
Structural Optimization 17, 162-171 (~) Springer-Verlag 1999 

S t r u c t u r a l  s h a p e  s e n s i t i v i t y  a n a l y s i s  for  n o n l i n e a r  m a t e r i a l  

m o d e l s  w i t h  s t r a i n  s o f t e n i n g  

G. Bugeda,  L. Gil and E. O~ate  

Escola T~cnica Superior d'Enginyers de Camins, Canals i Ports; Universitat Polit~cnica de Catalunya Campus Nord UPC, 
Mbdul C1, C / G r a n  Capits s/n, 08034 Barcelona, Spain 

A b s t r a c t  This paper describes some considerations around 
the analytical structural shape sensitivity analysis when the struc- 
tural behaviour is computed using the finite element method with 
a nonlinear constitutive material model. Traditionally, the struc- 
tural sensitivity analysis is computed using an incremental ap- 
proach based on the incremental procedures for the solution of the 
structural equilibrium problem. In this work, a direct (nonincre- 
mental) formulation for computing these structural sensitivities, 
that is valid for some specific nonlinear material models, is pro- 
posed. The material models for which the presented approach is 
valid are characterized by the fact that the stresses at any time 
t can be expressed in terms of the strains at the time t and, in 
some cases, the strains at a specific past time t = (t = < t).This is 
the case of elasticity (linear as well as nonlinear), perfect plastic- 
ity and damage models. A special strategy is also proposed for 
material models with strain softening. 

For the cases where it is applicable, the sensitivity analysis 
proposed here allows us to compute the structural sensitivities 
around any structural equilibrium point after finishing the solution 
process and it is completely independent of the numerical scheme 
used to solve the structural equilibrium problem. This possibility 
is particularized for the case of a damage model considering a 
strain-softening behaviour. Finally, the quality and reliability of 
the proposed approach is assessed through its application to some 
examples. 

1 I n t r o d u c t i o n  

Roughly speaking, sensitivities are understood as a relation 
between some control parameters, such as the structural re- 
sponse, and some design variables that  define the structural 
shape. From this point of view, if a design variable q is se- 
lected, the sensitivity of the structural response can be de- 
fined in terms of displacements u as the relation du /dq  or as 
dtr/dq in terms of stresses. 

In optimization problems these sensitivities are normally 
defined in terms of the objective function and the restrictions. 
In general, these functions depend on the structural response 
and, due to that,  in this work only the sensitivities in terms 
of the displacements or the stresses have been considered. 

There have been different contributions on performing the 
sensitivity analysis in nonlinear structural systems (Choi and 
Santos 1987, 1992; Arora and Cardoso 1988, 1992; Tsay and 
Arora 1990; Tsay et al. 1990; Yao and Arora 1992a,b; Kleiber 
1993). In particular, for the case of nonlinear material mod- 

els, most research is related to the use of plasticity models 
(see Haslinger and M/ikinen 1992; Vidal and ttaber 1993; 
Kleiber et al. 1994, 1995; Kleiber and Hien 1996). Due to 
the fact that  using an incremental approach solves most of 
the nonlinear structural equilibrium problems, the sensitivity 
analysis is normally obtained as an addition of increments 

t+Atdu tdu  ( A t d u ~  
- dq / ' (1) dq 

The incremental magnitude of the sensitivities are ob- 
tained at each step of the incremental approach through the 
differentiation of the incremental integral equilibrium equa- 
tion (Vidal et al. 1993), 

~ B T & d V - f "  = 0 ,  (2) 

where B is the deformation matrix, & is the increment vector 
and f is the external forces increment vector. 

Another alternative is to start from the incremental finite 
element discrete equilibrium equations (Kleiber et al. 1995, 
1996), 

KT(u ,q)z~u(q  ) = t+z~ t f_  t r ,  (3) 

where K T is the tangent stiffness matrix, A u  is the incre- 
mental displacement vector, t + A t f  the nodal external forces 
vector and t r  is the nodal internal forces vector corresponding 
to the last equilibrium configuration. 

These strategies involve high computational cost because 
the sensitivity analysis must be computed after the conver- 
gence of each load increment. In addition, the incremental 
nature makes it suitable to carry and to accumulate errors 
depending on the resolution strategy used to solve the equi- 
librium problems. Then, the quality of this type of sensitivity 
analysis can depend on the resolution strategy and the size 
of the load increments. 

