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Rear-end collisions are one of the most common types of accidents on roads. Global Satellite Navigation Systems (GNSS) have
recently become sufficiently flexible and cost-effective in order to have great potential for use in rear-end collision avoidance
systems (CAS). Nevertheless, there are two main issues associated with current vehicle rear-end CAS: (1) achieving relative vehicle
positioning and dynamic parameters with sufficiently high accuracy and (2) a reliable method to extract the car-following status
from such information.This paper introduces a novel integrated algorithm for rear-end collision detection. Access to high accuracy
positioning is enabled byGNSS, electronic compass, and lane information fusionwithCubatureKalmanFilter (CKF).The judgment
of the car-following status is based on the application of the Adaptive Neurofuzzy Inference System (ANFIS). The field test results
show that the designed algorithm could effectively detect rear-end collisions with an accuracy of 99.61% and a false alarm rate of
5.26% in the 10Hz output rate.

1. Introduction

Rear-end collisions are a common type of traffic accident in
which a vehicle crashes into the vehicle in front of it. Accord-
ing to statistics from the National Highway Traffic Safety
Administration (NHTSA), this type of accident accounts for
about one-third of all traffic accidents [1]. 30% of rear-end
collisions lead to injuries, and even though only 1% result in
fatalities, the prevalence of this type of accident means that
the social and economic costs are significant, such as property
loss and traffic congestion [2]. In general, rear-end collisions
are caused by human errors in the longitudinal driving task
called car following, in which the driver fails to maintain a
proper speed and safe distance from the vehicle in front. If
appropriatemeasures could be taken in advance, for example,
if an early warning could be provided, the probability of
a collision could be greatly reduced. Intelligent Transport
Systems (ITS) technologies which use advanced sensors and
communication technologies for the assessment of real-time

car-following status would thus be a beneficial addition to
collision avoidance systems.

Various methods and algorithms related to rear-end
collision avoidance have been described in the literature in
recent years. Araki et al. [3, 4] developed an onboard laser
radar and aChargeCoupledDevice (CCD) camera integrated
system with fuzzy logic to evaluate the potential collision
status. Tsai [5] also presented a laser radar based vehicle
safety and warning system, while Ueki et al. [6] developed a
vehicular collision avoidance system bymeans of intervehicle
communication technology. Huang and Tan [7] discussed
the engineering feasibility of a cooperative collision warning
system based on a future trajectory prediction algorithm for
vehicles equipped with a Differential Global Positioning Sys-
tem (DGPS) unit and other related motion sensors. Ong and
Lachapelle [8] proposed a GNSS based vehicle-pedestrian
and vehicle-cyclist crash avoidance system, analysing the
performance of GNSS in such a collision avoidance system,
and Toledo-Moreo and Zamora-Izquierdo [9] developed an
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integrated lateral and longitudinal information-supported
collision avoidance system integrated via GPS/IMU/digital
maps. Milanés et al. [10] proposed a fuzzy logic based
warning and braking system. Ujjainiya and Chakravarthi [11]
proposed a cost-effective vehicle collision avoidance system
based on vision sensors and image processing algorithms, and
Alpar and Stojic [12] designed an intelligent rear-end collision
warning algorithm based on license plate segmentation and a
fuzzy logic based warning system.

Although the aforementioned rear-end collision avoid-
ance detection approaches have shown some potential in
certain conditions, several technical barriers remain to be
surmounted. First, most of the research uses vision sensors,
which are weather sensitive and thus not adaptive for wide
applications. In addition, some research has adopted tech-
nologies such as scanning radar to provide relative position-
ing for the collision avoidance system, but in these cases
the system performance is highly related to the cost of the
sensors. Compared with the other technologies, GNSS and
its fusion with other data sources are an optimal method for
collision avoidance systems due to low cost and insensitivity
to the weather. The relative position and real-time dynamic
information between two GNSS users can be obtained from
wireless communication in order to assess the safety situation
for the avoidance of rear-end collisions. In current GNSS
based rear-end collision avoidance systems, however, the
accuracy of the real-time estimation of positioning and
dynamic states can be affected by abrupt manoeuvers by the
drivers [7–9]. Although a reliable algorithm for extracting
the car-following status is therefore essential, the reliability
and robustness of the GNSS fusion will also be critical for
successful rear-end collision avoidance systems.

