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Abstract. We give the first mathematically rigorous analysis of an emerging approach to finite element
analysis (see, e.g., Bauer et al. [Appl. Numer. Math., 2017]), which we hereby refer to as the surrogate matrix
methodology. This methodology is based on the piece-wise smooth approximation of the matrices involved in
a standard finite element discretization. In particular, it relies on the projection of smooth so-called stencil
functions onto high-order polynomial subspaces. The performance advantage of the surrogate matrix methodology
is seen in constructions where each stencil function uniquely determines the values of a significant collection of
matrix entries. Such constructions are shown to be widely achievable through the use of locally-structured meshes.
Therefore, this methodology can be applied to a wide variety of physically meaningful problems, including
nonlinear problems and problems with curvilinear geometries. Rigorous a priori error analysis certifies the
convergence of a novel surrogate method for the variable coefficient Poisson equation. The flexibility of the
methodology is also demonstrated through the construction of novel methods for linear elasticity and nonlinear
diffusion problems. In numerous numerical experiments, we demonstrate the efficacy of these new methods in a
matrix-free environment with geometric multigrid solvers. In our experiments, up to a twenty-fold decrease in
computation time is witnessed over the classical method with an otherwise identical implementation.

Key words. Surrogate numerical methods, finite element methods, matrix-free, high performance computing,
a priori analysis, low order, geometric multigrid.
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1. Introduction. In the field of computational science, major funding initiatives in North
America, Europe, and Asia have thrust high performance computing (HPC) to ascendancy. In
anticipation of future exascale computers, much work in this discipline involves the deep and
careful reconstruction of long-established computing practices. An important characteristic of
numerical algorithms aimed for these computers, is the floating-point operation (FLOP) per
byte ratio. In order to achieve optimal performance and power efficiency on future machines,
the time spent on FLOPs relative to memory transfer needs to be substantial.

Most traditional finite element softwares assemble global stiffness matrices by looping over
elements and adding the corresponding local contributions to the global matrix. Storing the
resulting sparse matrices requires significantly more memory than just storing the degrees of
freedom. However, memory consumption is certainly not the only obstacle at the computational
frontier. Indeed, at such scales, the memory traffic and latency involved in loading indices and
entries for matrix vector products (MVPs) also presents critical challenges.

Since iterative solvers only require MVPs, it is not necessary to store all of the nonzeros of
the global matrix in memory. Instead, it is sufficient to compute the nonzero entries on-the-fly,
i.e., matrix-free. Different tactics exist to implement matrix-free methods, but the predominant
candidate for low-order finite elements is the element-by-element approach [3, 15, 19, 24, 38],
wherein local stiffness matrices are multiplied by local vectors and later added to the global
solution vector. These local stiffness matrices may either be stored in memory—which actually
requires more memory than storing the global matrix—or computed on-the-fly. When using
high-order finite elements, the weak forms can be integrated on-the-fly using standard or reduced
quadrature formulas [17, 30, 31, 32, 34]. This is a well-suited tactic for future machines because
of its large arithmetic intensity [33].

Significant performance gains are often attributed to a problem, scale, and architecture-
specific balance between FLOPs and memory traffic. As a matter of course, exploiting symmetries
in a problem or discretization can significantly improve the time to solution. This is often the
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cause of enormous speed-ups in computations on structured meshes. Likewise, high performance
of matrix-free methods can be most easily achieved in homogeneous problems with simple
geometries. Nevertheless, most geometries coming from significant real-world problems cannot
be adequately approximated by fully-structured meshes. A possible trade-off is to use locally-
structured meshes like hierarchical hybrid grids (HHG) where initially unstructured coarse grids
are locally refined in a uniform way. This local structure allows the application of stencil-based
finite element procedures which operate similar to finite difference methods. By using these
grids, efficient stencil-based methods have been successfully applied to a wide range of problems
[11, 12, 13, 22, 26]. A related approach, suitable for low-order finite element discretizations of
scalar elliptic partial differential equations (PDEs) with variable coefficients, based on scaling of
reference stencils is discussed in [7].

In this paper, we revisit the classical lowest-order Bubnov–Galerkin finite element method and
analyze a modification of it which is strongly amenable to stencil-based matrix-free computation.
In our approach, a macro-mesh, which is not required to have any global structure, is used to
triangulate the model geometry. This macro-mesh is then uniformly refined a large number
of times, resulting in a fine-scale locally-structured mesh. For each macro-element, a local
approximation of the fine-scale global matrix delivers a fine-scale surrogate matrix which
maintains the convergence properties of the fine-scale discrete solution, up to the original order
of the approximation. A related investigation [10] illustrated the promise of this methodology
and provided numerical evidence for the convergence rates which are proven here rigorously.
This work considered only Poisson’s equation. Later on, Stokes flow (with variable viscosity) was
considered in two follow-up articles [8, 9]. Each of these initial studies focused on the massively
parallel high performance computing aspects of their respective methods. These studies used
the HHG software framework [11, 12, 13] in their experiments. Here, the finite-element software
framework HyTeG [29] is used.

In this paper, we recast the central features of the original work as a methodology complete
with a mathematical framework suitable for rigorous analysis. The principal novelty is the
mathematical foundation developed here, which can be used to analyze further incarnations
of the methodology. In total, we consider three specific mathematical models; namely, the
variable coefficient Poisson equation, linear elastostatics, and p-Laplacian diffusion. Although
our presentation demonstrates that the surrogate matrix methodology applies to each of these
models equally well, we only employ a complete a priori analysis of the simplest model, the
variable coefficient Poisson equation. In our numerical experiments, we carefully verify the
proven a priori convergence rates with the variable coefficient Poisson equation. We also include
proof-of-concept demonstrations from numerical experiments with the linear elastostatics and
p-Laplacian diffusion problems.

2. Notation and outline. Let V be a reflexive Banach space over R, the field of real
numbers, and let Vh ( V be a finite-dimensional subspace. Consider a continuous and weakly
coercive bilinear form a : V × V → R and a bounded linear functional F ∈ V ∗, the topological
dual of V .

In this paper, we are concerned with the solutions u, uh, and ũh of the following three
abstract variational problems.

Find u ∈ V satisfying a(u, v) = F (v) for all v ∈ V .(2.1a)
Find uh ∈ Vh satisfying a(uh, vh) = F (vh) for all vh ∈ Vh .(2.1b)
Find ũh ∈ Vh satisfying ã(ũh, vh) = F (vh) for all vh ∈ Vh .(2.1c)

In (2.1c), a surrogate bilinear form ã : Vh × Vh → R has been introduced. In order to properly
define ã(·, ·), some additional assumptions on a(·, ·) are still required; see Section 3.

The discrete variational problems (2.1b) and (2.1c) induce matrix equations for coefficients
2



u, ũ in some RN ,

(2.2) Au = f and Ãũ = f,

respectively. In the first case, fix a basis for Vh, say {φi}Ni=1. For this basis, each (i, j)-
component of the stiffness matrix A is simply Aij = a(φj , φi). In the following section, we
present a methodology to construct a surrogate stiffness matrix Ã ≈ A which can be used in
place of the true stiffness matrix A. This methodology stands apart from technical details,
such as differences in quadrature formulas. Section 4 provides a short (non-comprehensive)
list of examples fitting into our framework. In Section 5, we discuss the incorporation of
non-homogeneous boundary conditions and what we hereon refer to as the zero row sum property.
In Section 6, sufficient conditions for the discrete stability of surrogate bilinear forms ã(·, ·) are
briefly discussed. Next, in Section 7, we perform a rigorous a priori error analysis of our approach
applied to the variable coefficient Poisson equation. A brief description of our implementation
is given in Section 8. Then, in Section 9, we document several numerical experiments. Here,
a thorough verification of each error estimate in Section 7 is given. This is complemented by
performance measurements for the additional examples.

Throughout this article, we assume that Ω⊆Rn is a bounded Lipschitz domain. For matrices
M ∈ Rl×m, define the `∞-, and max-norms, ‖M‖∞ = maxi

∑
j |Mij | and ‖M‖max = maxi,j |Mij |.

Likewise, for any function v : Ω → R, we will use the similar notation, ‖v‖0, ‖v‖1, and ‖v‖2,
for the canonical L2(Ω)-, H1(Ω)-, and H2(Ω)-norms, respectively. When dealing with a subset
T ⊆Ω, denote the related L2(T )-, H1(T )-, and H2(T )-norms by ‖v‖0,T , ‖v‖1,T , and ‖v‖2,T ,
respectively. For any simplex T and integer 0 ≤ q <∞, we denote the space of polynomials of
degree at most q as Pq(T ). All remaining notation will be defined as it arises.

3. Surrogate stiffness matrices. In this section, we present the constitutive elements of
the surrogate matrix methodology. Our approach here is to gradually introduce the necessary
concepts, all the while maintaining a clear sense of generality. In order to arrive at a tractable
framework for our problems of interest, we gradually refine the presentation from general
n-dimensional spaces to only n = 1, 2 or 3 and from general Banach spaces to only W 1,p(Ω) (or
products thereof), where 1 < p <∞. The intention of proceeding in this way is to indicate that
the methodology can be applied to an extremely broad set of problems and, specifically, to most
problems where finite element methods are traditionally applied.

3.1. Preliminary assumptions. Given a bounded domain Ω⊆Rn, assume that the true
bilinear form can be expressed as

(3.1a) a(u, v) =

∫
Ω

G(x, u(x), v(x)) dx for all u, v ∈ V.

Additionally, upon defining supp(u) = {y ∈ Ω : u(y) 6= 0} for smooth functions, make the
following sparsity assumption:

(3.1b) G(x, u(y), v(y)) = 0 whenever y /∈ supp(u) ∩ supp(v).

These assumptions permit us to consider the discretization of most classical differential
operators. Indeed, in the assumptions above, the integrand G(x, u, v) may induce distributional
derivatives on its second and third arguments. Meanwhile, the first argument can be identified
with the spatial argument of any associated variable coefficients. For example, in the weak
form of a Poisson-type equation, −div(K∇u) = f , with a variable, symmetric positive-definite
diffusion tensor K(x) (cf. Subsection 4.1), we have the bilinear form

(3.2) a1(u, v) =

∫
Ω

∇u(x)>K(x)∇v(x) dx for all u, v ∈ V = H1(Ω) .

3



Here, taking any point x ∈ Ω, the integrand in (3.1a) reduces to G(x, u, v) = ∇u>K(x)∇v.
Evidently, this G satisfies the sparsity assumption (3.1b).

3.2. Stencil functions. Let φ ∈ V be a test function with compact support in Ω and,
for any fixed y ∈ Rn, define φy(x) = φ(x− y). Now, consider any fixed set of ordered points
X = {xi} in Ω and recall (3.1a). Assuming that both φxi , φxj ∈ V , observe (via a simple change
of variables) that

a(φxj , φxi) =

∫
Ω

G(y, φxj (y), φxi(y)) dy =

∫
Ωδ

G(xi + y, φδ(y), φ(y)) dy ,

where δ = xj − xi and Ωδ = supp(φ) ∩ supp(φδ). In the second equality, passing from an
integral over Ω to an integral over the subset Ωδ ⊆Ω follows immediately from the sparsity
assumption (3.1b). For each fixed xi, the affine structure of the identity above may be illuminated
by collecting each contributing translation δ into the setD(xi) = {xj−xi : xj ∈ X, a(φxj , φxi) 6=
0} and defining a stencil function

(3.3) Φδi (x) =

∫
Ωδ

G(x+ y, φδ(y), φ(y)) dy for each δ ∈ D(xi).