Another general approach of the sensitivity analysis with 
nonlinear material problems appears in the paper by Ryu et 
al. (1985), and is applied to plasticity by Silva et al. (1997). In 
this last reference the differentiation of the global equilibrium 
equation in its integral form is proposed, dl/ ] 
~ BTo  " d ! / - f  = 0 ,  (4) 
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where er are stresses and f is the external nodal forces vector. 
The present work follows similar arguments and a direct 

strategy for the evaluation of the sensitivities at the equilib- 
rium points without any incremental dependence is proposed. 
In addition, in order to solve problems involving constitutive 
material models with strain softening a specific strategy is 
also proposed. 

The following sections present the proposed sensitivity 
analysis formulation. Two different concepts are developed. 
The first one is a formulation for the sensitivity analysis of a 
nonlinear constitutive material model without taking into ac- 
count, yet, the possibility of strain-softening behaviour. This 
concept is particularized for the case of a damage model. The 
second one is the possibility of considering a constitutive ma- 
terial model with strain softening. The additional consider- 
ations to take it into account are developed for the case of 
the damage model with strain softening and can be easily 
generalized for any other constitutive model. One of these 
additional considerations is the necessity of including a spe- 
cial approach based on an arc-length strategy for a proper use 
of the sensitivity analysis to project the structural behaviour 
from an original structure to a modified one. Finally, the use 
of all the formulations presented is illustrated through some 
assessment examples. 

2 G e n e r a l  f o r m u l a t i o n  f o r  s e n s i t i v i t y  a n a l y s i s  i n  
n o n l i n e a r  s t r u c t u r a l  p r o b l e m s  

For a typical structural equilibrium problem it is well-known 
that when the applied external loads are in equilibrium with 
the internal loads, the finite element discrete equilibrium 
equation at each step of the analysis can be written as 

el~em/ Btvr t dV - ft  = O. (5) 

Here we have used the superscript t to indicate the pseudo- 
time that corresponds to the step of the analysis in which the 
equilibrium equation has been considered. 

Taking into account that  our objective is to compute the 
sensitivities at the equilibrium point we can differentiate the 
discrete equilibrium equation with respect to a design vari- 
able q, 

dq Lelem V 

elem k V J 

d f  t 
- d--~ = 0 .  (6) 

The last expression can be developed for each finite e l ement  of 
the mesh. Assuming that  the iso-parametric transformation 
can be used for the integration domain of each element, the 
last expression becomes 

/ ] dft  
dVo - o ,  

elem 
(7) 

where J is the Jacobian of the iso-parametric transformation. 
If  now we develop (7) for each element of the finite element 
mesh we obtain 

d (BTo . t ] j  0 dV 0 = / d B T  t fJldVo+ 
Vo Vo 

B T d t r  t dq IaldV0 + / B T ~  d'~ = 0, (8) 

V0 V0 

where V 0 refers to the integration domain corresponding to 
one element. Most of the integral terms of the last expres- 
sion are well-known and can be obtained by using the well- 
established strategies used for linear problems (see Wang et 
al. 1985). Nevertheless, the second integral term contains the 
expression d~t/dq that  includes the nonlinearity that char- 
acterizes the constitutive material model. All the difficulties 
of the sensitivity analysis for material nonlinear problems are 
concentrated in the computation of this term. Next we will 
see how, under some specific conditions, this term can be 
obtained through the use of the tangent constitutive matrix. 

For a general nonlinear material model, during the equi- 
librium structural analysis the stresses at each point for a 
given pseudo-time t can depend on the entire history of defor- 
mation. Therefore, to obtain the term d~rt/dq is not an easy 
task, and normally involves an incremental procedure using 
(1), (2) or (3) as commented above. Nevertheless, there are 
some cases where the material model allows us to express the 
stresses at time t, and, in some cases, the strains at a past 
time t u. Some of these cases are listed below. 

�9 Linear and nonlinear elastic models: this is an obvious 
case. 

�9 Perfect plasticity models: this case was presented by Silva 
et al. (1997). 

�9 Damage models: this case will be shown in detail in the 
next section. 

In a general plasticity case the stresses at each time t can 
be expressed in terms of the total strains ct at the same time 
t and the plastic strains s t at the same time as follows: 

(9) 

where D is the linear constitutive matrix. In order to obtain 
the plastic strain at time t there are three possibilities. 

