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RESUMEN ,

En esta serie de dos articulos, se muestra cémo las tradicionales presentaciones en rigidez
o transferencia del equilibrio de vigas, arcos, placas o ldminas tienen un origen comin y tnico
en la adecuada formulacién del problema de valores iniciales correspondiente, siempre que éste
implique integrar exclusivamente ecuaciones diferenciales en una variable. Ofrece, por lo tanto,
una metodologia unificada para llevar a cabo la resolucién de un mismo problema conceptual
independientemente del contexto goemétrico de aplicacién.

SUMMARY

This two papers set shows how the standard stifness and transfer approach of equilibrium
in beams, arches, plates and shells have a unique common origin in the appropriate formulation
of the corresponding initial-value problem, provided that this implies integrating one variable
differential equations only. Therefore, a unified method is offered to carry out the resolution of
the same general problem irrespective of the geometrical context to which it is applied.

INTRODUCCION

En esta segunda parte, nos ocuparemos de los elementos estructurales denominados
tradicionalmente placas y ldminas. Como es sabido, la principal caracteristica del
andlisis de esta categoria de cuerpos consiste en que sobre estos pueden establecerse
determinadas hipétesis de comportamiento geométrico que permiten asimilar la pieza
real a un modelo bidimensional (2D). Estos modelos 2D se concretan mediante una
superficie ¥ denominada convencionalmente superficie de referencia y la hipdtesis
cinemitica adoptada. Este binomio dominio geométrico caracteristico — hipotesis
cinemdtica proporciona entonces una descripcién del comportamiento tridimensional
del s6lido mediante un sistema de ecuaciones diferenciales en las dos variables que
parametrizan ¥, superficie de referencia de la lamina.
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Sin embargo, la resolucién analitica de problemas de equilibrio de placas y ldminas
puede ser puramente funcién de una variable, como es el caso de las ldminas de
revolucién con cargas axisimétricas.

Por lo tanto, en las secciones siguientes abordaremos el andlisis de las placas
y ldminas como estructuras 2D, ordenando el trabajo en tres partes mas unas
aplicaciones. En primer lugar, estableceremos la adecuada descripcidn geométrica de
estas estructuras, obteniendo a continuacién las ecuaciones de campo correspondientes
a problemas de equilibrio eldstico-lineales en la forma apropiada para construir
cémodamente una metodologia unificada de resolucién. La parte final del trabajo,
previa a las aplicaciones, se destina a la formulacién mediante la metodologia
desarrollada de problemas unidimensionales en placas y ldminas.

CONTEXTO GEOMETRICO

Consideremos nuevamente un cuerpo B inmerso en IR? y ocupando, en un instante
t, una regién V que supondremos simplemente conexa. Para su estudio, adoptaremos
un sistema de coordenadas curvilineas 6°(i = 1,2,3) particular, affn a la geometria
espacial del cuerpo B segun se especifica a continuacién.

Para los cuerpos de tipo II, las coordenadas ' y #? se toman iguales a los
parametros Gaussianos a y G, que definen las lineas de curvatura de la superficie de
referencia de la ldmina, mientras que la coordenada 6° se denomina 7 y se define a
partir de la ecuacién:

P(a36572) = R(O{,ﬁ) + ?}’A3(Ol,,3) (1)

donde R(a, 3) es el vector posicién de los puntos materiales de X(a, ), superficie de
referencia de la ldmina delgada en configuracién inicial (no deformada), y P es el vector
posicién de los puntos materiales de B en esta misma configuracién, mientras que As
es el vector normal unitario exterior de X, definido a partir de los vectores naturales
de la superficie de referencia. Todos ellos se representan en la Figura 1 y se relacionan
por la ecuacién siguiente, vilida para cualquier configuracién:

a; X as or or

az(a,B) = arxag aw,f) = 5~ w(a,h) = a8 (2)

Segtin la ecuacién (1), n define una recta ortogonal a ¥ en cada punto («, §). Sea
{a, ) la porcién de superficies de referencia sobre la cual 7 intersecta materialmente
al cuerpo B, denominaremos espesor del cuerpo B al conjunto de puntos materiales
hy = [a,b] = B Nn mientras que €, y § serdn respectivamente las caras inferior y
superior de la ldmina, definidas por:

QQ = {p € B(a,8) € Qn=a} , &% = {p € R¥/(e,8) € Qn=0} (3)

El sistema coordenado #* definido anteriormente sera vélido para los puntos de IR®
que cumplan



TOPICOS DEL ANALISIS UNIDIMENSIONAL DE ESTRUCTURAS 39

h < min {Rs, Rg}
(4)

h < max {LQ,LQ}

siendo A = b — a la longitud del segmento hnb (que también denominaremos espesor),
R, y Rp los radios de curvatura de las lineas coordenadas o, 8 y L, y Lg las longitudes
de arco determinadas por las lineas de curvatura trazables sobre €2.