We have just reduced the computation of any a(φxj , φxi) to the evaluation of scalar-valued
functions enumerated by affine coordinates (xi, xj − xi). Indeed,

a(φxj , φxi) =

{
Φδi (xi) , if δ = xj − xi ∈ D(xi),

0 , otherwise.

In the present scenario, there may be a different set of translations D(xi) for every point xi.
However, if each point is drawn from a point lattice, most of the sets D(xi) are identical.
This observation is the subject of the following subsection and a foundational principle in our
approach.

Remark 3.1. In the scenario that the bilinear form is symmetric, a(u, v) = a(v, u), it is
natural to assume that the stencil functions (3.3) will inherit a similar symmetry. Indeed, under
the equivalent symmetry condition G(x, u, v) = G(x, v, u) almost everywhere, one may easily
verify that if δ = xj − xi, then

(3.4) Φδi (xi) =

∫
Ωδ

G(xi + y, φ(y), φδ(y)) dy =

∫
Ω

G(xj + y, φ−δ(y), φ(y)) dy = Φ−δj (xj)

or, equivalently, Φδi (xi) = Φ−δj (xi + δ).

3.3. Local stencil functions and locally-structured meshes. An affine point lattice
L, from here on referred to only as a lattice, is a regularly spaced array of points in Rn where
every point xi ∈ L belongs to a neighborhood containing no other points in L. In this paper,
each (possibly finite) lattice is determined by a finite linearly independent set of translations in
Rn; i.e., L⊆{δ0 + a1δ1 + · · ·+ alδl : a1, . . . , al ∈ Z}.

Assuming that the test function φ ∈ V is sufficiently localized and each point xi is drawn
from a lattice L⊆Ω, then each D(xi) is a subset of a small number of admissible translations
D(L) =

⋃
{D(xi) : xi ∈ L}, determined solely by the lattice structure. In such a scenario, every

stencil function is closely related; i.e., Φδi (x) = Φδj(x), whenever both are defined. Therefore, it
is prudent to drop the subscript and define only one common stencil function Φδ(x) for each
δ ∈ D(L). Clearly,

(3.5) a(φxj , φxi) =

{
Φδ(xi) , if δ = xj − xi ∈ D(L),

0 , otherwise.
4



We are interested in exploiting (3.5) for solving a wide variety of PDEs with curvilinear
geometries. Toward this end, the following examples help motivate our construction further.

Remark 3.2. From now on, it is useful to let V be a closed subset of W 1,p(Ω), for some
1 < p < ∞. This will allow us to use a basis for Vh⊆V consisting of finite element vertex
functions [23]. Other problems where V ⊆

[
W 1,p(Ω)

]k, k ∈ N, can be handled similarly (see, e.g.,
Subsection 4.2), by employing a basis consisting of the same vertex functions in each component.

3.3.1. The one-dimensional setting. Let V = H1
0 (Ω), where Ω = (0, 1)⊆R, and fix

a small translation dx = 1/(N + 1). Consider the scenario where each point, xi = xi−1 + dx,
evenly divides Ω and φ is the piecewise-linear hat function defined φ(x) = max(1− |x|dx , 0). Let
Vh = {v ∈ H1

0 (Ω) : v|t ∈ P1(t), t = (xi, xi+1), for each 1 ≤ i ≤ N} and identify each shifted
hat function with the standard basis, φxi = φi ∈ Vh. Here, we may define L = {xi}. In this
case, for each i ≥ 1, the value a(φi, φj) can either be computed directly from (3.1a), in the
standard way, or evaluated using (3.5), assuming that each Φδ is available at the onset of
computation. Note that D(x1) = {0, dx} and D(xN ) = {−dx, 0}, but D(xi) = {−dx, 0, dx}
for each 2 ≤ i ≤ N − 1. Therefore, D(L) = {−dx, 0, dx}. Ultimately, defining each structured
stencil function Φδ(x) = Φ((xi, δ);x) from an arbitrary candidate point xi, one may verify that

a(φj , φi) =

{
Φδ(xi) , if δ = xj − xi ∈ {dx, 0, dx},
0 , otherwise,

which is clearly the same format as (3.5).
Recall Remark 3.1. If a(·, ·) is symmetric, then, by (3.4), Φdx(xi) = Φ−dx(xi + dx) and the

number of required stencil functions can be reduced to two. In some situations—e.g., when
the zero row sum property can be employed (see Section 5)—only a single stencil function is
actually required.

3.3.2. Locally-structured meshes with triangles. Let m ∈ N. Beginning with a
scaled Cartesian lattice Lm = 2−mZn, it is useful to define its intersection with the closure of
the right-angled reference simplex T̂ = {x̂ ∈ Rn : ‖x̂‖1 < 1, x̂ · ei > 0, ∀i = 1, . . . , n}. This
simplicial lattice, T̂m = Lm ∩ T̂ , can easily be transformed into a similar simplicial lattice Tm
for any arbitrary simplex T ⊆Ω via an affine transformation (see, e.g., Figure 1). Indeed, fixing
the unique A ∈ Rn×n and b ∈ Rn such that T = {Ax̂+ b : x̂ ∈ T̂}, the corresponding lattice is
clearly Tm = {Ax̂i + b : x̂i ∈ T̂m}. Note that there are no interior points, T̊m = Tm ∩ T = ∅, if
m < 2. We also define the set of boundary points ∂Tm = Tm \ T̊m, which is always non-empty.

Let Ω⊆Rn, where n = 2, 3. The utility of this transformation is evident upon considering a
macro-triangulation of Ω, say TH , where each macro-element T ∈ TH is endowed with a simplicial
lattice Tm, as defined above. Here, H = maxT∈TH HT , where each HT = diam(T ) denotes the
diameter of T . Notice that, for any fixed level m ≥ 0, all interface points xi ∈ ∂Tm ∩ Ω are
coincident with an interface lattice point on some neighbouring simplex. We may now define
the set of all vertices on level m:

Xm =
⋃
{Tm : T ∈ TH}.

For every Xm, there is a corresponding finite element mesh such that each vertex func-
tion within a fixed macro-element T ∈ TH is self-similar. In the cases n = 2 or 3, we are
left to define each triangle or tetrahedron whose vertices coincide with points in Xm. Let
[y0, y1, . . . , yk]⊆Rn denote the convex combination of the points y0, y1, . . . , yk ∈ Ω. When
n = 2, the natural construction begins by considering the following uniform subdivision of a
triangle T = [y0, y1, y2] ∈ TH into a set of four equal-volume triangles:

S(T ) =
{

[y0,
y0+y1

2 , y0+y2
2 ], [y0+y1

2 , y1,
y1+y2

2 ], [y0+y2
2 , y1+y2

2 , y2], [y0+y1
2 , y1+y2

2 , y0+y2
2 ]

}
.
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Figure 1. Illustration of three refinement steps of a single macro-element T for n = 2 with the corresponding
vertex lattices T0, T1, T2, and T3. The interior lattice points T̊m are colored blue and the boundary lattice points
∂Tm = Tm \ T̊m are colored in orange. Additionally, the support of an exemplary vertex function φi is shaded
in green.

For an illustration of this n = 2 case, see Figure 1. For n = 3, see the construction in [14].
Further subdivisions can then be defined recursively, viz.,

Sm+1(T ) =
⋃
{S(t) : t ∈ Sm(T )} for all m ≥ 1 .

The set of all vertices in a given subdivision Sm(T ) forms an evenly spaced set of points
inside T . The set of vertices in S1(T ) clearly coincides with T1 and one can easily verify from
the recursive definition that the set of vertices in Sm(T ) also coincides with Tm. We may finally
define the sequence of locally-structured meshes:

Sm(TH) =
⋃
{Sm(T ) : T ∈ TH}, for all m ≥ 1 .

Notice that for each m, Xm coincides with the set of all vertices in Sm(TH). Therefore, each
point xi in Xm can be identified with a vertex function φi supported by only the neighboring
elements appearing in Sm(TH); see Figure 1.

Assume that the fine mesh level, m, is chosen large enough that one may find several points
in Xm which lie in the interior of some macro-element T . If xi ∈ T̊m is any such point, then the
translation set D(xi) = D(T̊m) will only contain translations aligned with edges appearing in
the original subdivision S1(T ). Identifying φxi = φi we see that for every xi ∈ T̊m and xj ∈ Tm,

(3.6) a(φj , φi) =

{
ΦδT (xi) , if δ = (xj − xi) ∈ D(T̊m),

0 , otherwise,

where ΦδT : conv(T̊m)→ R is a local stencil function for the current level m and macro-element
T and conv(T̊m) is the convex hull of T̊m. In general, notice that Φδ

T 6= Φ2δ
T are two different

stencil functions, corresponding to the same direction but different mesh levels.
Consider the bilinear form (3.2) with a variable diffusion coefficient. A visualization of

several corresponding local stencil functions, coming from locally-structured meshes used in
our numerical experiments, is given in Figure 2. It is clear from this figure that each Φδ

T has
the potential to be a smooth function. We now come to the final essential component of our
surrogate methodology; the approximation of ΦδT .

Remark 3.3. The lattice structure of locally-structured meshes is destroyed under smooth,
non-affine transformations T̂ → T̃ ⊆Ω. This offers a possible impediment to our construction
in the case of non-polygonal domains Ω 6= ΩH =

⋃
T∈TH T . In fact, if a globally continuous

transformation ϕ : ΩH → Ω is available, with ϕ|T a smooth bijection for every T ∈ TH , then
6



Figure 2. Left: Surface plots of the local stencil functions ΦδT (x), for the degenerate direction δ = 0 and
level m = 5, from the numerical experiments recounted in Subsection 9.1.1. Here, the function is plotted over
each subset conv(T̊m)⊆T ∈ TH . In this case, it clearly appears that each stencil function can be related to the
restriction of a globally continuous function ΦδT (x). This is a result of the structure of the macro-mesh only.
Right: Surface plots of the stencil functions ΦδT (x) after the first time step from the experiment recounted in
Subsection 9.3, for the eastern direction δ relative to each macro-element and level m = 5. Moreover, although
they are clearly related, it is evident that the corresponding stencil functions lack any global smoothness property.

an equivalent method can be found using local pull-backs of ϕ. For example, the bilinear form
in (3.2), a1 : H1(Ω)×H1(Ω)→ R, simply transforms to a1,H : H1(ΩH)×H1(ΩH)→ R, where

(3.7) a1,H(u, v) =

∫
ΩH

∇u(x)>KH(x)∇v(x) dx , KH =
Dϕ−1(K ◦ ϕ)Dϕ−>

|det (Dϕ−1)|
.

Therefore, from now on, we operate under the assumption that the macro-mesh TH is geometrically
conforming, Ω = ΩH .