1. 

2. 

If the stresses have not yet reached the yield surface the 
plastic strains are null and then (9) reduces to ~t = Dst .  

When the stresses lie in the yield surface the plastic strain 
at time t can be obtained in terms of the total strain ~t 
in a direct way by using the consistency equation and a 
radial return algorithm. In this case (9) holds, and s t can 

be written in terms of s t . 

3. When due to an unloading situation, the stresses go back 
to the interior of the space limited by the yield surface, 
the value of the plastic strain r  at time t is the same 
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as the plastic strain e~ at the time where the unloading 

process started t u. In this case (9) transforms into ert = 

As has just been shown, in the particular case of the per- 
fect plasticity, the stresses at time t can be expressed in terms 
of the strains at time t and a set of internal variables ~t (plas- 
tic strains) which, in ~ turn, depend on the strains at time t 
and, in some situations, the strains at a past time t u. This 
can be expressed as follows: 

ct  = o't [~t,~t (~U,~c)] . (10) 

In (10) a possible dependence with respect to a charac- 
teristic length gc has been considered. This is normally used 
if the material model contains a strain softening behaviour. 
The use of the characteristic length lc is necessary for the reg- 
ularization of the solutions obtained from a smeared (contin- 
uous) model after the analysis of a cracking (discontinuous) 
phenomena, especially for cases with softening (see Oliver 
1989). 

On the other hand, in the case of a simple damage model 
~t reduces to the damage parameter d t that  characterizes the 
amount of existing damage, and then (10) can be written in 
the following way: 

crt = ( 1 -  dt) D~ t ,  (11) 

how to obtain the damage parameter d t in terms of total 
stresses will be shown in the next section. 

In all nonlinear material models, at each step of the anal- 
ysis the variation of the strains and stresses at the time t are 
related through the tangent constitutive malrix D~? in the 
following way: 

do "t = D~i.de t . (12) 

Moreover, by taking (10) into account this matrix can be 
written as follows: 

O~t o~t d~t (13) 
D} I , =  ~ + Oe~t de t ' 

where all the derivatives must be evaluated at the time t. For 
instance, for the classical plasticity model of (9) the matrix 
is 

D ~ =  D 1 -  Oe t ]  , (14) 

and for the damage model of (11) it is 

D} F = D  1 - d t - e ~ - e t  ) . (15) 

If we now want to obtain the derivative of the stresses at 
time t with respect to the design variable q, we can consider 
again (10) taking into account all the possible dependencies 
of the stresses with respect to the design variable q in the 
following way: 

Nevertheless, normally there is no explict dependence of ei- 
ther the trusses or the interal variables with respect to the 
design variable (this would be the case if, for instance, the 
Yonng's modulus or Poisson's ratio were a design variable). 
Therefore, (16) can be reduced to 

Then we can differentiate the stresses with respect to the 
design variable as follows: 

dert 0o -t de t 
+ 

dq - ge t dq 

Oed \ Os t dq + Oe ~ dq + Og~ dq ] - 

( o~' o~ t o~* ~ d~ ~ 
Od + 0~* Od ] -g-qq + 

go "t (O~ t de u O~ t dec) (18) 
O~t k O~ u dq + Og--Td~ " 

If we combine (13) and (18) we can arrive at the next 
expression, 

dat t det Oat ( O~tdsu O~dgc~ (19) 
dq - D T ~  + ~  \ 0 e u  dq- + 0t---c d q ]  " 

Clearly, if the nonlinear material model does not have any 
dependence with respect to the characteristic length, the last 
term of (19) vanishes. In addition, in the case of elasticity 
where there is no dependence of the stresses with respect to 
any internal variable, the terms where it appears are null. 
Finally, the terms where eu appears will be null, unless they 
correspond to an unloading situation. In this last case the 
tangent of the constitutive matrix D~. will also correspond 
with the unloading situation. 