Figura 1. Sistema de referencia de una lamina delgada y definicién del triedro local
{ai}iz=1a3-

Utilizando las definiciones anteriores, el contorno del cuerpo, que denominaremos
0B, puede descomponerse de la siguiente forma

OB = Qo UE U 4, E = hyx 00 (5)

donde 92 = 3B N X es la curva cerrada que define el contorno Q, y E aparece como
la ariste de la ldmina. Denominaremos espacio laminar al conjunto de puntos de R®
definido por:

hy % Qa,f) = {peR*/n€a,b],(e,0) €} (6)

Las componentes del tensor métrico g;; asociado al sistema coordenado adoptado
podran evaluarse, en virtud de (4), en cada punto de este dominio, resultando:

. . 9p
g@j:g;'gj,gf=@ (M
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Particularizada a la configuracién inicial, obtendremos:

11 = [A+n/Ru)AP , G = [((1+n/Rp)B)* , G33 = 1
! 2 : (8)
2 =0, 13 =20, Gy =0

Ay B son los pardmetros de Lamé de ¥ en configuracién inicial, iguales al médulo
de los vectores naturales de la superficie de referencia. Sea G* ¢l determinante del
sistema definido en (8). En secciones posteriores serdn de utilidad las definiciones:

A" = \/Gi] = (1+n/R)A , B* = /G5, = (1‘*‘?’?/36)3} 9)
VG* = A*B* = uAB , # = (1+n/Ra)(1+n/Rpg)

1

De las ecuaciones de Mainardi-Codazzi*'' se deducen ademds las siguientes

relaciones de derivacién:

A% = (1+n/Rg)Apg , By = (1+n/Ra)Ba

Segin lo expuesto en el articulo anterior’, para las placas y las ldminas la hipétesis
cinematica asociada al modelo 2D puede expresarse mediante la ecuacién:

d*(a,8,m) = h(n) - u(a, ) (10)

donde d* es el vector desplazamiento de los puntos de B en las direcciones g}, h
una matriz independiente de la solicitacién actuante y caracteristica de la hipdtesis
cinemética adoptada (Love-Kirchhoff, Reissner-Mindlin...), de 3 x n componentes, y u
es el vector de desplazamientos generalizados del modelo 2D, definido en cada punto de
2 y de n componentes. Adoptada una composicién para u(a, 3), los elementos de h(n)
se deducen por simple geometria. Por ejemplo, para una ldmina de Cosserat-Reissner-
Mindlin®*** (CRM) tendremos:

& = {v*,v*,w*}T definido sobre B

u = {U, v, w, d)aa ¢ﬁ, wn}T definido sobre €2
h = [I,nI] , I esla matriz unidad de 3 x 3

donde {u,v,w} son los desplazamientos de los puntos r{ca, 3) de Q en las direcciones
coordenadas, ¥, y ¥p las rotaciones de la normal a la superficie de referencia, y wy su
alargamiento unitario.

Aunque no es objeto de este articulo discutir la construccidén de hipdtesis
cinemdticas adecuadas para el andlisis de ldminas delgadas, es practica comin reducir
esta seleccién a las cinematicas que sélo consideran un tnico vector director®. Ello cubre
el modelo de Reissner-Mindlin (w, = 0), que a su vez engloba el de Love-Kirchhoff®,
por lo tanto, la particularizacién de la ecuacién (10) expuesta anteriormente serd la
generalmente adoptada, y expresando las rotaciones de la normal en funcién de las
rotaciones de las tangentes a las lineas coordenadas de ¥, ¢, ¥ @g:

'il)a:(Pa'{‘wazlbﬁ;@;@_*_wﬁ

la, cinemética de Love-Kirchhoff se genera haciendo simplemente wy, = wg = w, = 0.
Ello equivale, como es sabido, a suponer que el director de ¥ es precisamente ag, o
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lo que es lo mismo: que los segmentos de normal permanecen rectos, ortogonales a la
superficie de referencia y son inextensibles, propiedad que se conoce como regularidad
de la normal.

ECUACIONES DE CAMPO

El conjunto de ecuaciones que rige todo problema estatico se reduce, tal como se
expuso en el articulo anterior, a las ecuaciones cineméticas del cuerpo, sus ecuaciones
constitutivas (eldsticas en nuestro caso) y las ecuaciones de equilibrio y condiciones
de contorno. Desarrollaremos un planteamiento intrinsecamente tridimensional para
obtener los sistemas de ecuaciones correspondientes a placas y laminas, recurriendo a
una formulacién variacional? para generar las ecuaciones de equilibrio y condiciones de
contorno propias del modelo 2D.

Ecuaciones cinematicas

Estas pueden darse, para comportamiento geométricamente lineal, en la forma

e*(a,8,n) = E-d* (11)

IE es un operador diferencial lineal de primer orden de dimensién 6 x 3. Aplicado a los
desplazamientos de B proporciona el vector de deformaciones en el punto considerado,
de seis componentes. La forma explicita de esta ecuacién se facilita en la Tabla I,
para sistemas de coordenadas ortogonales como el adoptado. En general, IE puede
descomponerse en la forma

0 0 0
E =E E;— E;,— E;— 12
0o + 18a+ 28,6+ 35n (12)
donde los operadores E;{(i = 0,3) son operadores lineales de 6 x 3 componentes.

Llevando (10) a (11) y recurriendo a (12) se deduce la siguiente expresién del vector de
deformaciones:

e*(aﬂsa??) = B'V(Oé,ﬁ) (13)
u
ou ou
vV =( Ug ) Ua = 5=, ug = % (14)3
u,ﬁ
@

B = [Bo,Bl,Bz] , Bg = Eoh + Egh, , B = E:h , Bo = Eoh h' = (14)2

dn

El vector v es de 3n componentes e incluye los desplazamientos generalizados y sus
derivadas direccionales, y B, de 6 x 3n, define la deformacién del espacio laminar. La
Tabla I contiene los elementos necesarios para su evaluacién en coordenadas ortogonales.