In this paper, a GNSS/compass fusion/lane informa-
tion fusion, with an Adaptive Neurofuzzy Inference System
(ANFIS) based Vehicle-to-Vehicle (V2V) rear-end collision
avoidance system is developed. The estimation of real-time
vehicle states is achieved using a Cubature Kalman Filter-
(CKF-) based algorithm.Thedifferent features extracted from
the fusion results, that is, the Relative Distance, velocity,
and heading between the leading vehicle and following
vehicle, are used as input to the ANFIS for its automatic
FIS membership functions and rules generation based on
its learning algorithm. The car-following status is therefore
predicted based on the ANFIS output. The contributions of
the paper are summarized as follows:

(1) A newly designed CKF model for real-time vehicle
status estimation

(2) A novel ANFIS-based car-following status decision
algorithm with the advantage of early prediction
warning and high detection accuracy

(3) Field experiments presented to demonstrate the suc-
cessful application of the designed rear-end collision
avoidance algorithm.

The rest of the paper is organized as follows. The design of
the GNSS fusion-based rear-end collision avoidance system
is presented in Section 2. In particular, the fusion of GNSS,
compass, and lane information data for the estimation of
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Figure 1: System overview.

vehicle states is presented in Section 2.2, and the ANFIS-
based rear-end collision status identification is presented in
Section 2.3. The field test and the evaluation of the proposed
algorithm are discussed in Section 3. The conclusion is in
Section 4.

2. GNSS Fusion-Based Rear-End Collision
Avoidance System

2.1. Method Overview. A flowchart of the CKF-based
GNSS/compass fusion for Vehicle-to-Vehicle (V2V) rear-end
collision avoidance system is illustrated in Figure 1. The
two phases of the system are described as follows. The first
phase is concerned with both vehicle position and dynamic
states estimation. For each vehicle, one GNSS receiver and
one electronic compass are mounted on the top of both
vehicles for the collection of real-time positioning, velocity,
and attitude data. The CKF-based fusion model is applied to
the vehicles in order to estimate the vehicle states.The second
phase involves the identification of the car-following status
based on the estimated states from the first phase (position
and dynamic states). Specifically, the Relative Distance (RD),
Relative Velocity (RV), and Relative Heading (RH) calculated
from the first phase are the input variables used for theANFIS
to predict the car-following status output. The fuzzy rules are
extracted from previously collected labelled data based on
ANFIS training. Finally, the ANFIS outputs for the testing
data are calculated to evaluate the collision status.

2.2. CKF-Based GNSS/Compass/Lane Information Fusion
Algorithm. The ability to locate and track the vehicles in
space, velocity, and time is fundamental to predict collisions.
It is therefore critical to choose an appropriate technology
to determine the relative positioning and velocities of vehi-
cles with sufficient accuracy and reliability to ensure high
performance collision prediction. In order to improve the
accuracy of GNSS for the collision avoidance application,
GNSS/compass/lane information fusion is employed. Non-
linear filters, such as the Extended Kalman Filter (EKF),
which linearizes the nonlinear system based on the 1st-
order Taylor series expansion, have been applied for GNSS
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fusion for many years. Although EKF returns acceptable
results in many ITS applications, it cannot however estimate
vehicle manoeuvres accurately when sudden stops or turns
occur, due to the shortcomings of Taylor linearization. In
recent years, therefore, some improved algorithms have been
developed based on EKF to improve the calculation accuracy
and stability, such as UKF and CKF [13, 14]. CKF, especially,
is able to obtain good estimation accuracy with an acceptable
computation complexity and has exhibited superior perfor-
mance compared to UKF in many applications.The principle
of CKF is to use the spherical-radial rule to get the basic
cubature points and the opposite weights [14]. The mean and
variance of the system state are propagated through a set
of cubature points whose number is twice the dimension of
the state vector. The cubature points and weights of CKF are
therefore determined uniquely by the dimension of the state
vector, which reduces the computation complexity.

The steps for the CKF-based GNSS/compass/lane infor-
mation fusion are presented below.