On the other hand, we have to take into account that if 
a classical finite element discretized linear relation between 
the displacement field and the strains is assumed, we have 

e t = B u  t (20) 

where u t is the nodal displacements vector at the time t. 
Differentiating (20) with respect to a design variable gives 

ds t dB t dut  
d--q- = -~-qu + I3 ~q  . (21) 

Now, if we substitute (19) and (21) into (8) and rearrange 
terms, we obtain the following expression: 

d 
(BTt r t [ j [ )  dVo = 

v0 



J B  T [  t / d B  t d u t ~  
[ D T ~ - ~ q  u + B  dq ] +  

y0 

de u O~td ic )]  
O~i\Od dq + 0e---~-d--q IJIdV~ (22) 

Now, it we substitute (22) into (7) we obtain the following 
matr ix  expression: 

t dut  = f t .  (23) K T - - ~ -  q 

where K ~  is the tangent stiffness matr ix  and ft* is a pseudo 
load vector, both evaluated at the t ime t. Their expressions 
are 

elem LV 0 j 

f t* af t  i o f {  d~-~er t , J I  td l J I  -dq ele~m + B T {  er --~-q + 

[D~? dB u t oert (O~t  de u O~tdic'~ ] 
dq +-0-~ \Oe u dq + Ogc dq ] ] l J I } }  dVO . (25) 

Equations (23)-(25) form a linear system of equations 
whose solution provides the sensitivities of the displacement 
field with respect to a design variable. The matr ix  of this 
system is the same tangent  stiffness matr ix  normally used 
for the solution of the structural  equilibrium problem. Note 
that,  usually, this matr ix  has already been factorized during 
the solution process. The pseudo load vector, with the excep- 
tion of the last integral term, can be computed by using the 
same techniques as in the case of linear structural  problems. 
This last integral term can be easily computed by using the 
tangent constitutive matr ix.  

It must be emphasized tha t  the displacements and the 
tangent stiffness matr ix  that  appear  in (23)-(25) are obtained 
during the solution of the structural  equilibrium problem in 
the usual incremental way. This means that  they incorporate 
all the dependencies with respect to the strains and stresses 
that  the nonlinear material  model assigns to them. 

In consequence, despite the fact tha t  traditionally the 
structural sensitivity analysis for nonlinear problems is ob- 
tained in an incremental way, last expressions show that ,  in 
the mentioned particular cases, this analysis can be obtained 
in a direct way after the solution of the structural  equilibrium 
problem is obtained. 

3 D a m a g e  mater ia l  m o d e l  

Continuous damage material  models are based on the use of 
an internal variable d t tha t  controls the mechanical behaviour 
of the material.  The constitutive equation of the simplest 
damage model depends on a single parameter  d t in the way 
expressed in (11), 

165 

The damage parameter  evolves in terms of the strain 
state. In this work the following evolution equation has been 
used by Oliver et al. (1990): 

, 
v t sc[o,t] 

where r r is a norm of the stress state given by 

= [1 + r(n r 1)] ~/(c~)  2 -t- (o'~) 2 + (o'~) 2-, (28) T $ 

with 

3 (~}  1 fc 
r = Z I-v]1'  = + n = - ,  (29) 

i=1 ft  

where er e = De  are the elastic stresses, cre are the principal 
z 

elastic stresses and n is the ratio between the maximum allow- 
able stresses for compression (fc) and traction (ft) .  Finally, 
v* is the threshold value of this norm (a material  property) 
above which the material  starts to damage and A is a soften- 
ing parameter  which depends on the characteristic length of 
the elements gc (a measure of the mesh element size), fracture 
energy G f ,  maximum traction stress ft  and Young's modulus 
E as follows (see Oliver et al. 1990): 

A -  2gcf2 (30) 
2 G f E -  1 

The dependence of A on the mesh size ~c accounts for the 
proper numerical structural  response with respect to the size 
of the finite elements. As mentioned earlier, this dependence 
is necessary when a continuous displacement field (smeared 
model) is used for the analysis of cracking phenomena, where 
the displacements are known to become discontinuous (see 
Oliver 1989). This means that,  in practice, the constitutive 
equation at each element depends on its size. In the case 
of shape sensitivity analysis this effect must be taken into 
account because a change on the structural  shape can affect 
the element sizes and, in consequence, also the stress values. 

Expression (27) indicates the following. 

�9 The behaviour of the material  is initially elastic (d t = 1) 
until the norm of the stress rate reaches the threshold 
value r*.  

�9 Once the norm of the stress state become higher than 
the threshold value damage parameter  d t, an increase of 
the applied load results in an increase of the norm of the 
stress state. Therefore, in this situation the value of v t 
corresponds with the value of the norm of the stress state 
T t, and the value of the damage parameter  at t ime t can 
be obtained in terms of the strains at time t. 