3.4. The inherited regularity of stencil functions. Our approach is to locally project
each stencil function ΦδT in (3.6) onto a high-dimensional space of polynomials and later use this
projection to compute approximate values of the stiffness matrix A. Let TH be a shape-regular
simplicial mesh and consider a locally-structured mesh of level m subordinate to this mesh,
Sm(TH). Before moving on, observe that definition (3.6) in fact holds for any xi, xj ∈ Tm if xi
or xj ∈ T̊m. Therefore, due to the structure of the vertex functions in a locally-structured mesh,
the domain of each Φδ

T can actually be extended to a set T δ lying between conv(T̊m) and T .
Indeed, identifying the test function in (3.3) with the i-th vertex function, φ(x) = φi(x+ xi),
for an arbitrary vertex xi ∈ T̊m, define

Tδ = {x ∈ T : x+ y ∈ T, for all y ∈ Ωδ = supp(φ) ∩ supp(φδ)}.

From now on, we assume ΦδT : T δ → R. See Figure 3 for a depiction of the sets in a triangular
mesh and note that T−δ = Tδ + δ, for every δ ∈ D(Tm).

For any T ∈ TH , let Pq(Tδ) denote the space of polynomials of degree at most q on
the simplex T δ and let Πδ

T : C0(T δ) → Pq(Tδ) be an L∞-continuous projection operator,
Πδ
T ◦Πδ

T = Πδ
T . For each macro-element T ∈ TH and level m ∈ N, define the surrogate stencil

function Φ̃δT : Tδ → R to be the corresponding polynomial projection of ΦδT . Namely,

(3.8) Φ̃δT = Πδ
T ΦδT .

In order to correctly argue that a polynomial approximation of ΦδT is feasible, it is necessary
to classify its regularity depending on the problem at hand. In the following proposition,
we show, under the modest assumptions above, that if G(·|T , ·, ·) is a polynomial in its first
argument, then ΦδT is also a polynomial of the same degree.

7



Figure 3. Illustrations of the domains Tδ in gray and Ωδ for six exemplary directions δ. Left: Northern and
north-western direction. Middle: Eastern and south-eastern direction. Right: Western and southern direction.

Lemma 3.1. Fix a simplex T ∈ TH . Assume that the bilinear form a(·, ·) in (2.1a) satisfies
assumptions (3.1a) and (3.1b), where the integrand G(·|T , ·, ·) is a polynomial of at most degree
q in its first argument. Then, for any locally-structured mesh Sm(TH), as defined above, every
local stencil function ΦδT ∈ Pq(Tδ) is a polynomial of the same degree.

Proof. Recall definition (3.3). For every xi, xj ∈ Xm, every stencil function Φ((xi, xj−xi), x)

is defined with a test function φ ∈ V . Fixing any arbitrary vertex xi ∈ T̊m, identify this test
function with the i-th vertex function, φ(x) = φi(x+ xi). Let α = (α1, . . . , αn) ∈ N0 denote a
standard multi-index, |α| =

∑n
i=1 |αi| and xα = xα1

1 · · ·xαnn . By assumption, we may express
G(x, φδ(y), φ(y)) =

∑
|α|≤l cα(y)xα, where each coefficient function c(y) has support only in

Ωδ = supp(φ) ∩ supp(φδ). Moreover, if x+ y ∈ T , then

(3.9) G(x+ y, φδ(y), φ(y)) =
∑
|α|≤l

cα(y)(x+ y)α =
∑
|α|≤l

∑
|ν|≤α

(
α

ν

)
cα(y)yνxα−ν

is clearly an equal degree polynomial in the variable x. The proof is completed by noting that
the integral in (3.3) is performed only over the variable y ∈ Ωδ and so the stencil function
acts like a convolution. Indeed, under the assumption x ∈ T , only the subset of points
x ∈ Tδ = {x ∈ T : x + y ∈ T for all y ∈ Ωδ} guarantee that (3.9) holds at every point of
integration y. In this case, by linearity of integration, Φδ

T is a member of Pq(Tδ), with its
coefficients defined by the associated integrals of the y-dependent functions in the right-hand
side of (3.9).

Corollary 3.2. In the setting of Lemma 3.1, Φ̃δT = ΦδT .

Proof. Since ΦδT ∈ Pq(Tδ), we immediately see that Πδ
T ΦδT = ΦδT .

3.5. Surrogate stiffness matrices. The main goal of the entire effort above is to guide us
in reducing the vast majority of the finite element assembly process to the evaluation of a small set
of functions which can, in fact, be locally approximated by polynomials. As in Subsection 3.3.2,
let TH be a shape-regular triangulation of a domain Ω into disjoint macro-simplices T .

Our construction of the surrogate matrix Ã is obviously built to exploit the local lattice
structure of locally-structured meshes. As argued previously, a surrogate stencil function Φ̃δT
can be used to approximate any matrix entry Aij coming from a locally-structured mesh if at
least one of the corresponding vertices xi or xj belongs to T̊m. This leaves us to define only the
nonzero matrix entries coming from the mutual interaction of vertex functions at the boundaries
of the macro-elements. Although these entries could also be approximated by surrogate stencil
functions — in this case, these additional functions would be defined on each subsimplex of the
macro-mesh TH — let us assume that they are computed directly. Because the growth of the
macro-mesh boundary and interface interactions grow at an order of magnitude less than the
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interior interactions, computing these matrix entries directly does not affect to the asymptotic
performance of the methodology. Finally, letting ∂Xm =

⋃
T∈TH ∂Tm denote the union of all

macro-mesh boundary vertices, we define the general surrogate stiffness matrix

(3.10) Ãij =


∫

Ω
G(y, φj(y), φi(y)) dy , if both xi and xj ∈ ∂Xm

Φ̃δT (xi) , if δ = (xj − xi) ∈ D(T̊m) and xi or xj ∈ T̊m,
0 , otherwise.

Remark 3.4. Due to the presence of the surrogate stencil functions Φ̃δT , even if A is
symmetric, Ã will generally not be. However, recalling (3.4), observe that if a(·, ·) is symmetric,
then ΦδT (x) = Φ−δT (x+ δ). Therefore, if we use related projection operators

(3.11)
[
Πδ
TΦδT

]
(x) =

[
Π−δT Φ−δT

]
(x+ δ) ,

for each opposing direction δ and −δ, then Ã will be symmetric. Indeed, if δ = xj − xi, then

Ãij = Πδ
TΦδT (xi) = Π−δT Φ−δT (xi + δ) = Π−δT Φ−δT (xj) = Ãji .

4. Examples. In this section, we present three example problems which easily fit into the
framework above.

4.1. The variable coefficient Poisson equation. Consider the Poisson-type equation
−div(K∇u) = f in Ω, u = 0 on ∂Ω, with a load f ∈ L2(Ω) and a variable, symmetric positive-
definite tensor K. Furthermore, assume that for each index a, b, Kab ∈ Pq(Ω). Recall (3.2)
and note that we have already shown that the weak form of this problem can be cast into the
framework above.

Assume that, within some set T ⊆Ω, each vertex function φi is a translation of a fixed test
function φ(x) = φi(x− xi). Then for each φi, φj , the stiffness matrix entry

(4.1) Aij =

∫
Ω

∇φi(x)>K(x)∇φj(x) dx

can equally well be expressed as the evaluation (at the point xi) of a stencil function, which, by
Lemma 3.1, is simply a polynomial of the same degree as the diffusion tensor K. In the case
of locally-structured meshes, there is a locally defined stencil function Φδ

T : Ω → R for each
macro-element T and level m. In this case, each Φδ

T : T δ → R is a polynomial (of degree at
most q) on Tδ.

4.2. Linearized elasticity. Let ~∇ and Div denote the row-wise distributional gradient
and divergence, respectively. Now define ε(u) = 1

2 [~∇u+ (~∇u)>] to be the symmetric gradient
operator ε : H1(Ω)n → L2(Ω)n, where n ≥ 2. Consider the following standard PDE model for
the displacement u ∈ H1

0 (Ω)n of a linearly elastic isotropic material: −Div σ = ~f , where the
stress σ = 2µε(u) + λIdiv u and the load f ∈ L2(Ω)n.

The weak form of this equation is well known in the literature [20] and the associated
bilinear form is simply

(4.2) a2(u, v) =

∫
Ω

2µε(u) : ε(v) + λdiv(u) div(v) dx for all u, v ∈
[
H1

0 (Ω)
]n
.

This bilinear form obviously satisfies assumptions (3.1a) and (3.1b). If we assume that the
Lamé parameters µ, λ : Ω→ R are piecewise polynomials on a collection of disjoint subdomains
T ∈ TH , then each associated stencil function is also a piecewise polynomial.
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4.3. p-Laplacian diffusion. For any 1 < p < ∞, let ∆p u = div(|∇u|p−2∇u) be the
p-Laplacian operator. Fix a valid parameter p and consider the nonlinear diffusion equation
∂u
∂t − ∆pu = f , where f ∈ Lp(Ω). A simple Euler time-stepping scheme replaces the time
derivative ∂u

∂t by the quotient uk+1−uk
dt , where dt > 0 is a fixed time-step parameter. Choosing

backward Euler time-stepping and defining fk = f(k · dt), we arrive at a semi-discrete nonlinear
elliptic PDE for the solution variable uk, which must be solved at each step k ∈ N: uk−dt∆puk =
dtfk + uk−1. Upon fixed point linearization of the weak form of this equation, we uncover the
following bilinear form:

(4.3) b(u, v) =

∫
Ω

dt |∇ũ|p−2∇u · ∇v + u v dx, for all u, v ∈W 1,p(Ω) .

Here, the variable coefficient ũ ∈ W 1,p(Ω) is usually identified with the previous solution
iteration in the associated fixed point algorithm (cf. Subsection 9.3).

The bilinear form b(·, ·) can easily be placed into the form of (3.1a) and each matrix entry
can therefore be superceded by stencil function evaluations, Φδ

T (x), as in (3.3). Alternatively,
one may split b(·, ·) into a mass term m(·, ·) and a dt-weighted stiffness term a3(·, ·). Specifically,
b(u, v) = m(u, v) + dt · a3(u, v), where

(4.4) m(u, v) =

∫
Ω

u v dx and a3(u, v) =

∫
Ω

|∇ũ|p−2∇u · ∇v dx .

With this observation in hand, we see that b(u, v) may be discretized by a linear combination of
independent surrogates; one form(·, ·) and one for a3(·, ·) (cf. Subsection 9.3). In either approach,
the variable coefficient |∇ũ(x)|p−2 will generally not remain a polynomial in a subdomain of
Ω and the accuracy of a surrogate stencil function Φ̃δT will reflect the local regularity of the
solution from the previous iteration, ũ.

5. Boundary conditions and the zero row sum property. It is generally appropriate
to define the surrogate stiffness matrix component-wise by the rule given in (3.10). Nevertheless,
in some problems the operator to be discretized has a kernel which is not guaranteed to be
respected by the surrogate. In such scenarios, it is possible that better performance and accuracy
can be achieved if elements of this kernel are incorporated into the construction of the surrogate.
This occurrence is most easily illustrated with the Poisson example from Subsection 4.1.

Consider the bilinear form a1 : H1(Ω)×H1(Ω)→ R, defined in (3.2). Define V ext
h = {v ∈

H1(Ω) : v|t ∈ P1(t) for each t ∈ Sm(TH)} and Vh = {v ∈ H1
0 (Ω) : v|t ∈ P1(t) for each t ∈

Sm(TH)}⊆V ext
h . Let the corresponding vertex function bases be {φi}⊆{φext

i }, with φi = φext
i

for 1 ≤ i ≤ N . In most finite element software, a space like V ext
h is used to impose Dirichlet

boundary conditions. Indeed, a “lift” of the Dirichlet data, say uext
h =

∑
i u

ext
i φext

i , is generally
constructed from a linear combination of the set {φext

i } \ {φi}. Then, taking Aext
ij = a(φext

j , φi)
for each valid i, j, a modified load vector fext = f − Aextuext is used in computation.