(1) Definition of the State Vector. The state vector for a single
vehicle is defined as (1) and the geometric relationships of the
related parameters in the lane segment model are presented
in Figure 2.

(𝐸 𝑁 V 𝜃 𝑙 𝑑 𝛽)𝑇 , (1)

where

𝐸, 𝑁 are Easting and Northing coordinates (in
meters) of the vehicle’s geometric centre in a local
coordinates system;
𝐿, 𝐷 are longitudinal and lateral coordinates (in
meters) of the lane segment;
V is the heading velocity of the vehicle, output from
the GNSS sensor;
𝜃 is the heading of the vehicle, output from the
compass sensor;
𝑙 is the longitudinal displacement of the vehicle in lane
segment coordinates;
𝑑 is the lateral displacement of the vehicle in lane
segment coordinates;

𝛽 is the tangent angle, which is the angle between the
tangent line of the lane central line and the Easting-
axis coordinates.

(2) Spherical-Radial Rule. CKF uses the spherical-radial rule
to find the cubature points and weights. The third-degree
spherical-radial rule entails a total of 2𝑛 cubature points when
the dimension of the random variable equals 𝑛. The cubature
points 𝜉𝑖 and their corresponding weights 𝜔𝑖 could be given
as

𝜉𝑖 = √𝑚
2 [1]𝑖 ,

𝜔𝑖 = 1
𝑚, (𝑖 = 1, 2, . . . , 𝑚 = 2𝑛) ,

(2)

where 𝑚 is the number of basic cubature points. In the
equation, [1]𝑖 is denoted as the 𝑖th member from the point
group. For example, when 𝑛 = 2, the point group is
{[ 10 ] , [ 01 ] , [ −10 ] , [ 0−1 ]}.
(3) Cubature Kalman Filter Calculation. Before the iteration
of time update and measurement update steps for the CKF
at each time-step, the cubature-point set {𝜉𝑖, 𝜔𝑖} should be
computed based on (2). The detailed steps of the CKF are
depicted as follows.

(i) Time update

(1) Assume at time 𝑘 that the posterior density
function (PDF) is known. Factorize

P𝑖,𝑘−1|𝑘−1 = S𝑘−1|𝑘−1 (S𝑘−1|𝑘−1)𝑇 , (3)

where the Cholesky decomposition is applied
to factorize the covariance P𝑘−1|𝑘−1, noted as
S𝑘−1|𝑘−1 = chol(P𝑘−1|𝑘−1).

(2) Evaluate the cubature points (𝑖 = 1, 2, . . . , 𝑚 =
2𝑛):
X𝑖,𝑘−1|𝑘−1 = S𝑘−1|𝑘−1𝜉𝑖 + x̂𝑘−1|𝑘−1. (4)

(3) Propagate cubature points (𝑖 = 1, 2, . . . , 𝑚)
based on state-update function (5) so that the
predicted state can be estimated bymeans of (6).
The function𝑓(⋅) is related to the vehiclemotion
model. The Constant Acceleration (CA) model
is used here as it has been proved to provide a
quick and reasonable estimation for the motion
of vehicles [15].

X∗i,𝑘|𝑘−1 = f (Xi,𝑘−1|𝑘−1) , (5)

x̂𝑘|𝑘−1 = 1
m

m∑
i=1

X∗i,𝑘|𝑘−1. (6)

(4) Calculation of predicted error covariance:

P𝑘|𝑘−1 = 1
𝑚
𝑚∑
𝑖=1

X∗𝑖,𝑘|𝑘−1X
∗T
𝑖,𝑘|𝑘−1 − x̂𝑘|𝑘−1x̂𝑘|𝑘−1 +Q𝑘−1. (7)
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(ii) Measurement update

(1) Factorize

P𝑘|𝑘−1 = S𝑘|𝑘−1 (S𝑘|𝑘−1)𝑇 . (8)

(2) Evaluate the cubature points (𝑖 = 1, 2, . . . , 𝑚)
and the propagated cubature points:

X𝑖,𝑘|𝑘−1 = S𝑘|𝑘−1𝜉𝑖 + x̂𝑘|𝑘−1,
Z𝑖,𝑘|𝑘−1 = ℎ (X𝑖,𝑘|𝑘−1) .