�9 In the case of an unloading situation of a damaged mate- 
rial, the value of v t corresponds the the value of the norm 
of the stress state (v t = ru), obtained at the previous 
t ime t u when the unloading process started. This norm 
is obtained in terms of the stresses at that  t ime e u. In 
this case, the value of the damage parameter  at t ime t 
can be obtained in terms of the strains at time t u. 
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To the authors'  knowledge, the above comments are valid 
for all the damage material models. As can be seen from 
these comments, (19) is valid for this damage model because 
the stresses at time t can be obtained in terms of the strains 
at time t, the strains at time t u,  and a characteristic length. 
Therefore, the structural sensitivity analysis for the material 
model can be obtained using (23) to (25). 

If we compute the value of the different derivatives that  
appear in the last term of (25), we have 

8tr t  8r - D e  t - D B u  t (31) 
8 t o t -  8d  t - = , 

8tr t cod t cod t 8 7  u 

8e  u -- 8e  u - c%.u 8 e  u . (32) 

The derivatives of the last expression can be obtained 
through the direct derivation of (26) and (27). They need 
only be taken into account in unloading situations and al- 
ready damaged material. If  this is the case, the term d e U / d q  

must be computed at the time t u when the unloading process 
starts. This term can be obtained from the sensitivity of the 
displacements at time t u using 

de u dB uU du u 
d~- - dq + B  ~qq . (33) 

Another necessary term for (25) is 

agc -- 0~c -- ~-7 ] -  ~ eA(1-{-~-) (34) 
2 f  2 

2 G f E  - 1 

Finally, if the characteristic length is taken in the following 
way: 

~c = (Velement)  1 In  , (35) 

where n takes the values 1, 2 or 3 for one, two or three 
dimensional problems, respectively, then we have, 

dec 1 dVelemen t (36) 
dq - n g  n -1  dq 

Finally, if we substitute (31) to (36) into (25) we obtain 
the final expression for the pseudo load vector corresponding 
to this type of material model. The final expression is not 
written here due to its excessive length. 

4 D i scuss ion  a n d  s t r a t e g y  fo r  s ens i t i v i ty  ana lys i s  
w i t h  s t r a i n - s o f t e n i n g  p r o b l e m s  

The solution of (23)-(25), as well as any other method based 
on a traditional incremental approach, provides the sensitivi- 
ties of the structural behaviour assuming that  when the struc 
tural shape is perturbed the loads remain constant. These 
sensitivities are the derivatives of the structural behaviour 
with respect to the design variables, and they are obtained 
assuming an infinitesimal perturbation of these design vari- 
ables. Nevertheless, the sensitivity analysis is often used for 
the first-order prediction of the nonlinear behaviour of a mod- 
ified structure that has been obtained by the application of a 
finite perturbation. By using this approach, one can estimate 

the answer of the new structure under the same load level as 
the original structure. This means tha t  the behaviour of a 
structure that  we would obtain after a finite perturbation of 
the design variable q can be approximated by the following 
expression: 

du 
u(q + Aq) ~ u(q) + --;-Aq. 

a q  
(37) 

Figure 1 shows the meaning of this type of projection as- 
suming that we have the full load displacement curve for the 
original and the perturbed structures. In this figure the con- 
tinuous line shows the equilibrium response curve of a given 
structure under a specific loading history, and the dashed 
line shows the estimation of the corresponding equilibrium 
response curve for a perturbed structure under the same load- 
ing history. 

loads 

fq 

uq uq + dq disp 

Fig. 1. First-order projection of the structural response using the 
sensitivity analysis 

When the structural behaviour includes strain softening, 
the use of this type of projection for finite perturbations can 
become meaningless. In principle we do not know if a certain 
finite modification of a design variable will increase or de- 
crease the peak load of the structural response. In particular, 
if the peak load decreases, it makes no sense to use a stan- 
dard sensitivity analysis to project the structural behaviour 
to the perturbed one. A clear example of this situation is 
shown in Fig. 2. Note that  in this case a projection form the 
highest loaded equilibrium points of the original structure 
drive to situations where the perturbed structure cannot be 
equilibrated. 

On the other hand, in cases where the perturbed struc- 
ture has a higher peak load than the original one, it would 
not be possible to predict its value. This case is shown in 
Fig. 3, where we cannot estimate any of the highest loaded 
equilibrium points of the perturbed structure by a horizontal 
projection from the original one. 