It is obvious that ∇ 1 = 0 and so a1(1, v) = 0 for any v ∈ H1Ω). Therefore, by the partition
of unity property

∑
i φ

ext
i = 1, the zero row sum of the matrix Aext also vanishes. Namely,∑

j A
ext
ij = 0. This property may be induced in the corresponding surrogate matrix if we simply

define Ãext
ii = −

∑
j 6=i Ã

ext
ij , for every xi ∈ Xm, where Ãext

ij = Aext
ij for every j where Aij is

not defined, and Ãext
ij = Ãij otherwise. With this extra condition, the surrogate matrix (3.10)

actually requires one fewer independent stencil function; i.e., Φ0
T = −

∑
δ∈D(Tm)\{0}Φδ

T , for
every T ∈ TH . By this definition, although Ã does not satisfy the zero row sum property, the
matrix A− Ã does. Indeed,

(5.1) Aii − Ãii = −
∑
j 6=i

(
Aext
ij − Ãext

ij

)
= −

∑
j 6=i

(
Aij − Ãij

)
.
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In this way, the stiffness matrix coming from linearized elasticity (4.2) is similar to the stiffness
matrix coming from the Laplacian. Indeed, the zero row sum property can be incorporated into
its surrogate via a straight-forward generalization.

6. Analyzing the surrogate discretization. In this section, we define and motivate
what we see as some the most essential features in the analysis of our surrogate methods. We
begin with a review of discrete stability in the context of (2.1c). We then touch on the concept
of spectral convergence of the surrogate matrix Ã → A, which helps us motivate the need to
control ‖A− Ã‖max. This specific quantity will repeatedly appear in the a priori error analysis
in Section 7.

6.1. Discrete stability. Let S = {v ∈ V : ‖v‖V = 1} be the surface of the unit ball in
V . Recall (2.2) and assume that the discretization Au = f is stable. In the present context, this
is equivalent to the existence of a constant α > 0 such that

sup
vh∈Vh∩S

a(wh, vh) ≥ α‖wh‖V for all wh ∈ Vh .

Likewise, in order for the surrogate discretization Ãũ = f to be stable, we must show that there
exists a constant α̃ > 0 such that

(6.1) sup
vh∈Vh∩S

ã(wh, vh) ≥ α̃‖wh‖V for all wh ∈ Vh .

Inequality (6.1) guarantees that Ãũ = f has a unique solution and that ‖ũh‖V ≤ α̃−1‖F‖V ∗ .
Equally important, however, it is a necessary precursor to Strang’s First Lemma, which in
some cases can be used, in part, to show that ũh converges to the exact solution u (see, e.g.,
Subsection 7.2).

6.2. Spectral convergence. By analyzing the singular values of A directly, (6.1) can
sometimes be proven by showing that the spectrum of Ã converges to the spectrum of A at a fast
enough rate. The main takeaway from this section is that spectral convergence can be guaranteed
by showing that Ã→ A in the matrix maximum norm, ‖ · ‖max. Before moving on, denote the
k-smallest eigenvalue of a matrix M ∈ RN×N as λk(M) and let `(M) = max1≤i≤N #{Mij 6=
0 where 1 ≤ j ≤ N} be the maximum number of nonzero components in M, taken across all
individual rows.

Proposition 6.1. Let M,N ∈ RN×N be symmetric matrices. Then, for each k = 1, . . . , N ,
it holds that

|λk(M)− λk(N)| ≤ ‖M− N‖∞ .

The proof is placed in Appendix A. Because A and Ã have the same sparsity pattern, the
next result follows trivially. Note that when n = 2, `(A− Ã) ≤ 7, and when n = 3, `(A− Ã) ≤ 15,
whereas `(A) can be larger depending on the structure of the macro-mesh.

Corollary 6.2. Let A and Ã be the true and surrogate stiffness matrices in (2.2), respec-
tively. If both A and Ã are real symmetric matrices, then

(6.2) |λk(A)− λk(Ã)| ≤ `(A− Ã) · ‖A− Ã‖max , k = 1, . . . , N.

Remark 6.1. As stated above, if ‖A− Ã‖max → 0 fast enough, then Corollary 6.2 can be
used in proving the stability condition (6.1). However, (6.2) is generally a very pessimistic bound
and, when available, we recommend using more direct means to prove discrete stability (see, e.g.,
Theorem 7.1). Nevertheless, this result illustrates the importance of controlling ‖A − Ã‖max,
which is a central feature in all of the coming analysis.
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6.3. Controlling ‖A−Ã‖max with the variable coefficient Poisson equation. Before
we begin, some new notation is required. For any tensor K : Ω→ Rn×n, define ‖K‖L∞(Ω) =
maxa,b ‖Kab‖L∞(Ω), likewise, for any r ≥ 0, define |K|W r+1,∞(T ) = maxa,b |Kab|W r+1,∞(T ). From
now on, the notation A . B will be used when two mesh-dependent quantities A and B satisfy
an inequality A ≤ CB, where C some positive H-independent constant. Likewise, when A . B
and B . A, we write A h B. Recall that for a macro-mesh TH , the diameter of a single element
T ∈ T is denoted HT and the mesh size is denoted H = maxT∈TH HT . We also denote the
fine-scale element diameter hT = 2−mHT , for each T ∈ TH and h = 2−mH.

Lemma 6.3. Let A and Ã, respectively, be the true and surrogate stiffness matrices corre-
sponding to the bilinear form (3.2). Namely, let each component of A be given by (4.1) and each
component of Ã be defined by (3.10) with G(x, u(y), v(y)) := ∇u(y)>K(x)∇v(y). Fix T ∈ TH
and 0 ≤ r ≤ q. If Kab|T ∈W r+1,∞(T ) for each index a, b, then

(6.3a)
∥∥A− Ã

∥∥
max,Tm

. hn−2
T Hr+1

T |K|W r+1,∞(T ) ,

where ‖C‖max,Tm = max
{
|Cij | : xi, xj ∈ Tm

}
, for any matrix C. Moreover, if each component

Kab ∈W r+1,∞(TH) =
∏
T∈TH W

r+1,∞(T ), then

(6.3b)
∥∥A− Ã

∥∥
max

. hn−2Hr+1|K|W r+1,∞(TH) .

Proof. We prove only (6.3a), (6.3b) then follows immediately. Recall (3.10) and fix T ∈ TH .
Let i and j be the indices of the maximal value |Aij − Ãij | =

∥∥A − Ã
∥∥

max,Tm
. Next, because

the theorem trivially holds in the degenerate case
∥∥A− Ã

∥∥
max,Tm

= 0, we proceed under the

assumption that Aij 6= Ãij . Notably, it follows from Corollary 3.2 that if each Kab|T ∈ Pq(T ),
then Ãij = Aij and, therefore, we find ourselves in the scenario where the diffusion tensor K|T
is not a polynomial (of degree at most q). Here, we may also freely assume that i 6= j because
of (5.1). Indeed, for each i, |Aii − Ãii| ≤

∑
j 6=i |Aij − Ãij | ≤ `(A− Ã) ·maxj 6=i |Aij − Ãij |.

To fix notation in the remainder of the proof, we take φ = φi, and express

Ãij =

[
Πδ
T

∫
Ωδ

∇φδ(y)>K(·+ y)∇φ(y) dy

]
(xi),

for some nonzero δ ∈ D(Tm). Let IT : C0(T )→ Pr(T ) be the local Lagrange interpolant and
define

[
In×nT K

]
ab

= ITKab, for each index a, b. Splitting the two matrix entries Aij and Ãij
into polynomial and non-polynomial parts and rewriting∫

Ω

∇φj(x)>
[
K − In×nT K

]
(x)∇φi(x) dx =

∫
Ωδ

∇φδ(y)>
[
K − In×nT K

]
(xi + y)∇φ(y) dy ,∫

Ω

∇φj(x)>
[
In×nT K

]
(x)∇φi(x) dx =

∫
Ωδ

∇φδ(y)>
[
In×nT K

]
(xi + y)∇φ(y) dy ,

we find that

Aij =

∫
Ω

∇φ>j In×nT K ∇φi dx+

∫
Ωδ

∇φδ(y)>
[
K − In×nT K

]
(xi + y)∇φ(y) dy,

Ãij =

∫
Ω

∇φ>j In×nT K ∇φi dx+

[
Πδ
T

∫
Ωδ

∇φδ(y)>
[
K − In×nT K

]
(·+ y)∇φ(y) dy

]
(xi).

Upon canceling the first two terms in the expressions above, we arrive at the inequality∣∣Aij − Ãij
∣∣ ≤ |βij(xi)|+ |(Πδ

Tβij)(xi)| ,
12



where βij(x) =
∫

Ωδ
∇φδ(y)>

[
K − In×nT K

]
(x + y)∇φ(y) dy. Recall that the projection Πδ

T :

C0(T δ)→ P(Tδ) is continuous in the L∞(Ω) norm. Therefore,

|(Πδ
Tβij)(xi)| ≤ ‖Πδ

Tβij‖L∞(Tδ) . ‖βij‖L∞(Tδ) . ‖K − I
n×n
T K‖L∞(T )‖∇φδ · ∇φ‖L1(Ωδ) .

A standard scaling argument shows that ‖∇φδ · ∇φ‖L1(Ωδ) . hn−2
T . This, together with the

well-known property ‖Kab − ITKab‖L∞(T ) . Hr+1
T |Kab|W r+1,∞(T ), yields the sufficient result

|Aij − Ãij | . hn−2
T Hr+1

T |K|W r+1,∞(T ) .

Remark 6.2. The proof of Lemma 6.3 can be read as a blueprint which extends to the
settings of the bilinear forms a2(·, ·), a3(·, ·), defined in (4.2) and (4.4). Indeed, when a2(·, ·) is
considered, the only significant modification to the proof above is that an interpolation operator
IT : C0(T )→ Pr(T ) must be introduced for each Lamé parameter µ and λ. The adaption to the
setting a(·, ·) = a3(·, ·), is obvious. Ultimately,

(6.4)
∥∥A− Ã

∥∥
max

. hn−2Hr+1 ·

{ ∣∣λ∣∣
W r+1,∞(TH)

+
∣∣µ∣∣

W r+1,∞(TH)
if a(·, ·) = a2(·, ·) ,∣∣|∇ũ|p−2

∣∣
W r+1,∞(TH)

if a(·, ·) = a3(·, ·) .

Moreover, the proof may be easily modified to permit surrogates Ã without the zero row sum
property. Likewise, scenarios involving fewer derivatives (which generally do not possess the
zero row sum property), e.g., a(·, ·) = m(·, ·), have similar bounds but invoke a different scaling
in h.

7. A priori error estimation for the variable coefficient Poisson equation. In this
section, we present a thorough analysis of a surrogate discretization of the variable coefficient
Poisson equation. Given a load f ∈ L2(Ω) and symmetric positive-definite tensor K : Ω→ Rn×n,
the corresponding weak form may be written as follows.