(9)

(3) Update the output vectors: calculate predicted
measurement and the innovation covariance
matrix according to (10) and (11), respectively:

ẑ𝑘|𝑘−1 = 1
𝑚
1∑
𝑖=1

Z𝑖,𝑘|𝑘−1, (10)

P𝑧𝑧,𝑘|𝑘−1 =
𝑚∑
𝑖=1

Z𝑖,𝑘|𝑘−1Z
T
𝑖,𝑘|𝑘−1 − ẑ𝑘|𝑘−1ẑ

T
𝑘|𝑘−1 + R𝑘. (11)

(4) Calculate the cross covariance matrix and the
cubature Kalman gain. The cross covariance
matrix and the cubature Kalman gain vector are
calculated according to (12) and (13), respec-
tively:

P𝑥𝑧,𝑘|𝑘−1 = 1
𝑚
𝑚∑
𝑖=1

Z𝑖,𝑘|𝑘−1Z
T
𝑖,𝑘|𝑘−1 − x̂𝑘|𝑘−1ẑ

T
𝑘|𝑘−1, (12)

Wk = Pxz,k|k−1P
−1
zz,k|k−1. (13)

(5) Update the state and the corresponding error
covariance. Calculation of the estimated state
and the covariance based on the generic Kalman
Filter:

x̂𝑘|𝑘 = x̂𝑘|𝑘−1 +W𝑘 (𝑧𝑘 − ẑ𝑘|𝑘−1) ,
P𝑘|𝑘 = P𝑘|𝑘−1 −W𝑘P𝑧𝑧,𝑘|𝑘−1W

𝑇

𝑘 .
(14)

The variables used in the CKF algorithm are illustrated as
follows:

Sk: the parameter factorized from covariance Pk
based on the Cholesky decomposition
x̂k: estimated state vector at step 𝑘
ẑk: estimated measurement vector at step 𝑘
Zk: measurement vector at step 𝑘
X∗k: propagated cubature points at step 𝑘
Pk: covariance matrix of the state vector at step 𝑘
Pzz,k: covariance matrix of the measurement vector at
step 𝑘
Pxz,k: cross covariance matrix of the state vector and
measurement vector at step 𝑘

𝜉i: cubature points with 𝑖th column of the matrix
𝜔i: weights for cubature points with 𝑖th column of the
matrix
Qk: covariance matrix of process noise at step 𝑘
Rk: covariance matrix of measurement noise at step 𝑘
Wk: cubature Kalman gain vector

2.3. ANFIS-Based Collision Avoidance System. Fuzzy Infer-
ence Systems (FIS) can be used to link nonlinear phenomena
to relative variables based on fuzzy logic rules, since this is
difficult to model using conventional mathematical models.
In contrast to traditional binary logic theory, fuzzy logic
variables define the true value of the system as partially
true or false with a value ranging from 0 to 1. With this
advantage over traditional logic, FIS has been widely used for
vehicle collision warning systems in recent years [16, 17]. Two
issues are essential for the performance of FIS-based collision
avoidance systems. One is the method for transforming the
experienced data for the rules training of the FIS, and the
other is the effective tuning of the membership functions
to increase the system performance, that is, the balance
between the false alarm rate and the correct detection rate.
TheAdaptiveNeurofuzzy Inference System (ANFIS) is able to
adaptively extract the fuzzy rules from the experienced input
data based on neural network training and apply the trained
rules on the Sugeno type fuzzy based decision system and is
therefore able to combine the traditional advantages of FIS
(i.e., transparency and the application of expert knowledge
within its structure) with the advantages of neural networks
(i.e., their fast learning capability) [18]. In the designed
rear-end collision detection system, the Relative Distance
(RD), Relative Velocity (RV) and Relative Heading (RH) for
the following and leading vehicles are defined as the input
variables for the FIS. The resulting structure of the ANFIS-
based collision avoidance system therefore has five layers, as
illustrated in Figure 3.

For a first-order Sugeno fuzzy model, a common rule is
given below.