It seems clear that  in the two mentioned pathological sit- 
uations, the projections from the original structure to the 
perturbed one should involve a variation not only of the dis- 
placement field but also of the load level. This type of pro- 
jection is named desirable projection in Figs. 2 and 3. In this 
case it is not enough to know the sensitivities of the unknown 
variables of the equilibrium equations. It  is also necessary to 
know the sensitivities of the load forces. 
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loads 

fq 
~ classical 

/~NN Nt.v projection 

/ ] " ~ r a b l e ' N N N ,  

/ I /  ". \ 
, N 

/,,,- 
uq disp 

Fig. 2. Nonfeasible projections of the structural response by using 
a constant load sensitivity analysis 

loads 

fq 

] desirable N" 
f ~ "~ classical /" , ~ r ~ ~  ~ ~ 

uq disp 

Fig. 3. Nonfeasible projections of the structural response by using 
a constant load sensitivity analysis 

It should be emphasized that this type of problem ap- 
pears because the sensitivity analysis that was obtained as- 
suming an infinitesimal perturbation of a design variable is 
used to predict the behaviour of a new structure that is de- 
fined through a finite perturbation of a design variable. In 
fact, when infinitesimal perturbations are applied there are 
no finite variations of the peak load. 

From the mechanical point of view, structural problems 
with strain softening present a reduction of the structural 
resistance after the peak load equilibrium point. After this 
situation i t  is not possible to increase the magnitude of the 
loads applied to the structure. In consequence, a classical 
analysis strategy based on an incremental application of the 
loads does not allow studying the structural behaviour after 
the peak load point. 

:! On the other hand, the displacement field can always 
be increased producing new equilibrium states in the struc- 
tural response curve, even if the structural behaviour contains 
strain softening. This allows the use of arc,length methods 
for the study of the structural behaviour of strain-softening 
problems after the peak load. This type of method is based 
on the simultaneous accomplishment of the equilibrium equa- 
tions and some conditions about the displacement field (Cr- 
isfield 1991). Both conditions assure new equilibrium points 
in the displacement load curve. 

Taking into account that the solution strategies of this 
type of problem are based on the use of a fixed arc-length for 
each equilibrium point instead of a fixed load level, it seems 

logical to use this type of condition to predict the behaviour 
of a perturbed structure. In this case, the projections will 
be made assuming that the arc-length condition, and not 
the load level, will remain constant. This approach has the 
advantage that no assumption is made on the peak load of the 
perturbed structure; in addition, it is completely consistent 
with the equilibrium equations. 

Arc-length methods are based on the simultaneous ac- 
complishment of the following two equations: 

ele~m/Bter dV - Af = 0, (38) 

g(u, = o, (39) 

where ~ is a load factor parameter that controls the magni- 
tude of the load applied at each equilibrium point and (39) 
is a condition on the values of the displacement field at the 
same point. Traditionally, this condition is applied on the 
value of the displacement of a single node or on the value of 
a norm of the nodal displacement vector. Compared with a 
classical incremental approach the are-length methods intro- 
duce the additional unknown ~ and the additional equation 
(39). 

The sensitivity analysis of the arc-length equations in- 
volves the simultaneous differentiation of (38) and (39). This 
process leads to the following system of equations: 

d [ E / B t t r d V ]  d $ f _ $ d f  
d-q Lelemv - dq dq = 0, 

(40) 

dg cgg Og du Og d,~ (41) 
dq - a q + Tq + O--X dq 

Equation (40) is similar to (6) with the addition of some 
terms to the pseudo-load vector. On the other hand, the dif- 
ferent terms of (41) are very easily obtained by differentiation 
of the arc-length condition. 

The simultaneous solution of (48) and (49) can be grouped 
in the following, more compact, matrix form: 

KT - f  Og/c~u Og/O~ ] { du/dq f* dA/dq } = {  0 } " (42) 

The solution of (42) provides the sensitivities of the displace- 
ments and the load factor parameter. If these sensitivities are 
used to project the structural behaviour by the perturbation 
of a design variable, it will produce a first-order estimation 
of the displacements and the load level of the new structure 
assuming the accomplishment of the same arc-length condi- 
tion as the original one. This estimation will be obtained by 
using the following expressions: 

du 
u(q + Aq) ~ u(q) + -yTAq, 

uq  
(43) 

d~Aq.  
,~(q + 3q) ~, ,~(q) + dq (44) 

On the other hand, it must be mentioned that the addi- 
tion of the arc-length condition to the equilibrium equation 
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leads to the system of equations (42) tha t  is no longer sym- 
metric. Fortunately,  due to the fact tha t  only the last row and 
the last column are nonsymmetr ic  it  is possible to use cheap 
i terative strategies tha t  take full advantage of the factoriza- 
tion of the original tangent  stiffness matr ix ,  see Gil (1996) 
for more details. 