(7.1) Find u ∈ H1
0 (Ω) satisfying a(u, v) = F (v) for all v ∈ H1

0 (Ω) ,

where a(u, v) =
∫

Ω
∇u>K∇v dx and F (v) =

∫
Ω
fv dx. As done in Section 5, define Vh = {v ∈

H1
0 (Ω) : v|t ∈ P1(t) for each t ∈ Sm(TH)} and let the corresponding vertex function basis be
{φi}.

7.1. Coercivity. In the present setting, observe that each vh ∈ Vh can be expressed as
vh(x) =

∑
i vh(xi)φi(x). Therefore, due to the zero row/column sum property (5.1), we find

(7.2)

ã(vh, wh)− a(vh, wh) =
∑
i,j

(
Ãij − Aij

)
vh(xi)wh(xj)

=
1

2

∑
i 6=j

(
Aij − Ãij

)
(vh(xi)− vh(xj))(wh(xi)− wh(xj)) .

Due to the mutual sparsity of the matrices Ã and A, every nonzero term in the sum above
can be rewritten as

(
Aij − Ãij

)
(vh(xi)− vh(xi + δ))(wh(xi)− wh(xi + δ)), for some nonzero δ.

Because |δ| h h by construction, one easily arrives at the following upper bound:

a(vh, wh)− ã(vh, wh) . h2−n∥∥A− Ã
∥∥

max
‖∇vh‖0‖∇wh‖0 .(7.3)

We now arrive at the main result of this subsection.
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Theorem 7.1. Let 0 ≤ r ≤ q. Assume that a(·, ·) is coercive and K ∈
[
W r+1,∞(TH)

]n×n.
Then, for any fine enough macro-mesh TH , the surrogate bilinear form ã : Vh × Vh → R is also
coercive.

Proof. Let S = {v ∈ H1 : ‖v‖1 = 1} be the surface of the unit ball in H1. Recall that since
a(·, ·) is coercive, there exists a coercivity constant α > 0 such that a(v, v) ≥ α for all v ∈ S.
Notice that α ≤ a(vh, vh) ≤ ã(vh, vh) + |a(vh, vh)− ã(vh, vh)| for all vh ∈ Vh ∩ S and, therefore,

α− |a(vh, vh)− ã(vh, vh)| ≤ ã(vh, vh) for all vh ∈ Vh ∩ S .

Here, the second term on the left may be bounded from above using (7.3) and Lemma 6.3 as
follows,

|a(vh, vh)− ã(vh, vh)| . h2−n‖A− Ã‖max‖∇vh‖20 . Hr+1|K|W r+1,∞(Ω) .

Thus, for any small enough H, we see that 0 < α − |a(vh, vh) − ã(vh, vh)| ≤ ã(vh, vh), as
necessary.

7.2. Convergence of the surrogate solution in the H1 norm. The purpose of this
subsection is to derive a mesh-dependent upper bound on the error in the surrogate solution ũh
of the form ‖u− ũh‖1 ≤ C(K,Ω, u)h+ C̃(K,Ω, u)Hr+1. In doing so, we choose to emphasize
the primary difference from the classical ‖u− uh‖1 ≤ C(K,Ω, u)h error estimate by absorbing
the coercivity and continuity constants (which depend on both K and Ω) into the . symbol.
We begin with a particular version of the First Strang Lemma [37].

Lemma 7.2. Let S = {v ∈ H1 : ‖v‖1 = 1} be the surface of the unit ball in H1. Assume
that ã : Vh × Vh → R is coercive. The following error estimate holds for the surrogate solution
ũh of the variable coefficient model problem (7.1):

(7.4) ‖u− ũh‖1 . inf
wh∈Vh

[
‖u− wh‖1 + sup

vh∈Vh∩S
|ã(wh, vh)− a(wh, vh)|

]
.

Theorem 7.3. Let 0 ≤ r ≤ q and assume that K ∈
[
W r+1,∞(Ω)

]n×n is symmetric and
positive definite with λ1(K) bounded away from zero almost everywhere. Let u ∈ H1(Ω) and ũh ∈
Vh be the unique solutions to (2.1a) and (2.1c), respectively, where a(u, v) =

∫
Ω
∇u>K∇v dx

and F (v) =
∫

Ω
fv dx. Then, for any sufficiently fine macro-mesh TH , the following upper bound

holds:

‖u− ũh‖1 . h|u|2 +Hr+1|K|W r+1,∞(Ω)|u|1 .

Proof. With the assumptions above, a(·, ·) is coercive. Therefore, by Theorem 7.1, if the
macro-mesh TH is taken fine enough, then ã : Vh × Vh → R is coercive. We now bound the
right-hand side of (7.4). Invoking (7.3), we find

‖u− ũh‖1 . ‖u− wh‖1 + h2−n∥∥A− Ã
∥∥

max
‖∇wh‖0 ,

for every wh ∈ Vh. Setting wh = SZhu, the Scott–Zhang interpolant of u [36], we see that

‖u− ũh‖1 . ‖u− SZhu‖1 + h2−n∥∥A− Ã
∥∥

max
|SZhu|1 . h|u|2 + h2−n∥∥A− Ã

∥∥
max
|u|1 .

In order to finish the proof, recall that h2−n‖A− Ã‖max . Hr+1|K|W r+1,∞(Ω), by Lemma 6.3.
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7.3. Convergence of the surrogate solution in the L2 norm. In this subsection, we
prove an L2 error estimate of the form ‖u− ũh‖0 ≤ C(K,Ω, u)h2 + C̃(K,Ω, u)Hr+1. A second
result, which elicits accelerated H-convergence, is also proved under the additional assumption∑
xi,∈T δm

[
Φδ
T − Πδ

TΦδ
T

]
(xi) = 0, where T δm = Tm ∩ T δ. This is a property which naturally

arises for the specific class of least-squares projections introduced in Subsection 8.1. Again, we
emphasize the primary differences from the corresponding classical error estimate by absorbing
the standard constants into the . symbol.

Theorem 7.4. Under the conditions of Theorem 7.3, if Ω⊆Rn is a convex domain, then
the following additional upper bound on the error in the surrogate solution holds:

(7.5a) ‖u− ũh‖0 . h2|u|2 +Hr+1|K|W r+1,∞(Ω)|u|1 .

Moreover, if r > 0 and
∑
xi∈T δm

[
ΦδT −Πδ

TΦδT
]
(xi) = 0, for each T ∈ TH and δ ∈ D(T̊m), then

(7.5b) ‖u− ũh‖0 . h2|u|2 +Hr+2|K|W r+1,∞(Ω)‖∇u‖1 .

Proof. By the triangle inequality, ‖u − ũh‖0 ≤ ‖u − uh‖0 + ‖uh − ũh‖0, where uh ∈ Vh
is the discrete solution coming from (2.1b). It can be shown that if Ω is convex, then u ∈
H2(Ω)∩H1

0 (Ω); see, e.g., [27]. It then follows from standard arguments that ‖u−uh‖0 . h2|u|2;
see, e.g., [16, Theorem 5.7.6]. Therefore, we only need to analyze the term ‖uh − ũh‖0. Since,
‖uh− ũh‖0 ≤ ‖uh− ũh‖1, proceeding as in the proof of Theorem 7.3, we quickly arrive at (7.5a).

In order to prove (7.5b), first define wh ∈ Vh satisfying a(wh, vh) = (uh − ũh, vh)Ω, for
all vh ∈ Vh. Observe that the exact solution of the problem a(w, v) = (uh − ũh, v)Ω, for all
v ∈ H1

0 (Ω), belongs to the space H2(Ω) ∩H1
0 (Ω), ‖w‖2 . ‖uh − ũh‖0. Moreover,

‖uh − ũh‖20 = a(wh, uh − ũh) = ã(wh, ũh)− a(wh, ũh)

=
1

2

∑
i6=j

(Aij − Ãij)(ũh(xi)− ũh(xj))(wh(xi)− wh(xj)) ,

where the final line follows from (7.2). As remarked previously, each nonzero term in this
sum can be written as

(
Aij − Ãij

)
(ũh(xi) − ũh(xi + δ))(wh(xi) − wh(xi + δ)), for some T ∈

TH and nonzero δ ∈ D(Tm). We can make better use of this expression with the identity
vh(xi)− vh(xi + δ) = ∇vh(yi,δ), wherein each yi,δ is chosen from the edge connecting xi and
xi + δ, and with the relationship Aij − Ãij =

[
ΦδT −Πδ

TΦδT
]
(xi), since Aij − Ãij 6= 0 and i 6= j.

With these observations in hand, we have

2‖uh − ũh‖20 =
∑
T∈TH

∑
δ∈D(T̊m)

∑
xi∈T δm

[
ΦδT −Πδ

TΦδT
]
(xi) (∇ũh(yi,δ) · δ)(∇wh(yi,δ) · δ)

≤
∑
T∈TH

∑
δ∈D(T̊m)

∑
xi∈T δm

[
ΦδT −Πδ

TΦδT
]
(xi)

(
(∇ũh(yi,δ) · δ)(∇wh(yi,δ) · δ)− C

)
. h−n‖A− Ã‖max

∑
T∈TH

∑
δ∈D(T̊m)

‖(∇ũh · δ)(∇wh · δ)− C‖L1(T ) .

If we set the constant above to the following average value, C := 1
vol(T )

∫
T

(∇u · δ)(∇w · δ) dx,
then ‖(∇u · δ)(∇w · δ)− C‖L1(T ) . HT |(∇u · δ)(∇w · δ)|W 1,1(T ). Therefore,

‖(∇ũh · δ)(∇wh · δ)− C‖L1(T ) ≤ ‖(∇ũh · δ)(∇wh · δ)− (∇u · δ)(∇wh · δ)‖L1(T )

+ ‖(∇u · δ)(∇wh · δ)− (∇u · δ)(∇w · δ)‖L1(T ) + ‖(∇u · δ)(∇w · δ)− C‖L1(T )

. ‖∇(u− ũh) · δ‖0,T ‖∇wh · δ‖0,T + ‖∇(w − wh) · δ‖0,T ‖∇u · δ‖0,T
+HT ‖∇u · δ‖1,T ‖∇w · δ‖1,T .
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After summing over all T ∈ TH and δ ∈ D(Tm) and taking into account |δ| h h, we arrive at
the bound

‖uh − ũh‖20 . h2−n‖A− Ã‖max

(
‖u− ũh‖1 |wh|1 + ‖w − wh‖1 |u|1 +H‖∇u‖1‖∇w‖1

)
. h2−n‖A− Ã‖max

(
h |u|2 +Hr+1|K|W r+1,∞(Ω)|u|1 +H ‖∇u‖1

)
‖w‖2

. Hr+1|K|W r+1,∞(Ω)

(
H ‖∇u‖1 +Hr+1|K|W r+1,∞(Ω)|u|1

)
‖w‖2 .

The proof is completed by recalling that ‖w‖2 . ‖uh − ũh‖0.

Remark 7.1. As stated previously, the error estimates in Theorems 7.3 and 7.4 not do
track the constants appearing in the corresponding classical estimates. When r > 0, none of the
constants in either classical estimate depend on the higher order norms |K|W r+1,∞(Ω).