Rule 1. If 𝑥 is 𝐴1 and 𝑦 is 𝐵1 and 𝑧 is 𝐶1, then
𝑓1 = 𝑝1 ∗ 𝑥 + 𝑞1 ∗ 𝑦 + 𝑟1 ∗ 𝑧 + 𝑠1, (15)

where the parameters defining 𝐴1, 𝐵1, and 𝐶1 membership
function, alongwith𝑝1, 𝑞1, 𝑟1, and 𝑠1, aremodified during the
training.The description of each layer in ANFIS is as follows.

Layer 1. Assume every node 𝑖 in this layer is a square node
with a node function

𝑂1𝑖 = 𝜇𝐴 𝑖 (𝑥) , (16)

where 𝑥 is the input of node 𝑖 and 𝐴 𝑖 is the linguistic label
(e.g., small, medium, and large) with node 𝑖. 𝑂1𝑖 is the mem-
bership function of 𝐴 𝑖. In our case, the initial membership
functions of the input variables are set as the Gaussian ones
based on the character of the input information:

Gaussian (𝑥; 𝜎, 𝑐) = 𝑒−(𝑥−𝑐)2/2𝜎2 , (17)
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Figure 3: Structure of the ANFIS-based collision avoidance system.

where 𝑐 is the parameter to determine the centre of the
membership function and 𝜎 determines the width of the
curve. The parameters in this layer are considered to be the
premise parameters.

Layer 2. Each node in this layer calculates the firing strength
of each rule via multiplication. In our case, we use an AND
𝑇-norm operator here, given by

𝑂2𝑖 = 𝑤𝑖 = 𝜇𝐴 𝑖 (𝑥) ∗ 𝜇𝐵𝑖 (𝑦) ∗ 𝜇𝐶𝑖 (𝑧) , 𝑖 = 1, 2, 3. (18)

Layer 3. The 𝑖th node of this layer calculates the ratio of the
𝑖th rule’s firing strength to the sum of the firing strengths of
all the rules.

𝑂3𝑖 = 𝑤𝑖 = 𝑤𝑖
𝑤1 + 𝑤2 + 𝑤3 , 𝑖 = 1, 2, 3. (19)

Layer 4. The multiplication for input from layer 3 and layer 1
is implemented, given by

𝑂4𝑖 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖 (𝑝𝑖 ∗ 𝑥 + 𝑞𝑖 ∗ 𝑦 + 𝑟𝑖 ∗ 𝑧 + 𝑠𝑖) , (20)

where𝑤𝑖 is the output of layer 3 and {𝑝𝑖 𝑞𝑖 𝑟𝑖} is the parameter
set. Parameters in this layer are called consequent parameters.

Layer 5. It computes the overall outputs as the summation of
all incoming signals.

∑
𝑖

𝑤𝑖𝑓𝑖 = ∑𝑖 𝑤𝑖 ∗ 𝑓𝑖
∑𝑖 𝑤𝑖 . (21)

Subtractive clustering is applied for the initial FIS design
to improve the calculation speed. In addition, during the
learning process, the premise parameters in layer 1 and
the consequent parameters in layer 4 are tuned until the
desired response of the FIS is achieved. A hybrid learning

algorithm combining the Least Square Method (LSM) and
the backpropagation (BP) algorithm is employed for this
training.

Once the FIS rules are obtained after the training, they
can be used for any input variables in order to get the
corresponding output values. For example, if we apply the
extracted FIS rules on the set of input Relative Distance
(RD), Relative Velocity (RV), and Relative Heading (RH) for
the following and leading vehicles, the corresponding output
value can be predicted. In this paper, we define the warning
status (labelled as “1”) and normal status (labelled as “0”)
for the output value classification. The predicted values from
the ANFIS will be rounded to the integer “0” or “1” for the
classification.The details will be discussed in the next section.

3. Field Test and Analysis

The performance of the designed CKF-based GNSS/com-
pass/lane information fusion for the avoidance of vehicle
rear-end collisions will be discussed in this section. The
experiment setup and data collection will be introduced
in Section 3.1; the performance assessment of the CKF-
based fusion algorithm, and the fusion, will be discussed
in Section 3.2; the performance of the GNSS fusion and
ANFIS-based car-following status identification system will
be discussed in Section 3.3.