La ecuacién (13) resume la cinemdtica de la lamina delgada con modelizacién 2D.
Nétese que dada una hipétesis cinemdtica, la matriz B estard totalmente determinada
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por (14);. Por lo tanto, si adoptamos una cinemética con un tnico director
obtendremos:

Bo = [Eo,nEo +E3] , By = [E;,nE;] , By = [Ez,nE)] (15)
Variable Definicién Expresién General Expresién en coordenadas ortogonales
18 A ;1
A* B A B PES N
. Bla 10 1
Vector de E‘i‘ ATB B o8 at+8g
deformaciones 6'9 0 0 Z u*
e* de los puntos e* =IE.d* JN= on o*
de B Tan A B* w*
: 138 .8 18 .
De 6 x 1. Tan B85 ~ ABT A" da ~ ATES 0
Yoy
g _ _1 0 L8
&7~ ptRa A* Ba
0 o _ _1 1 8
on ~ ntRz BT 0P |
100 000 000
Matriz de 000 010 000
deformacién
000 000 001
B del espacio B = [IEh, Elh,Egh] El = Xl,,— yEg = 731—,, 0 ,E3 =
laminar. 010 100 000
De 6 X 3n. 001 000 100
006 001 010

Tabla I. Definiciones cineméticas.

Las expresiones facilitadas en la Tabla I corresponden a sistemas ortogonales, en
los cuales pueden definirse componentes fisicas de las variables. Ello conduce a que las
coordenadas ¢, [ determinen las lineas de curvatura de la superficie de referencia. Para
sistemas no ortogonales (oblicuos), los cdlculos deben desarrollarse en componentes
tensoriales™®*°.

Ecuaciones constitutivas, de equilibrio y condiciones de contorno

La enecrgia de deformacién U y el potencial de las fuerzas actuantes £,
correspondientes a fuerzas mésicas definidas en cada punto de B y fuerzas de superficie
aplicadas sobre el contorno 9B del cuerpo, se escribirdn ahora:

U = E/S*T et dv (16)
2Jv

Q:-[/p*bT~d*dV+/ qT.d*dS} (17)
v oV
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s* es el vector de tensiones, de seis componentes, definido sobre todo B, b las fuerzas
por unidad de masa y p* la densidad de masa por unidad de volumen B. El vector q
define las fuerzas de superficie aplicadas sobre el contorno del cuerpo 0B, previamente
descrito en (5).

Al admitir que nuestro cuerpo es eldstico, la relacién constitutiva entre los sistemas
s* y e* es lineal y del tipo

st =C - ¢€ (18)

( 0% [T+a « o 0 0 07 ( € )
op o 1+« a 0 0 O €5
lop o o 1+ 0 0 O € v E
= 2G < yoa=T—0m, G=omm—s
e | o o o 1o o] v (1 +v)
1
Tan 0 0 o o0 1 of |,
\ T J L o 0 0 0 0 3] m,*,,,J

(19)

Operando convenientemente, de las relaciones anteriores se deduce la siguiente
expresién de la energia potencial:

V=U+Q = /F(a,,@,u,u,a,u,ﬁ) an — / ff - uds (20)
Q 0
siendo
F=%VT~D-V—QT-U, (21)
b
D=/BT-C-den, (22)
a

b
Q = / p*hT b dn+ uahT - qo + pshY - @b, hap = h(n=a,b) (23)
b
fr(s) = / h? . qpug dn (24)
a

La ecuacién (21) proporciona la forma explicita de la densidad superficial de energia
potencial de la ldmina delgada. Es un funcional de los desplazamientos generalizados y
de sus derivadas direccionales. La matriz D, de 3n x 3n, es la matriz de rigideces locales
de la ldmina. Q es el vector de densidad de carga superficial y se obtiene reduciendo
a ) las fuerzas mdsicas y las fuerzas de superficie actuantes sobre las caras superior e
inferior de la ldmina, 2, v Q3. Aunque es usual postular directamente la distribucién
de cargas superficiales, para su correcta evaluacién deben calcularse las integrales dadas
en (23).
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El dltimo sumando de la expresién de la energia potencial (20) corresponde al
trabajo de las fuerzas actuantes sobre la arista de la ldmina e interviene en la escritura
de las condiciones de contorno del problema segin veremos posteriormente. En su
definicién aparece el vector fg dado en (24). Esta ecuacién proporciona la reduccién a
Of2 de las cargas q superficiales actuantes sobre E de forma consistente con la hipétesis
cinematica adoptada, en ella g define la raiz cuadrada positiva del determinante de
la métrica de la arista E(s,n): ’

pe = (1+n/R;s) (25)

R; es el radio de curvatura de ¥ en la direccién A tangente a la curva cerrada 9Q(s)
en cada punto del contorno de la superficie 2. Apoyandonos en la definicién (24),
podemos introducir unos esfuerzos generalizados asociados a una a-seccién (seccién de
B definida por @ = C*). Basta determinar las cargas superficiales Q(a) Y €l escalar piy)
correspondientes a la arista particular (qgy y () para la B-seccién respectivamente):

#(a) = (1 + T}/Rﬁ) 3 Q(a) + {UZ, TSQ}TQQ}T = ta } (26)

we =1+n/Ra) , a@)+ {7505 Thn} = ts
to (tg) define el vector tensién en cada punto del espesor de la ldmina a lo largo de la

o-seccién (B-seccibén) considerada. Aplicando los valores particulares de pg y qi dados
en (26) al cdlculo de los esfuerzos generalizados, obtendremos:

b b
fa(e, B) = / W’ - tape dn, fg(e,8) = / W' - taug) dn (27)