Remark 7.2. The main ingredients in the error analysis presented in this section are
Lemma 6.3, Strang’s First Lemma, and (7.2), which simply follows from the zero row sum
property and symmetry. Simple generalizations of Lemma 6.3, for the bilinear forms a2(·, ·)
and a3(·, ·) have been stated in (6.4). Meanwhile, (7.2) simply follows from the zero row sum
property of Ã and symmetry. Therefore, we see no reason to doubt that our analysis here can be
generalized to the other problems of interest in this paper. Hence, we proceed with numerical
verification and demonstration.

8. Implementation. The performance of a numerical method largely depends on its
implementation. Therefore, in this section, we highlight the important features of ours. We use
the HyTeG finite-element software framework [29] as the core framework for all the numerical
experiments in Section 9. It offers efficient distributed data structures for simplicial meshes in 2D
and 3D, which serve as a basis for the implementation of massively parallel fast iterative solvers.
Its main concept is based on the idea that a coarse input mesh is split into its geometrical
primitives, i.e., vertices, edges, and faces, and each of these primitives is uniformly refined.
Because the primitives of the same dimension are decoupled from the others, all primitives
of the same dimension may be processed in parallel. This partitioning and the hierarchy of
locally structures meshes allows for efficient parallel implementations of geometric multigrid
methods. More importantly, these data structures fit perfectly to the concept of macro-elements
introduced in Subsection 3.3. The problems in this paper are mainly solved by employing a
geometric multigrid solver using V-cycles with a hybrid Gauss–Seidel smoother. On the coarsest
grid, either a preconditioned conjugate gradient method or the direct solver MUMPS [1, 2], as
provided by the PETSc interface [4, 5], is used. For improved parallel scalability of the coarse
grid solver, agglomeration techniques as provided by PCTELESCOPE [35] are used in runs with
many processes.

8.1. Polynomial least squares regression. An important factor in the performance of
the surrogate approach is the approximation of the stencil functions Φδ

T by polynomials Φ̃δT .
This step in the solver process must be very fast and is usually done in a pre-process step before
the actual solve. After various preparatory experiments, we have seen satisfactory performance
and accuracy from simply computing Φ̃δT = Πδ

TΦδT via solving a simple least-squares problem,
which we now describe.

Let T ∈ TH be a macro-element and recall that Tm is the associated lattice on level m.
Suppose that ΦδT is the stencil function in direction δ ∈ D(Tm) which we want to approximate.
For the least-squares regression, we fix a level mLS with m ≥ mLS ≥ 2 and define the set
of least-squares points T δLS := TmLS ∩ T δ. Furthermore, let {pk}Mk=1 be a basis of Pq(T ), the
space of polynomials with maximal degree q. Assume that mLS is chosen large enough such
that

∣∣T δLS

∣∣ ≥ M and introduce the following norm on Pq(T ): ‖p‖2
T δLS

:=
∑
xi∈T δLS

p(xi)
2. The
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least-squares regression problem, which in turn defines Πδ
T , is formalized as follows:

Find c ∈ RM satisfying c = arg min
d∈RM

∥∥∥∥∥ΦδT −
M∑
k=1

dkpk

∥∥∥∥∥
2

T δLS

.(8.1)

The approximated stencil function is then defined as Φ̃δT :=
∑M
k=1 ckpk. This problem is

equivalent to solving the possibly overdetermined linear system of equations Bc = f in a least-
squares sense, where Bij = pj(xi) and fi = Φδ

T (xi) for 1 ≤ i ≤ |T δLS| and 1 ≤ j ≤ N . The
choice of the polynomial basis is arbitrary. However, for an easier implementation, we employ
the monomial basis, even knowing that the resulting linear system is ill conditioned. Since it
is crucial to get numerically precise results, a stable solver for this problem has to be chosen.
For this purpose, we apply the colPivHouseholderQr method from the Eigen 3.3.5 library [28],
which offers a good balance between speed and accuracy. Obviously, each of these linear systems
is independent of others, therefore they may be solved in parallel.

Remark 8.1. Taking into account Φ̃δT =
∑M
k=1 ckpk, the first order optimality condition

for (8.1) can be stated as
∑
xi∈T δLS

[
Φδ
T − Πδ

TΦδ
T

]
(xi) = 0. If m = mLS, then the secondary

assumption in Theorem 7.4 is satisfied and we see higher order convergence in H, as stated
in (7.5b). Usually, when mLS is close but not equal to m, we see preasymptotic H-convergence
in between the two estimates given in (7.5); see Figure 6.

Remark 8.2. In the case where the bilinear form a(·, ·) is symmetric, we need only ap-
proximate a single stencil function Φδ

T for both directions δ and −δ. Indeed, as observed in
Remark 3.1, the corresponding stencil functions are identical, up to a shift by δ. Furthermore,
the symmetry requirement (3.11), from Remark 3.4, is satisfied with the projection operator
defined above. Indeed, one may verify that for every δ, Tδ = T−δ − δ. Therefore,∥∥∥ΦδT − Φ̃δT

∥∥∥2

T δLS

=
∥∥∥Φ−δT − Φ̃−δT

∥∥∥2

T−δLS

and Φ̃δT (x) = Φ̃−δT (x+ δ) .

Thus, on simplicial meshes in 2D, only four instead of seven polynomials per macro-element
have to be determined and stored in memory. In some cases, where the zero row sum property
holds, the number of required polynomials may be even reduced to three.

8.2. Fast polynomial evaluation. An even more important factor with respect to the
performance of our implementation is the fast evaluation of the surrogate stencil functions
Φ̃δT . Contrary to the computation of each Φ̃δT , which will happen only once per solve, these
evaluations will be made during every matrix-vector multiplication. Therefore, the costs of
evaluating the stiffness matrix entries associated to a degree of freedom, may not exceed the
costs of evaluating the bilinear forms with the respective ansatz functions. In this case not only
the reduction of floating point operations per degree of freedom is of importance, but also the
required memory traffic has to be taken into account.

When performing a matrix-vector multiplication in HyTeG, the degrees of freedom in a
macro-element are processed in a row-wise fashion as illustrated in the left of Figure 4. In
each row, the stencil function may be interpreted as a 1D function. We assume without loss
of generality, that the 1D stencil functions are aligned with the x-axis. This property is also
inherited by the approximated stencil function. To further optimize the evaluation of the 1D
polynomial, we exploit that the stencil functions have to be evaluated on a line subdivided
into uniformly sized intervals of length h. Let (xi, yj) be a vertex node in the lattice and let
pyj (·) := Φ̃δ(·, yj) be the approximated 1D stencil function associated to row yj .

Assuming that we already have evaluated the stencil function pyj at a point xi, we want
to evaluate it at the next point xi + h as efficiently as possible. Since the grid points are
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Figure 4. Illustration of a loop through the degrees of freedom in a macro-element. In each row of the
loop, the 2D stencil function may be interpreted as a 1D function (left). Seven stencil functions have to be
evaluated in order to obtain the whole stencil for a degree of freedom (right).

equidistantly distributed, we can use a special case of the divided differences, called forward
differences [18, pg. 126].

First, we need q + 1 helper variables
{

∆
(k)
x0

}
for k ∈ {0, 1, . . . , q} which are defined in a

preprocessing step as follows:

∆(0)
x0

:= pyj (x0) ,

∆(k)
x0

:= ∆
(k−1)
x0+h −∆(k−1)

x0
, k ∈ {1, . . . , q} .

The value at position pyj (x0) is then given by ∆
(0)
x0 . In order to obtain the value at

pyj (x0 + h), one has to update all the helper variables in the following way:

∆(k)
x0

:= ∆(k)
x0

+ ∆(k+1)
x0

, k ∈ {0, 1, . . . , q} .

After that, the value of pyj (x0+h) is given by ∆
(0)
x0 . Doing this recursively yields the approximated

stencil function values at all mesh points on a single row using only q + 1 helper variables and
q + 1 floating point additions. When iterating through a row, in general seven polynomial
evaluations, one for each direction, are required, cf. right of Figure 4. In the symmetric case
this may be reduced to six polynomial evaluations, since the western stencil weight may be
obtained from the previous eastern evaluation. Keep also in mind that in the symmetric case
the polynomials of approximated stencil functions in opposite directions are the same but only
evaluated at different positions, cf. Remark 8.2. Therefore, 6 · (q + 1) helper variables are
required for a single row. For q = 8, these results in 54 · 8 bytes of memory which fits easily into
a modern L1 CPU cache. When moving from one lattice point to another, 6 · (q+ 1) vectorizable
floating point additions have to be performed, to obtain the updated polynomial evaluations.
Furthermore, in our implementation, the polynomial degree is realized as a C++ template
parameter, therefore, all loops concerning the evaluation of a polynomial of a certain degree may
be optimized at compile time. Since our focus lies in the theoretical analysis of the surrogate
approach, thorough performance studies employing performance models should be considered
beyond the scope of this paper. Similar performance studies have been carefully completed in
[9, 10]. Thus, in the next section, we only report on relative run-times of the surrogate approach
compared to the standard method, also implemented on HyTeG, using on-the-fly quadrature of
the integrals stemming from the bilinear forms.
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Figure 5. Coarse macro-meshes of the unit-square with mesh sizes H = H0 (left), H = H0/2 (middle),
and H = H0/4 (right). Meshes with a smaller H follow the same uniform refinement pattern.

9. Numerical experiments. In this section, we numerically verify Theorems 7.3 and 7.4,
both related to the variable coefficient Poisson equation. Additionally, we present proof-of-
concept results for a linearized elasticity application and a simple p-Laplacian diffusion problem.
While not covered by the theory, we include these latter examples to demonstrate the breadth
of generality of the methodology.

All run-time measurements in this sections were obtained on a machine equipped with two
Intel R© Xeon R© Gold 6136 processors with a nominal base frequency of 3.0 GHz. Each processor
has 12 physical cores which results in a total of 24 physical cores. The total available memory of
251 GB is split into two NUMA domains, one for each socket. We use the GCC 7.3.0 compiler
and specify the following compiler arguments: -O3 -march=native. All the examples in this
section were executed in parallel using all available 24 physical cores.

When comparing run times from the standard and the surrogate approaches, many factors
are responsible for the relative speed-up of the surrogate approach. Increasing the polynomial
order q of the surrogate stencil functions not only increases the run time of a multigrid iteration
but also the time spent in the setup phase (i.e., computing each Φδ

T ). The cost of the setup
phase, however, is mostly dominated by the sampling level mLS. Therefore, when the ratio of
time spent in the iterative solver to the time spent in the setup phase(s) for solving a particular
problem is large, the setup cost is almost negligible and we see the best performance. Since
the problems in the following subsections differ in complexity and have different ratios of solver
to setup time, the observed relative speed-ups are not directly comparable. Nonetheless, the
reported speed-ups for all tested examples range between a factor of 14 and 20. Such significant
speed-ups are in particular important in case of dynamic or stochastic applications. Most
stochastic applications demand an enormous number of deterministic solves resulting quite
often in extreme long run times. Having such a surrogate approach at hand can help to make
stochastic approaches such as, e.g., multilevel Monte Carlo and its variants, more accessible for
complex applications.

9.1. Quantitative benchmark problem. In this subsection, we examine the surrogate
method for the variable coefficient Poisson equation which has been described and analyzed
above. The strong form of the problem is

(9.1)
−div (K∇u) = f in Ω,

u = g on ∂Ω.