~ 2~. 

Z 20n  X 

2m 

,Z X 
0.5 m 

Fig. 4. Geometrical definition of test case 1 

"Z- - -  tom 

Fig. 5. Geometrical definition of test case 1 

2m 

11 21 

Fig. 6. Finite element mesh for test case 1 

In addition, it should be mentioned tha t  the s t ra tegy pre- 
sented could be applied to any type of nonlinear s t ructura l  
problem, even if it has no strain-softening effect. 

It should be noted tha t  this procedure provides the de- 
sign sensit ivity analysis of the s t ruc tura l  response, and this 
allows us to predict the complete s t ructura l  response pa th  
(or, eventually, par t  of it), which can contain the new peak 
load. Nevertheless, it does not provide the design sensi t ivi ty 
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Fig.  7. Superposition of the displacement load curves correspond- 
ing to the original, the modified and the projected structures for 
test case 1 

analysis of the peak load. How to obta in  this last sensitivity 
is a different problem and is not t reated here. 

To the authors '  knowledge, a similar approach was first 
proposed by Kleiber and Hien (1996) and it was applied to 
the sensit ivity analysis of geometrical ly nonlinear problems. 
In the present work, this technique has been applied to struc- 
tural  problems where the nonlineari ty and the softening are 
due to the const i tut ive mater ia l  model. 

5 A s s e s s m e n t  e x a m p l e s  

The quality and the rel iabil i ty of the formulations proposed 
in this paper are assessed here through the resolution of two 
different test cases. The first test  case uses the damage model 
with strain softening for the analysis of a two-dimensional 
beam under a bending moment.  The second test case uses 
the same mater ia l  model for the analysis of a short beam with 
a variable cross-section. 

5.1 Test case 1. Two-dimensional beam under a bending 
moment  

This test case studies the quality of the proposed formulation 
for the case of a concrete iso-static beam with bending be- 
haviour. The selected design variable is the thickness of the 
beam. This test case shows the applicat ion of the presented 
formulation to predict the behaviour of a beam that ,  due 
to building errors, has a thickness smaller than the designed 
and analysed one. This test case is analysed with a damage 
model with strain softening and the main aim is to predict 
the modification of the peak load produced by the building 
error. 

The geometry and the applied load for this test case are 
described in Figs. 4 and 5. Figure 5 also describes the symme- 
t ry  approach used for the analysis of the structural  problem. 

The various da ta  used for the s t ructura l  analysis is given 
below. 

�9 A plane stress model  with a depth of 50 cm has been 
assumed. 



169 

50 

~, 30  
0 

o 20 

4O 

10 

Y -// 
I 

Z 

0 I I 

0.0 0.1 0.2 0 .3  

displacements [cm] 
Fig. 8. Detail of the zone with maximum applied load 

original 

modified 

X projected 

1 I 

0 .4  0 .5  

�9 The arc-length method controlling the displacements of 
node l l  (see Fig. 6) with increments of A1 = 0.006 cm at 
each step of the solution process. 

�9 The convergence cri teria for the solution of the equilib- 
r ium problem have been defined in terms of the rat io be- 
tween the norm of the residual  forces and the norm of the 
external forces. This rat io  has been l imited to 1%. The 
finite element mesh shown in Fig. 6 contains 40 quadrat ic  
eight-node elements. 

�9 The init ial  design variable is the thickness of the beam. 

�9 The mater ia l  propert ies  are as shown in Table 1. 

Table  1. Material properties for test case 1 

Young's modulus E 2.1 106 K N / m  2 

Poisson's ratio 0.2 

Maximum compression stress 2.0 102 K N / m  2 

Maximum tract ion stress 500.0 K N / m  2 

Fracture energy 200.0 J / m  2 

Two different analyses have been performed. The first 
one corresponds to the original s t ructure.  For this s t ructure  
the sensitivities of the displacements  with respect to the de- 
sign variable have been computed  at  each equil ibr ium point.  
The second analysis corresponds to a modified (per turbed)  
s tructure tha t  has been obta ined by applying a reduction of 

2.5% to the design variable. This means that  the thickness 
of the modified beam is 5 em smaller than the original one. 