A partir de la Tabla I y de la composicién del vector de tensiones s* dada en (19), es
facil comprobar que se cumple:

ta = AEf - s* , tg = B*E} - "
y por lo tanto, en virtud de (18), (13) y (14)s se deduce:
— bpT
fu(@,8) = A[fLBT - C Bpdi]  v(a,p)

(28)
f5(c,8) = B[[;Bf - C - Bpudy| - v(a,p)

Recurriendo ahora a la definicién (22), y empleando la descomposicién en bloques
de la matriz de deformacién B dada en (14)s, se puede reescribir la matriz de rigideces
D como

Doo Do1 Dg2 b
Dy Dyi;y Dy}, D = / BT . C.B,udn (r=0a2, s=0a2) (29)
D2y D2 Do @

D =
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y por lo tanto, a partir de (21) es sencillo deducir

fo

b

oF
Bus — Digu+ Dnu,a + Dlguﬂg =

(30)

3% = D20u+D21u,a+D22u,g = %fﬁ

Las ecuaciones {27) y (30) proporcionan dos definiciones alternativas, estitica y
constitutiva, de los esfuerzos generalizados de una ldmina delgada consistentes con
una determinada hipétesis cinemdtica, descrita por (10).

Supongamos que la estructura registra unos desplazamientos virtuales a partir de
una configuracién de equilibrio definida por ug. La nueva configuracién de la pieza
podra expresarse como:

‘u = ug + e, f) | (31)

donde £ es una constante arbitraria pequefia y (e, ) cualquier funcién vectorial
que satisfaga las adecuadas condiciones de continuidad y las condiciones de contorno
cineméticas (si existen). Para que la estructura esté en equilibrio, la energfa potencial -
ha de ser estacionaria, luego ha de anularse la primera variacién de V para todo
desplazamiento virtual: :

8F 8F oF
6V=e{/|:—-ﬁ+ - e + -ﬁ,g}dﬂ—/fg-ﬁds}:OVe
a Bug Oug o dug g sa

(32)
donde 2 Bur representa para u = ug, etc. Anotando que
oF OF 1 é] OF OF
Buoe "t Buop M4 4B [a—a“‘ Faes O+ 5B “>}

1 [o OF o OF
[%(AB du, ) a8 ﬁ}

y observando que el primer sumando del segundo miembro de esta ecuacién es una
divergencia, le es de aplicacién del teorema de Gauss, con lo que la ecuacién (32) se
transforma en:

oF 1 [ o oF 8 OF X

b ([ 2] —t)
. Jea Buo)ana 8u0,gn’8 B s

0 (33)
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siendo (nq,ng) las componentes de la normal unitaria exterior a 82 sobre T, en la base
natural {a;,as}. La ecuacién (33) debe satisfacerse, en configuraciones de equilibrio,
para cualquier variacién de los desplazamientos. Por lo tanto deberan anularse tanto
la integral de superficie como la integral de contorno:

OF 1 |0 OF 9 oF
5" A5 [5&( 5,3(AB_):| = 0 sobre 2 (34)
T
OF OF .
([a_u;""‘ + gu—gnﬂ} - fE) - g = 0 sobre 002 (35)

elip(s) define la variacién de los desplazamientos generalizados de los puntos de la curva
cerrada 3Q(s). La ecuacién (34) proporciona un sistema de n ecuaciones diferenciales
en derivadas parciales de segundo orden en las n componentes de los desplazamientos
generalizados (basta recordar las definiciones del funcional F' y del vector v). Define
las ecuaciones de equilibrio interno de las ldminas delgadas mientras que la- ecuacién
escalar {35) proporciona las condiciones de contorno que debe verificar la solucién.
Para su adecuada interpretacién, conviene recurrir a la definicién constitutiva de los
esfuerzos generalizados (30), resultando el siguiente conjunto de ecuaciones diferenciales
y condiciones de contorno:

8 _ L((Bfa)a + (Afg)g] = 0

8F 1

Suo ~ Afa = 0 (36)
oF

Sup — Bl = 0

[(fave + favp) — f5]T - g = O (37)

siendo (v, vg) las componentes de la normal exterior a 952 sobre L en la base natural
unitaria {a;/A,as/B}. El sistema (36) constituye un conjunto de 3n ecuaciones
diferenciales en derivadas parciales de primer orden, en las n componentes de los
desplazamientos generalizados y en las 2n componentes de los esfuerzos generalizados.
El enunciado completo de problema de valores iniciales requiere la ecuacién (37), que
describe las condiciones de contorno en los términos adecuados, puesto que de ella se
deducen

(1) condiciones de contorno cinemdticas (o de desplazamiento
impuesto), si algunas componentes de ig(s) se anulan, y

(2) condiciones de contorno estiticas, las cuales exigen que las
restantes componentes de los esfuerzos en el contorno tomen
valores impuestos iguales a fx.

Nétese que los esfuerzos generalizados aparecen como variables auxiliares en toda la
formulacién anterior, por lo tanto su interpretacién o conocimiento exhaustivo no
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es indispensable. Ello proviene del planteamiento tridimensional adoptado, el cual
determina el estado tensional en cada punto del cuerpo mediante la ecuacién

sF$=C-B-.v

la cual no depende de f, y fz. Por ello, se ha prescindido de las tradicionales
representaciones de los esfuerzos en esta primera parte del trabajo. De hecho, segtin
prueba la ecuacién (27) éstos no son una propiedad intrinseca del estado tensional sino
que dependen directamente de la hipé6tesis cinematica adoptada.