We consider both the bilinear form coming from the scalar coefficient scenario (i.e., K = k · Id),
introduced in (3.2), and the tensorial coefficient scenario, introduced in (3.7). In the scalar
coefficient experiments, we use the unit-square domain Ω = (0, 1)2. In the tensorial coefficient
experiments, the domain Ω has a curvilinear boundary.
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Table 1
Relative H1 errors and experimental orders of convergence for fixed h and varying q and H in the case of

problem (9.1) with the scalar coefficient (9.2). Here, the relative H1 error with the classical FEM is 1.23 · 10−8.

q = 1 q = 2 q = 3 q = 4
H
H0

rel. H1 err. eoc rel. H1 err. eoc rel. H1 err. eoc rel. H1 err. eoc

2−1 4.58 · 10−2 – 2.24 · 10−2 – 4.52 · 10−3 – 1.68 · 10−3 –
2−2 1.61 · 10−2 1.50 2.75 · 10−3 3.02 4.46 · 10−4 3.34 4.70 · 10−5 5.16
2−3 4.43 · 10−3 1.86 3.74 · 10−4 2.88 2.88 · 10−5 3.95 1.59 · 10−6 4.89
2−4 1.15 · 10−3 1.95 4.86 · 10−5 2.94 1.84 · 10−6 3.97 5.22 · 10−8 4.93
2−5 2.90 · 10−4 1.98 6.17 · 10−6 2.98 1.17 · 10−7 3.98 1.23 · 10−8 2.09

Table 2
Relative L2 errors and experimental orders of convergence for fixed h and varying q and H in the case of

problem (9.1) with the scalar coefficient (9.2). Here, the relative L2 error with the classical FEM is 4.10 · 10−9.

q = 1 q = 2 q = 3 q = 4
H
H0

rel. L2 err. eoc rel. L2 err. eoc rel. L2 err. eoc rel. L2 err. eoc

2−1 5.75 · 10−3 – 1.92 · 10−3 – 2.90 · 10−4 – 9.46 · 10−5 –
2−2 1.08 · 10−3 2.42 1.26 · 10−4 3.93 1.62 · 10−5 4.16 1.47 · 10−6 6.01
2−3 1.60 · 10−4 2.75 8.84 · 10−6 3.83 5.63 · 10−7 4.85 2.47 · 10−8 5.90
2−4 2.16 · 10−5 2.89 5.96 · 10−7 3.89 1.88 · 10−8 4.91 4.19 · 10−9 2.56
2−5 2.80 · 10−6 2.95 3.87 · 10−8 3.94 4.10 · 10−9 2.19 4.05 · 10−9 0.05

9.1.1. Scalar coefficient on unit square. In the first benchmark problem (K = k · Id),
we take Ω = (0, 1)2 and employ the scalar coefficient function

k(x, y) = exp (xy) + sin (3πxy) + cos
(
πx2y

)
+ 1(9.2)

in problem (9.1). The manufactured solution u is chosen as u(x, y) = sin(x) sinh(y). The
restriction of u to the boundary is chosen as Dirichlet datum g. The right-hand-side f is directly
computed by inserting u into the equation. In this benchmark, we fix the finest mesh size h and
report on the errors depending on H and q to show the proven O

(
Hq+1

)
estimate in the H1

norm and O
(
Hq+2

)
in the L2 norm. For this purpose, h is chosen to be very small in order for

the error to be mostly dominated by the surrogate part.
The reference macro-mesh size is given by H0, as illustrated in the left of Figure 5. All finer

macro-meshes, with associated mesh sizes H < H0, stem from uniformly refining this reference
mesh; see middle and right of Figure 5. The fine mesh, with associated mesh size h� H, is the
13 times uniformly refined reference macro-mesh, i.e., h = 2−13H0. This fine mesh, has about
6.71 · 107 degrees of freedom. The approximation of the stencil functions through least-squares
regression, is done on the mesh associated to mesh size HLS = 2−8H. Note that this keeps the
number of sampling points in each macro-element constant to 32 639. Each linear system is
solved by applying geometric multigrid V(2,2) iterations until a relative residual of 1 · 10−13 is
obtained.

In Tables 1 and 2, the relative H1 and L2 errors for decreasing mesh sizes H are shown.
Both tables show the expected convergence rates. In the case of the L2 norm for q = 3 and
q = 4, the convergence rate deteriorates for small macro-mesh sizes H because the discretization
error is dominating the total error.

In order to show the dependence of the least-squares approach on the sampling level,
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Figure 6. Relative L2 errors for fixed h = 2−13H0, varying HLS, q = 1 (left), and q = 3 (right) in the
case of the variable coefficient Poisson equation on the unit-square with a scalar coefficient. For q = 3 the
relative L2 error obtained from the standard approach is included, since the discretization error is dominating
the surrogate error on the meshes with H ≤ 2−5H0.

we provide Figure 6. Here, we show two plots of the relative L2 errors for fixed q ∈ {1, 3},
h = 2−13H0, and varying HLS. From this figure, one can see that it is crucial to tune the
sampling level fine enough in order to achieve optimal O

(
Hq+2

)
convergence in the L2-norm.

Remark 9.1. The choice of sampling level mLS or, equivalently, HLS is very important,
since the cost of the polynomial regression grows exponentially with mLS. However, choosing a
too large HLS may violate the discrete L2 projection property required in Theorem 7.4 in order
to obtain an increased order of convergence. Therefore, it is crucial to choose a suitable HLS for
an optimal ratio between the accuracy of the solution and the run time of the stencil function
approximation. In each of our experiments, setting HLS two to four times larger than the fine
mesh size h yielded satisfactory results with respect to accuracy and run time.

Furthermore, in Figure 7 we want to illustrate the dependence of the polynomial degree
q and the macro-mesh size H within the surrogate approach. For this purpose, we plot the
central true and surrogate stencil functions over the subdomain {(x, y)> ∈ Ω : x+ y ≥ 1} for
different pairings of q and H. It can be observed, that there is no visible difference of both
functions when either the pairing H = H0 and q = 8, or the pairing H = H0/8 and q = 2 is
chosen. Obviously, the quality of Ã can be improved by either increasing q or decreasing H. For
smooth coefficients K, increasing q is the more efficient option, like in the hp-FEM context.

9.1.2. Tensor coefficient on domain with curved boundaries. In the second bench-
mark problem, we study problem (9.1) with the symmetric and positive definite tensor coefficient

K(x, y) =

[
3x2 + 2y2 + 1 −x2 − y2

−x2 − y2 4x2 + 5y2 + 1

]
.(9.3)

Moreover, we consider the domain Ω with the curved boundary illustrated in Figure 8. In
the following scenarios, a = 0.1 is used as the amplitude of the boundary perturbation. The
mapping from the reference unit-square to the perturbed domain is defined by ϕ in (9.4). To
map the coefficient onto the perturbed domain, we replace the coefficient K in (9.1) by a new
coefficient, K0, induced by the domain transformation, viz.,

K0 =
Dϕ−1(K ◦ ϕ)Dϕ−>

|det (Dϕ−1)|
, where ϕ(x, y) =

[
x

(2ay − a) sin2 (2πx) + y

]
.(9.4)

The manufactured solution u is chosen to be u(x, y) = sin(ϕ1(x, y)) sinh(ϕ2(x, y)). The restric-
tion of u to the boundary is chosen as Dirichlet datum g and the right-hand-side f is directly

21



Figure 7. Plots of true stencil functions in orange and surrogate stencil functions in blue for δ = 0 over
the subdomain {(x, y)> ∈ Ω : x+ y ≥ 1} in the case of the variable coefficient Poisson equation. Top row: Fixed
H = H0 and varying q = 2, 4, 6, and 8 from left to right. Bottom row: Fixed q = 2 and varying H = H0, H0/2,
H0/4, and H0/8 from left to right.

Figure 8. Illustration of the mapping ϕ from the unit-square to the perturbed unit-square. The top
boundary is parametrized by y = a · sin (2πx)2 + 1 and the bottom boundary by y = −a · sin (2πx)2.

computed by inserting u into the strong form of the equation (9.1).
Here, we perform the same verification as in the previous subsection. That is, fixing h and

varying q and H with the same meshes and solver settings. In Tables 3 and 4, the relative H1

and L2 errors for decreasing mesh sizes H are shown. Both tables show the expected convergence
rates. In the case of q = 4, the convergence rate deteriorates for small macro-mesh sizes H,
because the discretization error is dominating.

Additionally, we present results for fixed H = 2−3H0 and varying h and q. Table 5 shows the
relative L2 errors and convergence rates of the standard approach and the surrogate approach
with q ∈ {3, 5, 7}. Only for q = 7, the L2 error coincides with the errors from the standard
approach for all h. The relative time-to-solution (rtts) shown for the surrogate approaches is
defined as the time-to-solution (tts) including the setup-phase of the surrogate approach divided
by the time-to-solution of the standard approach. In the case with the smallest h, the surrogate
approach took at most only 7% of the time of the standard approach. That is, a speed-up by
more than a factor of 14.

9.2. Linearized elasticity example. In this subsection, we compare a standard method
with a surrogate method applied to the linearized elasticity problem presented in Subsection 4.2.
In our surrogate method, we employ the zero row sum property described in Section 5. We
choose an annular domain composed of two distinct and concentric materials under uniform
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Table 3
Relative H1 errors and experimental orders of convergence for fixed h and varying q and H in the case of

problem (9.1) with the tensorial coefficient (9.3) and curved boundary. The relative H1 error with the classical
FEM is 1.59 · 10−8.

q = 1 q = 2 q = 3 q = 4
H
H0

rel. H1 err. eoc rel. H1 err. eoc rel. H1 err. eoc rel. H1 err. eoc

2−1 1.04 · 10−1 – 7.09 · 10−2 – 2.96 · 10−2 – 9.31 · 10−3 –
2−2 5.41 · 10−2 0.95 1.12 · 10−2 2.67 4.31 · 10−3 2.78 1.07 · 10−3 3.12
2−3 1.37 · 10−2 1.98 2.29 · 10−3 2.29 3.14 · 10−4 3.78 4.66 · 10−5 4.52
2−4 3.72 · 10−3 1.89 2.94 · 10−4 2.96 2.25 · 10−5 3.80 1.64 · 10−6 4.83
2−5 9.56 · 10−4 1.96 3.77 · 10−5 2.96 1.46 · 10−6 3.94 5.55 · 10−8 4.89

Table 4
Relative L2 errors and experimental orders of convergence for fixed h and varying q and H in the case of

problem (9.1) with the tensorial coefficient (9.3) and curved boundary. The relative L2 error with the classical
FEM is 4.56 · 10−9.

q = 1 q = 2 q = 3 q = 4
H
H0

rel. L2 err. eoc rel. L2 err. eoc rel. L2 err. eoc rel. L2 err. eoc

2−1 1.44 · 10−2 – 6.43 · 10−3 – 3.08 · 10−3 – 5.41 · 10−4 –
2−2 3.74 · 10−3 1.95 6.60 · 10−4 3.28 1.39 · 10−4 4.47 3.54 · 10−5 3.94
2−3 5.37 · 10−4 2.80 5.75 · 10−5 3.52 6.46 · 10−6 4.43 6.13 · 10−7 5.85
2−4 7.35 · 10−5 2.87 3.77 · 10−6 3.93 2.09 · 10−7 4.95 1.28 · 10−8 5.58
2−5 9.52 · 10−6 2.95 2.40 · 10−7 3.98 8.05 · 10−9 4.70 4.49 · 10−9 1.51

pressure loading. The problem is inspired by a similar 3D experiment documented in [25]. Let
Br ⊆R2 be the two-dimensional open ball of radius r with the midpoint at the origin. The
computational domain is then defined as Ω = BRout \ BRin . We split this domain into two
disjoint sets ΩI = BRmid

\ BRin and ΩO = BRout \ BRmid
corresponding to each material. In

our experiments, we fix Rin = 1 cm, Rmid = 1.75 cm, and Rout = 2 cm. Refer to the leftmost
diagram in Figure 9 for an illustration of the setup. Here, the macro-elements adjacent to
the boundary and the material interface are mapped to the physical geometry by using the
transformation described in [39].