In order to check the quali ty of the proposed formulation, 
the following curves have been compared. 

1. 

2. 

. 

Displacement load curve corresponding to node 21 of the 
original structure.  

Displacement load curve corresponding to the same node 
of the modified structure obtained by a direct analysis. 

Displacement load curve corresponding to the same node 
of the modified s t ructure  obtained by a first-order pro- 
ject ion [see (43)-(44)] using the results of the original one 
and its sensitivities. 

The comparison of the response curves between the orig- 
inal, modified and projected s t ructura l  behaviour is shown 
in Fig. 7. It should be noted tha t  the curves projected and 
modified superpose quite well. This reveals a good behaviour 
of the proposed formulat ion for this test case. In part icular,  
the projected curve allows a very good engineering estima- 
tion of the u l t imate  load of the modified structure (see Fig. 
8). 

5.2 Test case 2. Two-dimensional short cantilever beam 

In this test case, the s t ructural  problem consists of a small 
cantilever beam with a variable cross-section (see Fig. 9). 

The various da ta  used for the s t ructura l  analysis is shown 
in Table 2. 

The various da ta  used for the s t ructural  analysis is as 
follows. 

�9 A damage consti tut ive mater ia l  model as described in Sec- 
tion 3. 
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�9 Plane stress model equations assuming a thickness of 1 
c m .  

�9 An Arc-length controlling the displacement of node 34 
(see Fig. 10) allowing for an increment in its displacement 
norm of A1 = 3.5 10 - 4  cm at each step of the solution 
process. 

�9 The same convergence cri teria as in the previous test 
c a s e s .  

�9 The design variable is the cross-section of the structure.  

�9 A mesh of 12 eight-node quadrat ic  elements has been cho- 
sen. 

\ 

\ 
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\ 
\ 
% 
\ 10 

zl r 20  cm "~ 

20 cm 

Fig.  9. Geometrical description of test case 2 

Table 2. Material properties for test case 2 

Young's modulus E 2.1 106 K N / m  2 

Poisson's ratio 0.2 

Maximum compression stress 2.0 104 K N / m  2 

Maximum tract ion stress 500.0 K N / m  2 

Fracture energy 200.0 J / m  2 

Similarly as in test case 1 two different analyses have been 
performed. The first analysis and sensibilities correspond to 
the original structure.  The second one corresponds to a mod- 
ified (per turbed)  structure tha t  has been obta ined by apply-  
ing a uniform increment of the cross-section. This means 
that  the modified s tructure is 6.6% larger in surface than the 
original one. 

Wi th  the same types of curves as in the previous test 
cases, Fig. 11 shows tha t  the projected curve reproduces very 
well the behaviour of the per tu rbed  structure.  In fact, the 
coincidence of curves projected and modified is almost per- 
fect. 

6 C o n c l u s i o n s  

Differentiation of the discretized global equil ibr ium equation 
allows a very sat isfactory evaluation of the sensitivities of the 

34 

Fig.  10. Mesh and structural model, the coloured elements have 
a lower yield stress in order to localize the damage 
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Fig.  11. Superposition of the displacement load curves corre- 
sponding to the original, the modified and the projected structures 
for test case 2 

s t ructura l  behaviour when a damage mater ia l  model is used. 
This approach is based on the use of the tangent  constitutive 
mat r ix  and does not make use of any incremental  approach. 

The simultaneous differentiation of the equilibrium equa- 
tions and the arc-length condit ion leads to a new strategy for 
the evaluation of the s t ruc tura l  sensitivities that  solves the 
project ion problems when the s t ructural  behaviour presents 
strain-softening. 

The quali ty of the formulat ion proposed here for the sen- 
si t ivity analysis of s t ructures  containing damage models, to- 
gether with the inclusion of the arc-length condition has been 
assessed through the resolution of different test cases. The 
results shown in all test cases are very satisfactory. 

In par t icular ,  some examples show the good possibilities 
of the proposed sensi t ivi ty analysis for the study of situa- 
tions where, due to a pathological  s i tuation,  the finally built  
s t ructure is not coincident to the orignally designed one. 
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