3.1. Experiment Setup and Data Collection. The car-following
data was collected near Lincheng Industrial Park, Zhoushan
City, China. The data used in the experiment includes
the training data and testing data. The training data was
collected in advance with their danger status recorded and
labelled. In order to ensure the safety of the experiment,
a simulated very close car-following situation was used
throughout the whole experiment instead of real collisions.
These data were collected and recorded based on the high
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Table 1: The comparison of the navigation performance of the leading and following vehicles.

Positioning method Following vehicle performance (Buick)
Positon RMSE (m) Velocity RMSE (m/s) Availability

RTK GNSS only 0.4473 2.8692 97.58%
CKF-based fusion results 0.3025 2.1524 100%

Positioning method Leading vehicle performance (Nissan)
Positon RMSE (m) Velocity RMSE (m/s) Availability

RTK GNSS only 0.3609 2.682 98.94%
CKF-based fusion results 0.2056 2.1027 100%

(a) (b)

Figure 4: Demonstration of a rear-end collision in the test (a) and the onboard equipment (b).

grade GNSS/Inertial Navigation System (INS) integrated
sensors. Differentmanoeuvres were performedmanually and
recorded. For the dangerous driving behaviours, the driver
of the following vehicle conducted aggressive manoeuvres,
including abrupt acceleration and deceleration with different
velocities and headings so that the following vehicle closed
rapidly with the leading vehicle. For the normal data, we just
drove smoothly and maintained a distance of more than 5m
between the two cars (here the distance used is the distance
between two antennas on both cars). We tried our best to
simulate driving situations that would represent different
types of dangerous status in real driving. The testing rear-
end collision data were captured from 07:15:00 to 07:26:00 in
Universal Coordinated Time (UTC) with total five times of
the simulated collision sessions. During the test, the Buick
was assigned as the following vehicle and the Nissan was
assigned as the leading vehicle.The test vehicles and onboard
sensors are shown in Figure 4.

For both vehicles, two types of data were collected and
used in the field test: (1) the reference data, which is the
postprocessed data output from the integrated GNSS/INS
with the video recorded and labelled collision situations; (2)
the Real-Time Kinematic (RTK) GNSS and compass data
for both vehicles in the test sessions. The frequency of the
collected data for both vehicles is 10Hz.

In order to obtain the real-time lateral displacement and
curvature angle of the vehicle in the related lane segment,
the coordinates of the lane’s central line for the experiment
area were collected in advance by a vehicle with a high grade

integrated sensor. This data was then postprocessed to be
recognized as the position of the lane’s central line.The lateral
displacement of the vehicle was calculated by finding the two
measurement points on the central line that were closest to
the vehicle and then calculating the perpendicular distance
from the vehicle to the line segment containing these two
points.

3.2. Analysis of the CKF-Based GNSS/Compass/Lane Infor-
mation Fusion. This section discusses the CKF-based GNSS/
compass/lane information fusion algorithm for the estima-
tion of the positioning and dynamic parameters for both
the leading and following vehicles. Table 1 shows that the
accuracy and availability improved for both the following and
leading vehicles compared to the positioning results from
RTK GNSS only. Figure 5 is an example of the CKF-based
fusion results for the Nissan vehicle (i.e., the leading vehicle).
It shows that the fusion algorithm has not only bridged the
gaps in the GNSS positioning results, but also improved the
accuracy and availability of the vehicle navigation perfor-
mance. In addition, the velocity and heading estimations have
also been improved based on the fusion algorithm, whichwill
be essential for the identification of the car-following status.

3.3. Analysis of Fusion and ANFIS-Based Car-Following Status
Identification Algorithm. The training data used for ANFIS
rules extraction contained a total of 18151 samples, including
865 samples considered as having a collision warning status
(labelled as “1”) and 17286 samples with normal status
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Figure 6: Surface view of the trained rules for RV and RD and the corresponding output level.

(labelled as “0”). The testing data includes 1809 samples with
76 with collision warning and 1733 normal ones. Based on the
adaptive training of data for 100 steps, the rules for the input
RV, RD, RH, and the output status can be established; see
Figure 6 as an example of the RV, RD, and the corresponding
output level extracted. It is indicated that every pair of RV and
RD has a corresponding output level value. The membership
functions for the RV, RD, and RH before the training and
after the training are shown in Figure 7. The levels of the
initial membership functions of the input variables have been
preliminary defined based on the Gaussian function. The
premise membership function has been adaptively changed
after the training, especially for the input variable RH. It
is indicated in the variable RH that the initial levels of the
membership function (e.g., levels 1, 2, and 4) are very close to
each other, but they become more separated after the neural
network training.