PROBLEMAS UNIDIMENSIONALES
EN PLACAS Y LAMINAS

Si bien el sistema de ecuaciones diferenciales (36) depende de dos variables,
los pardmetros de superficie (a,) adoptados, éste se transforma en un sistema
de ecuaciones diferenciales ordinarias bajo determinadas circunstancias geométricas:
cuando la superficie de referencia ¥ es de revolucién o traslacién, el andlisis puede
reducirse a un problema en una variable mediante formulacién armoénica. El
caso extremo de esta evolucién lo constituyen las laminas de revolucién solicitadas
axisimétricamente, para las cuales el problema es puramente unidimensional.

En cualquier caso, siempre que el problema se reduzca a integrar un sistema
de ecuaciones diferenciales ordinarias, los resultados presentados en la Parte 1 de
este articulo® serdn totalmente aplicables al andlisis de laminas y en particular, a la
construccién de las ecuaciones de transferencia y de rigidez de las laminas:

{uz} _ [Gn Glz]{lh} ~{a,
fs Ga G |l fi z

(8- B B - ‘
fa K21 Koz |u2

Para definir completamente las matrices de transferencia G(s), de rigidez K y los
vectores de valores iniciales {fig,f5} o {fi,fs} bastard nuevamente obtener la solucién
general del problema homogéneo asociado al sistema de ecuaciones diferenciales que

rigen nuestro problema de equilibrio, y en ello juega un papel privilegiado el operador
W definido por la relacién '

(38)

o

d
Eg =W . .-Ey , Efg = g.s:EH (39)
-donde Eg es el vector estado de la solucién homogénea. El resto del proceso a seguir
para detallar completamente (38) estd descrito paso a paso en la seccién “Presentacidn
unificada de la resolucidn de problemas eldsticos en piezas alargadas”- incluida en la
Parte 1, y es la aplicacién directa y sin modificacién alguna.
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Por ello, a continuacién presentaremos la deduccién del operador W en dos casos
concretos: el andlisis axisimétrico de laminas de revolucién y el andlisis armoénico de
placas rectangulares.

Analisis axisimétrico de laminas de revolucién

La particularizacion sistematica de los resultados de la seccién anterior a problemas
puramente axisimétricos se desarrolla en las lineas siguientes, apoydndose para ello en
la nomenclatura de la Figura 2.

Figura 2. Sistema de referencia de una ldmina de revolucién.

Las medidas geométricas propias de las superficies de revolucién incluidas en las
ecuaciones (9) serdn:

A=1,4A = 14+9/R, } (40)

B ='r, B* = (1+n/Rp)r
Las equaciones cinemdticas (11) adoptardn ahora la siguiente forma desarrollada:

~

18 11
1+177Rs Bs 1+177Rs Rs

1 cos 11 ,
6; 1+T’;R3 r 1+7)/R9 Ry N .
G ¢ = o 2 [{u}mEe @
6:; an .

Yon P 1 5

a2 _ L 18
an 1+7n/R, Rs 1+n/R, 9s
L . J
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mientras que la ecuacién constitutiva (19) se escribira:

o 1+« o 1% 0 €x
o | _ a l4+a « 0 6 | _
Tam 0 0 0 3 Vin

y las ecuaciones diferenciales y condiciones de contorno (36) y (37) serdn ahora:

At = 0} (
43)
oF —
ow L =0
(f: —fp)" - Gp = 0 (44)
conu’ = fii—‘s‘ y los esfuerzos generalizados
f, = f:hT “tsp(s) dn
ts = {057Tsn} ? /J'(s) = 1 + n/RS

El sistema (43) es de 2n ecuaciones diferenciales ordinarias de primer orden en
las n componentes de los desplazamientos generalizados u y las n componentes de
los esfuerzos generalizados fs. La definicién del funcional F, aplicada al caso que nos
interesa conduce a la ecuacién siguiente:

1 -
F = —z—(uTDOOu +2u'Dg1u’ + uTDyu’) —u?' - Q (46)
con
b
Dmnz/Bﬁ-c-Bnudn (m=0,1yn=0,1) (47)1
By = Eh, By = Eth, g = (1+0/Rs)(1+n/Re) = ps)k(e) (47)2

El operador IE se definié en (41) y E; se deduce de esta misma ecuacién como
cofactor de las derivadas parciales respecto de la variable s, resultando

10

1 {0 0

Er= a0 o
H(s)

0 1

Utilizando la ecuacién (46), el sistema (43) puede expresarse alternativamente como
sigue:

f's+Q = Dgu + Dgyu’ — C—O:jzfs}
f; = Diou + Dpu’

y por lo tanto, siempre que exista la inversa de D;; podremos definir el operador W
en la forma en que se introdujo en la relacién (39), resultando para problemas

(48)
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axisimétricos:

~Di;'Dyg Dy
Doy — D;D;Dyy DDt — @f—q}l

Para obtener la forma explicita del operador W necesitaremos en primer lugar
evaluar las matrices Bg y By, luego adoptar una determinada hipétesis cinematica. Este
requisito es necesario si se desea mayor precisién sobre la estructura de la ecuacién (49),
la cual rige el problema axisimétrico conjuntamente con las condiciones de contorno
(44). Por ello, esta parte se ha reservado para la seccién de aplicaciones.

