error dominates the time
integration error, then the accumulation of coupling error could cause an increasing error with
the number of time windows. However, as can be seen in Figure 2, this was not the case in our
testing, except for very large tolerances or coarse spatial grids (not shown). There is however
some variation in the error in Figure 2. This can largely be explained by the fact that the
termination criterion only considers the last time step of the time window.
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(a) Air-steel (b) Air-water (c) Water-steel

Figure 3: Number of iterations for different time window lengths in the time adaptive case.
The x axis is the length of the simulation interval and the y-axis denotes the number of WR
iterations it took for it to terminate. Only one time window was used in this test.

Comparing the dependence of the average number of waveform iterations per time window
and the number of time windows in Figure 1, one can see that a higher number of time windows
yields a reduction in iterations in most cases. This decrease in iterations is largest for N = 128,
where we see a maximal decrease in the average number of waveform iterations of 33%, 50% and
50% for the air-steel, air-water and water-steel test case respectively. The maximal decrease
in iterations is the smallest for N = 32 with a decrease of 0%, 33% and 33% for the air-steel,
air-water and water-steel test case respectively. The maximal decrease in average waveform
iterations for N = 64 is between the cases N = 128 and N = 64.

Furthermore, the average number of waveform iterations have a relation to the cost of the
simulation. The cost can be approximated by the number of sub solver calls, since we are
solving the underlying systems in the sub-solvers with a direct method. The total number of
sub solver calls for our case is given by k(N1 + N2), where k denotes the average number of
waveform iterations per time window and Ni denotes the total number of timesteps per sub
solver for i = 1, 2. The only variable that depends on the number of time windows is the
average number of waveform iterations k, which decreases with the length of the time window.
Thus, using shorter time windows also yields a reduction in the cost of the simulation. For
our test case, we achieved a maximal reduction of the cost by a factor of two. Combining this
with the fact that the time integration error does not show a strong dependence on the number
of time windows yields the recommendation that one should use as short a time window as
possible. For equidistant time grids this results in the recommendation to set the number of
time windows to the greatest common divisor of N1 and N2.

4.2 Time windows and fully time adaptive

In the time adaptive case, a good strategy for the time window length is more difficult to
find. The challenge is that the time step size varies with time and is not known beforehand.
Thus, to see if one can potentially use the choice of time window to improve the computational
efficiency, we first use one time window only and vary the simulation time Tf between 0.012
and 2200. We set TolWR to 10−3 and 10−6.

In Figure 3, we plot the number of wave form iterations against the simulation time Tf . As
can be seen, the number of waveform iterations increases slowly with the time window length.
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(a) Air-steel (b) Air-water (c) Water-steel

Figure 4: Work over error comparison for different number of equally sized time windows and
the tolerance TolWR = 10−5 in the time adaptive case.

This means that one could gain some computational efficiency by selecting a good time window
size.

To test how the efficiency of the time adaptive method is affected by the use of time windows,
we now use 1, 10 and 100 equally sized time windows for a simulation time of Tf = 104 and
vary TolWR (and thereby TolTA). The time integration error was plotted over work in Figure 4.
The error is measured using a solution with TolWR = 10−6 and one time window as a baseline.
As a measure of work, we again use the number of linear solver calls.

As can be seen in Figure 4, using shorter time windows yields some efficiency increase for a
few tolerances. The main problem here is that the time step size varies by many magnitudes
between the beginning of the simulation and the end, forcing one either to select fairly big
time windows with small increases in performance or using a smaller time window and limiting
the time step size to the time window size. Thus, one should use some kind of time adaptive
strategy as well for choosing the time window size in the time adaptive case, which is beyond
the scope of this paper.

5 Conclusion

Our experiments show that it is beneficial to use as short time windows as possible for
the fixed time grid case. For the time adaptive case our results show that using shorter time
windows can lead to some gain in computational efficiency in specific cases. However, one would
have to use non constant time windows in order to gain a reliable increase in computational
efficiency.
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