The comparison between the fusion results with the
ANFIS predicted output level, and the reference output level,
are displayed in Figure 8. It is clear that the collision warning
status can be identified with a high success rate. The confu-
sion matrix of the identification results using reference data
with ANFIS and GNSS/compass/lane information fusion
with ANFIS is listed and compared in Table 2. The predicted
values are rounded to the integer “0” or “1.” Detection
accuracy is calculated as the ratio (in percentage) of the
number of correctly detected activities to the number of
total known activities and false alarm rate as the ratio of the
number of false positive activities (0 but detected as 1) to the
total number of detected faults. As calculated from the table,
the accuracy of theGNSS fusionwithANFIS predicted results
is 99.61%, while the false alarm rate is 5.26%. The designed
algorithm therefore exhibits a very close performance to the
reference data, which has an accuracy of 99.78% and false
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Table 2: Confusion matrix of the identification results.
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Figure 7: Membership function before and after training with ANFIS.
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Figure 8: Comparison between the fusion results with ANFIS predicted output level and the reference output level.
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Table 3: The confusion matrix of the identification results.

Performance Proposed algorithm Fuzzy logic based algorithm in [10] Distance-based algorithm in [8]
Accuracy 99.61% 98.34% 97.18%
False alarm rate 5.26% 26.32% 39.29%

alarm rate of 3.9%. It is therefore clear that the low cost sensor
fusion and ANFIS-based car-following status identification
algorithm could be effectively used for collision avoidance
systems.

In this section we compare the proposed algorithm
with the most commonly used state-of-the-art algorithm
from relevant literature. According to our literature review,
although research to date has explored a number of aspects
of rear-end collision detection, the assumptions and test data
used for such collision detection are different. Nonetheless,
some of their methodologies can still be adopted to design
rear-end collision avoidance detection by using the field
test data in this paper. These typical methods include the
traditional fuzzy logic based algorithmwith the input of Time
to Collision (TTC) and TimeGap (TG) based collision avoid-
ance system in [10] and the commonly used V2V distance-
based collision avoidance algorithm in [8].The performances
of the collision detection results for these systems in terms of
accuracy and false alarm rate are illustrated in Table 3.

It can be seen that the proposed algorithm outperforms
its competitors. Although the accuracy for the proposed algo-
rithm (i.e., 99.61%) is only slightly higher than the algorithm
in [10] (i.e., 98.34%) and the distance-based algorithm in [8]
(i.e., 97.18%), the proposed algorithm exhibited the lowest
false alarm rate of 5.26%, compared to 26.32% and 39.29%
for the fuzzy logic based algorithm in [10] and distance-based
algorithm in [8].The possible reasons for the high false alarm
rate of these two state-of-the-art algorithms could be that the
fuzzy logic based algorithm in [10] only uses a traditional
fuzzy logic algorithm, which defines the rules manually
without tuning the membership function to the optimal
value, therefore, resulting in a high false alarm rate. The
distance-based algorithm in [8], meanwhile, only considers
the simple distance-based factor and not the velocity and
heading, which will also be important factors for rear-end
collision prediction, thus again leading to a high false alarm
rate.

4. Conclusion

This paper presents a novel rear-end collision detection
algorithm by combining CKF-based GNSS/compass/lane
segment fusion with an ANFIS decision system. The field
test has demonstrated the practicality of this approach using
cost-effective sensors and relative map information. It is
shown that the proposed algorithmhas not only improved the
positioning accuracy and availability of the vehicle navigation
performance, but also provides solid collision avoidance
detection with high detection accuracy (i.e., 99.61%) and a
low false alarm rate (i.e., 5.26%) at a 10Hz output rate. In
the future, more indicators will be developed to evaluate
the designed algorithm and comparisons will be carried out

between the designed algorithm and the other advanced
algorithms using more scenarios.
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