Sin embargo, en su escritura general para problemas axisimétricos puros, el
operador W tan solo difiecre del correspondiente a problemas en estructuras 1D en
el término —(cos ¢/r)I. Ademds, sélo adoptard un valor constante para el caso de
ldmina cilindrica, para el cual tanto el radio R como €l dngulo ¢ son constantes. En
este caso, este tltimo es precisamente 7/2, conduciendo a que el término —(cos ¢/r)I
se anule.

W = (49)

Analisis armoénico de placas rectangulares

Las ecunaciones generales de la estdtica lineal de placas rectangulares eldsticas se
obtienen por simple particularizacién de los sistemas generales (36) y (37) a coordenadas
cartesianas, resultando sucesivamente:

g—ﬁ - (fe + fuy) = 0

e — £ =0 (50)
8F
(feve + fyvy) ~fE]T -G = 0 (51)
con
_ (e T . _ bpT
fz B fbil * tz*dZT ’ fjg _ fail *ty *dZT} (52)
tm = {Uz7sz’Tz2} ) ty = {Tymao-y)Tyz

v las definiciones cinemdticas contenidas en la Tabla II.

Dada una placa rectangular de dimensiones B x L, supongamos que pueden
escogerse unas funciones ¥y (z) ortogonales y que satisfagan todas las condiciones de
contorno en los bordes x = 0, L tales que

wey) = 3 () - unly) (53)
N=1

Entonces, las ecuaciones diferenciales y condiciones de contorno (50) y (51) que rigen el
equilibrio de la placa se transforman en un sistema de ecuaciones diferenciales ordinarias
para cada sumando N del desarrollo en serie (53):

oF d
Bay — aydyn) = 0

oF (54)
duy — v =0
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[f,n(y = B) — Qan]T-an(y = B) — [fun(y = 0) + Qon] " n(y=0) = 0 (55)

con
1
F = Z[§v§.DN.vN—Q§.uN} (56)

n=1
Las definiciones de todos los sistemas que intervienen en las ecuaciones (54) a (56)

se incluyen en la Tabla III.

Variable Definicién Expresién General Expresién en coordenadas cartesianas
r s -
3z 0 0
Vector de 5; 0 ‘% 0
deformaciones . 6?{ o o0 2 o
e* de los puntos e* = IEd* ,Yc*z = 2 3 oz { v* }
de la placa. 'yﬁy 55 %z O w
% 3 3
De 6 x 1. Ve = 0 Z
Ied g
L9 2 3y
100 000 000
Matriz de B = [BoB1B;] 000 010 000
.2 _ I3
deformac.lon Bo = Esh 000 000 001
B del espacio B: =E;h E] = ,Eg2 = ,E3 =
placa, By = Exh 010 100 000
De 6 X 3n. 001 000 100
000 001 010
Tabla II. Definiciones cinematicas en coordenadas cartesianas.
SISTEMA  DEFINICION
2 rL
fun(y) £ fx:O Uy (z).fy(z,y)dz
2 L T T b
Qn(y) 2 [0 ¥n(2).[h] qu(z,y) + b .qs(z,y) + [, p*h(2)T . b(z,y, 2)dz]dz
2 L b
Qon 2 [ Un(z). [ h(2)T.qo(z, 2)dz dz
2 rL b T
Qs~ 2 [ Un(z). [ h(z)T .qp(z, 2)dz dz
L = -
Dy 2 YIDUydx

Tabla ITII. Anélisis arménico, definiciones bésicas.
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Los restantes elementos contenidos en la ecuacién (56) que caracteriza el funcional
F| no incluidos en la Tabla III son los siguientes:

vn(y) = {llllljjv((g?j))} , Uy = d%uN (57)
Y
Ty 0
In(z) = [ Loy 0 (58)
0 W

Noétese también que las condiciones de contorno (55) asociadas a las aristas
(y = 0,B) hacen intervenir unas fuerzas de borde Qony y Qpny producidas por las
presiones aplicadas en estas caras del contorno, qg v qp respectivamente.

Por otra parte, el desarrollo en serie de los desplazamientos generalizados u(z, y)
proporciona a su vez la siguiente expresién de los desplazamientos d*(z,y,z) de
cualquier punto material de la placa:

d(2,,2) = h(z) Y Un(e).un(y) (59)
N=1

la cual puede reescribirse como:
oo
d*(z,y,2) = Y ®n(z).di(y,2) (60)
N=1
con
dy(y,2) = h(z).un(y) (61)
y las funciones ®(z) también ortogonales, definidas por la relacién:
dn(z).h(z) = h(2).¥y(z) , &y = (hhT) Thoyn? (62)

donde h(z) caracteriza la hipétesis cinemdtica adoptada. Nétese que tanto @ como
W, son matrices diagonales. Por ejemplo, para condiciones de simple apoyo en los
bordes, las funciones ® y(z) podrian ser:

COS QNI 0 0 N
On{z) = 0 SENaNT 0 , oN =7 (63)
0 0 Seno N

El sistema de ecuaciones diferenciales equivalentes a (54) serd, para cada arménico
N:

(64)

t'yn + Qn = Duooun + Dyoiu'n }
£, Dyouy +Dyiu'y
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B . . -1
luego, siempre que exista la inversa de Dy, tendremos

~DyuDnio Dy ]

_ o 65
Dnoo — DyoiDyi;Dyvie Do Dyis (65)

wy = |

Ademds, la relacién (58) permite obtener las distintas submatrices de Dy en
funcién de la subdivisién de D dada en (29). resultando:

2 L
Dpyoo = I 0(‘I’ND00‘I’N + U Do ¥y + ¥yDio + ¥y + Uy Dy ¥ )dz
Tr=
2 rL .
Dyo1 = 7 0(‘I’ND02‘I’N + UyD12¥ y)dz (66)
x:
2 [* VDo U ad o’ ¥
DN11=Zz=0N22 ndz N—@N

Las ecuaciones (65) y (66) definen completamente el operador Wy a falta de
precisar la seleccion de las funciones ortogonales U (z) y de adoptar una determinada
hip6tesis cinemética.

Nétese que en el caso de placas rectangulares, la escritura de Wy dada en (65)
coincide con la presentada para W en la Parte 1.

APLICACIONES

Particularizacién de la cinematica CRM a problemas axisimétricos

Adoptaremos en lo sucesivo el modelo CRM, resultando para (10):

O PR R R YR (67)
Wn

donde u y w son los desplazamientos de los puntos r(s,n) de Q en las direcciones
coordenadas, s la rotacién de la normal a la superficie de referencia en la direccién
del meridiano y w;, su alargamiento unitario.

Con la ayuda de (41) y (47), las matrices By y B; valen finalmente:

- __1_ __TL-
0 Koy R 0 OL
ctge 1 nctge n 1 0 n O
Koy Re weoyle  weyRe  ue)Re 1 00 0 0
BO = P Bl = 00 0 0 (68)
0 0 0 1 H(s)
01 0 1
__1 1
L H(s)Ha 0 H(s) 0
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Las submatrices que forman el operador D se calculan a partir de (47); utilizando
la definicién del operador constitutivo C dada en (42) junto con (68); adoptando como
superficie de referencia la superficic media de la ldmina obtendremos:

Do =

h
* BTCBoy dn

4

(69)1
o
0
0
) 0
(69)2

_h
2
[ Gh ctge\? ctge (1, b
Bron(H) R (R4 )
* Ctg¢ 1 v* * 1 v* 2 1—p*2
BV (& 5) P h[(ﬁ;ﬂz—s) R ]
Gh
-5 0
v* E*h S v Eh (F + 4 )
Gh x7 Ctgo
——R—s l/*E h RG
* 1 1
0 VFE*h, (R—e + R—)
E*h® (ctge)? «13Ctge (1 v
Gh+ =3 (R9> E'h e (% + 7
«p3ctgs (1 | o E*h3 {1 |, v \% | 1-p
BSR4+ 5) Eht B [(R—ﬁm) + R J
* x g CEZ
V'EThGEE Gk 0
5 i E*h (RL+R—0) 0 0
Do = By CBipdn =
01 /.h 0 14 an 0 Gh V*E*hsg%%i
2 8
* " *3 3 u*
V' E*h o ER(iig
E*h 0 0 0
N 0 Gh o 0
2
Dy = BYCBudn = E*R3 JE* =2G(1+a) y v'E* =2Ga
. 0o o Eb 0
-2
o o o g
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Estas submatrices se han evaluado bajo la hipétesis de ldmina delgada (4)1,
la cual permite simplificar los célculos de las integrales que las definen adoptando
H(s) = ) = 1. Con ellas, resulta elemental determinar la forma explicita del operador

_D1_11D10 Dl_ll

W = - —1 co
Dgo — Don Dii'Dio D01D111—:QI

- ctge 1— 1
g -(mrg) O =
-1 1 15: 0 —1-v) 0
~D11 Do 1—-v ctgo
0 0 v (R )
L0 0 0 0 ]
- 1-2 1
=% o 0 0
0 2 0 0
D1 — (1+v)
= 1-2v 12
1 Eh 0 0 =52 O
o o o0 %
’(ctg¢> ctge 0 VCtgqi' ]
Ry Rg Ry
ctge 1 v
En | BB ’ Z
Dgo — DD D10 = 3 R (ctge)?
_ g 2 ctgo
L 0 0 ﬁ( R, ) h*Tarz
ctge 2ctge h?
VR RLg h 12R2 1+ 12RZ
—(1 - 2v) 98 Lo 0 0 ]
v v ctgo
Do D} COs¢I -1 IR.;_ + &, _(1_”)_12%7 0 0
- Do = =8 = 0 1-v —(1 - 2) 982 0
v 0 g —(1-v)GE
L .

(70)1,2,3,4
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Nos interesaremos a continuacién por la- composicién del vector de esfuerzos
generalizados correspondiente a teoria CRM. En virtud de la férmula (45) este valdra:

10 o N,

b b i5s
_ T, _ 0 1 _ Qs
fs = /a h”-t, ”@ dn = /a n 0 . sy dn = M,
. . 0 77 871 MS'I]

b ; b b b
Ns= [ osps) dn, Qs =/ Ton B(s) 41, Ms =/ Nog sy AN, My =/ NTant(s) N
a a a ] a

(71)1’2

Como caso particular de lamina axisimétrica, proponemos a continuacién la lamina
cilindrica. El sistema coordenado de estudio seria ahora el descrito en la Figura 3.

z£(9=0)

Figura 3. Sistema de referencia de una ldmina cilindrica.

Denominando R al radio de la superficie media de la ldmina, el operador W adopta
el siguiente valor:
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0 5%y 0 -5 (1%?5';—0 0 0 0

0 0 -1 0 0 = 0 0

0 0 e 0 0 (11_——,};35 0
0 0o 0 o 0 0 O g
W= 0 0 0 0 0 0 0 (72)

0 & o g O 0 0

0 0 0 0 0 1 0 0

0 0. Ct+f % 0 gHm O

con las rigideces

Eh » ER? A
C=1znm Y Py \

Recurriendo a la definicién (39), el sistema de ecuaciones diferenciales a integrar
queda totalmente definido y es de coeficientes constantes tal y como ya se habia
anticipado.

Lamina cilindrica en teoria de Love-Kirchhoff

Supondremos ademds, en lo sucesivo y para mayor concisién de los calculos,
que se cumple la hipédtesis de regularidad de la normal. Utilizando las ecuaciones
(68) adecuadamente particularizadas al caso geométrico que nos interesa, se deduce
facilmente:

€ = wn
., 1 dw  dw,\ . ’ o (13)
Ysn = ) (¢s+ ds +77"as_> S |

y por lo tanto, como la teoria de Love-Kirchhoff exige que € = wy y Yen s€an

nulos, se deduce, tal y como se habia anticipado, queé w, ha de ser nulo y que
Ps = ~w, coincidiendo con la rotacién de la tangente en la direccién del meridiano,
que denominareinos ¢ en lo sucesivo. Por lo tanto : '

SCOR P 3]{w}} = o) L)

s
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serd la ecuacién correspondiente a cineméatica de Love-Kirchhoff. Por otro lado,
recurriendo a la segunda ecuacién diferencial que se deduce de (72) tendremos:

dw Qs
E - “¢s + ‘G—h

la cual implica, junto con las observaciones anteriores, que el término Qs/Gh deba
tomarse igual a cero. De ello se deduce que una ldmina de Love-Kirchhoff ha de ser
infinitamente rigida a cortante. Limitandonos a los grados de libertad w, @5 y esfuerzos
Qs, M, consistentes, se llega a la siguiente ecuacién de transferencia:

w cos f3s chfBs —{cos s shf3s + senfis chf3s)/283
E(s) = Ys _ B(senfBs chfBs ~ cos Bs shfs) cos Bs chf3s
8= Qs ~ | 28%D(cos Bs shfBs + senfBs chfs) —282Dsenfs shfBs
M, 282D senfBs shfs BD(cos Bs shf3s — senfs chfs)
(cos Bs shf3s — senfs chfBs)/48° D —senfs shBs/26%D wp
senfs shBs/26%D (cos Bs shBs + senfs chBs)/28D ©s0 — G(s).E.
cos fBs chf3s B(cos Bs shBs — senfs chfs) ’ Qs0 = G(s)-Eo
(cos Bs shfBs + senfs chfBs)/28 cos s chfBs Mo
(75)
Para ello, basta imponer ¢, = ¢; = —w,; y w, = 0 en el sistema de ecuaciones

diferenciales que se deducen de (72) e integrar directamente las variables seleccionadas
en el vector estado E(s) retenido en (75). La constante 8 empleada en la ecuacién
anterior tiene por definicién:

_1-2v C
~ (1-v)24DR?

Otras aplicaciones de esta teorfa a distintas morfologias de revolucién pueden
hallarse en [13].

gt (76)

CONCLUSIONES

En las secciones anteriores se ha mostrado cémo el operador W, definido en (49)
para problemas axisimétricos y en (65) para andlisis arménico de placas rectangulares,
proporciona sistematicamente el conjunto de ecuaciones diferenciales de primer orden a

- integrar, mientras que las condiciones de contorno estdn constituidas respectivamente
por las ecuaciones (44) y (55) y se apoyan en la definicién de los esfuerzos generalizados
correspondiente, (45) o (52), siempre asociada a la hipétesis cinemdtica seleccionada.

Por lo tanto, a lo largo de dos articulos se ha construido una herramienta de analisis
conceptualmente tinica para resolver el problema planteado, independientemente de la
caracterizacién geométrica de la curva directriz de la pieza alargada o de la superficie
de referencia de la ldmina, aspecto sumamente interesante bajo una doble perspectiva
préactica y didéctica.

Nuevamente, los conceptos de ecuacidn de rigidez o de transferencia de las placas y
l4éminas no son mas que prestaciones particulares y alternativas del problema de valores



TOPICOS DEL ANALISIS UNIDIMENSIONAL DE ESTRUCTURAS 59

iniciales correspondiente al equilibrio del cuerpo con unas condiciones de contorno
dadas. Por lo tanto, la obtencién de los sistemas matriciales asociados sigue idénticos
pasos que en el caso mas comiin de las piezas alargadas, ecuaciones (38).

Insistiremos nuevamente en que los esfuerzos generalizados aparecen como variables
auxiliares en toda la formulacidén anterior, por lo tanto su interpretacién o conocimiento
exhaustivo no serd indispensable. Estos, recordemos, no son una propiedad intrinseca
del estado tensional sino que dependen directamente de la hipétesis cinemaética
adoptada.

Finalmente, puede comprobarse facilmente como la formulacidén propuesta permite
obtener las ecuaciones de equilibrio de las laminas en su forma cldsica®. Basta expresar
OF[Ou en funcién de f,, y fz y desarrollar las ecuaciones (36) componente a componente.
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