Let r(x) = |x|. The strong form of the problem is

(9.5)

−Div (σ) = ~f in Ω,

uθ = 0 on {(−Rout, 0)>, (0,−Rout)
>, (Rout, 0)>},

σ · n̂ = pinêr on {x ∈ ∂Ω : r = Rin},
σ · n̂ = −poutêr on {x ∈ ∂Ω : r = Rout}.

Here, the stress tensor σ is given by Hooke’s law for isotropic materials as defined in Subsection 4.2.
The unit vector in radial direction is denoted êr and the outward pointing unit normal vector is
denoted n̂. We neglect body forces and therefore set ~f = ~0. The displacement is described in
polar coordinates where ur is the radial displacement and uθ is the tangential displacement. In
order to make the system uniquely solvable, we enforce the tangential displacement uθ to be
zero at three points; see Figure 9. The materials are chosen to be cork in the inner domain ΩI
with an A36 steel layer in the outer domain ΩO. Poisson’s ratio and Young’s modulus for this
scenario are EI = 0.02 GPa, EO = 200.0 GPa, νI = 0, and νO = 0.26. The Lamé parameters are
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Table 5
Relative L2 errors, experimental orders of convergence, and relative time-to-solutions for fixed H and

varying q and h in the case of problem (9.1) with the tensorial coefficient (9.3) and curved boundary.

standard q = 3 q = 5 q = 7
h
H0

HLS

h DoFs rel. L2 err. eoc rel. L2 err. eoc rtts rel. L2 err. eoc rtts rel. L2 err. eoc rtts

2−6 20 4.2 · 103 7.14 · 10−5 - 7.15 · 10−5 - 0.93 7.14 · 10−5 - 0.94 7.14 · 10−5 - 1.03
2−7 20 1.7 · 104 1.81 · 10−5 1.98 1.87 · 10−5 1.94 0.87 1.81 · 10−5 1.98 0.87 1.81 · 10−5 1.98 0.96
2−8 21 6.6 · 104 4.55 · 10−6 1.99 6.76 · 10−6 1.46 0.64 4.55 · 10−6 1.99 0.67 4.55 · 10−6 1.99 0.75
2−9 21 2.6 · 105 1.14 · 10−6 2.00 5.70 · 10−6 0.25 0.35 1.14 · 10−6 1.99 0.37 1.14 · 10−6 2.00 0.41

2−10 21 1.1 · 106 2.85 · 10−7 2.00 6.11 · 10−6 -0.10 0.15 3.00 · 10−7 1.93 0.16 2.85 · 10−7 2.00 0.19
2−11 21 4.2 · 106 7.14 · 10−8 2.00 6.35 · 10−6 -0.06 0.07 1.16 · 10−7 1.37 0.08 7.14 · 10−8 2.00 0.10
2−12 21 1.7 · 107 1.79 · 10−8 2.00 6.47 · 10−6 -0.03 0.05 9.49 · 10−8 0.29 0.06 1.79 · 10−8 2.00 0.07
2−13 21 6.7 · 107 4.50 · 10−9 1.99 6.52 · 10−6 -0.01 0.04 9.43 · 10−8 0.01 0.05 4.54 · 10−9 1.98 0.07

Figure 9. Linear elasticity problem setup (left) and initial macro-mesh TH (right).

obtained by the expressions µ = E
2(1+ν) and λ = Eν

(1−2ν)·(1+ν) . Note that while these expressions
induce piecewise-constant Lamé parameters, λ = λ(r) and µ = µ(r), once the smooth domain
is mapped to the computational domain depicted on the right of Figure 9, these parameters
will not be piecewise-constant anymore due to the transformation. The pressure on the outer
boundary is set to pout = 0 MPa and on the inner boundary pin = 1 MPa is prescribed.

In this particular scenario, there is an analytic solution available for the radial displacement
ur which has the form

(9.6) ur(r) =

{
A · r +B · r−1 if r ∈ [Rin, Rmid] ,

C · r +D · r−1 if r ∈ (Rmid, Rout] .

The tangential displacement uθ is zero everywhere due to the symmetry of the problem. In (9.6),
the coefficients A, B, C, and D are uniquely determined by the following system of linear
equations:

EIR
2
in EI (2νI − 1) 0 0

0 0 EOR
2
out EO (2νO − 1)

R2
mid 1 −R2

mid −1
−EIR2

middO −dOEI (2νI − 1) EOR
2
middI dIEO (2νO − 1)



A
B
C
D

 =


pinR

2
indI

poutR
2
outdO

0
0

 ,
where dI := 2ν2

I + νI − 1 and dO := 2ν2
O + νO − 1. This system is derived after deducing
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Figure 10. Plots of radial displacement ur (left) and the tangential stress σθθ (right) computed on the
fine mesh S6(TH), corresponding to h = 2−6H, with q = 4.

1 1.2 1.4 1.6 1.8 2

0

1

2

·10−2

r

u
r

[c
m

]

Radial displacement ur

Analytical
Surrogate (q = 4)

1 1.2 1.4 1.6 1.8 2

0

1

2

3

4
·10−3

r

σ
θ
θ

[N
cm
−

2
]

Tangential stress σθθ

Analytical
Surrogate (q = 4)

Figure 11. Plots over line of the radial displacement ur (left) and the tangential stress σθθ (right)
computed on the fine mesh S6(TH), corresponding to h = 2−6H, with q = 4.

the continuity of the displacement and surface traction at the material interface, then by
incorporating the prescribed external forces at the boundaries.

In order to verify the accuracy of the surrogate method, we select the polynomial degree
q = 7 and the macro-mesh TH , illustrated on the right of Figure 9. Note that the discontinuity in
the material parameters lies along the macro-element interfaces and so λ, µ ∈

∏
T∈TH C

∞(T ) (
W r+1,∞(TH), for any r > 0.

Each linear system is solved by applying geometric multigrid iterations with V(3,3) cycles
until the relative residual is reduced by the factor 1 · 10−7. On the coarsest level used in
the multigrid hierarchy, we employ MUMPS as a direct solver. In Table 6, we report on the
results for varying h and present the relative L2 errors for the standard and surrogate approach,
respectively. On the finest mesh involving about 1.8 · 108 degrees of freedom, the surrogate
approach required only 5% of the time required by the standard approach while having the
same accuracy. That is a speed up by a factor of 20. Figure 10 shows the radial displacement ur
and the tangential stress σθθ computed with the surrogate approach on the fine mesh S6(TH),
corresponding to h = 2−6H, with q = 4. This is illustrated further by the plots in Figure 11
which allow a visual comparison between ur and σθθ in the surrogate and analytical solutions.
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Table 6
Relative L2 errors, experimental orders of convergence, and relative time-to-solutions for fixed H, q = 7,

and varying h in the case of the linearized elasticity problem (9.5).

standard q = 7
h
H

HLS

h DoFs rel. L2 err. eoc rel. L2 err. eoc rtts

2−3 20 1.1 · 104 3.93 · 10−4 - 3.93 · 10−4 - 0.57
2−4 20 4.5 · 104 9.66 · 10−5 2.02 9.66 · 10−5 2.02 0.38
2−5 21 1.8 · 105 2.39 · 10−5 2.02 2.39 · 10−5 2.02 0.31
2−6 22 7.1 · 105 5.92 · 10−6 2.01 5.92 · 10−6 2.01 0.19
2−7 22 2.8 · 106 1.47 · 10−6 2.01 1.47 · 10−6 2.01 0.12
2−8 22 1.1 · 107 3.68 · 10−7 2.00 3.68 · 10−7 2.00 0.08
2−9 22 4.5 · 107 9.18 · 10−8 2.00 9.19 · 10−8 2.00 0.06

2−10 22 1.8 · 108 2.30 · 10−8 2.00 2.31 · 10−8 1.99 0.05

9.3. p-Laplacian diffusion example. In this subsection, we consider the time-dependent
example introduced in Subsection 4.3. Here, we solve the non-linear p-Laplacian diffusion
problem (9.7), given in strong form as

(9.7)

∂u

∂t
− div

(
|∇u|p−2 · u

)
= f in Ω× (0, T ] ,

u = 0 on ∂Ω× (0, T ] ,

u = u0 in Ω× {0} .

The computational domain is set to the unit disk, i.e., Ω := B1 and the right-hand-side
is set to a specific constant, f(x) = 2q̂p/q̂, where q̂ = p

p−1 . The initial solution is set to
u0(x) = 0.1 ·

(
1− |x|2

)
. For this particular problem, the stationary limit u∞ has an analytic

solution exists with unit magnitude, namely u∞(x) = 1− |x|q̂ [6, Example 3.1].
Our discretization follows a standard approach where a mass matrix Mij =

∫
Ω
φiφj dx and

a stiffness matrix Aij(ũ) =
∫

Ω
|∇ũh|p−2∇φj · ∇φi dx are introduced. At this point, ũ is the

coefficient vector, in the {φi} basis, of an arbitrary discrete function ũh. The time derivative is
discretized by a backward Euler scheme, and the non-linearity in each time step is resolved by
Picard fixed-point iterations. Let ulk be the coefficient vector of the discrete solution at the k-th
time step and l-th fixed point iteration. Employing the bilinear form (4.3) and fixing a time
step size dt > 0, the discrete problem in each time step k > 0 and fixed point iteration l > 0
reads as follows: (

M + dtA
(
ul−1
k

))
ulk = Muk−1 + dtMf ,

where uk−1 is the final coefficient vector from the previous time step. In each time step, this
system is solved multiple times (once for each fixed-point iteration) by the application of
five V(2,2) multigrid cycles. The fixed-point iterations continue until the relative increment
‖ulk−u

l−1
k ‖2

‖ulk‖2
is smaller than the fixed tolerance 1 · 10−3. Then k is incremented and a new

uk−1 = ulk−1 is defined.
In our surrogate method, the stencil functions of the stiffness matrix A

(
uk−1

)
are approx-

imated by solving the least-squares problems after every fixed-point iteration, all the while
enforcing the zero row sum property (cf. Subsection 9.1). Meanwhile, the stencil function of
the mass matrix M is only approximated once in a pre-processing step because it does not
depend on any free variables in the computation. The time step surrogate polynomials of both
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Figure 12. Plots of standard, surrogate and stationary analytical solution over the line [0, 1]× {0} for
different times t = 0, t = 0.1 · T , and t = Tend.

Figure 13. Surface plot of non-stationary p-Laplacian surrogate solution for t = Tend with p = 3 and q = 6
(left). Absolute difference between the discrete standard and surrogate solution at the time t = Tend (right).

operators are then simply summed together to obtain the time step matrix M+dtA
(
uk−1

)
. This

particular splitting of the surrogate matrices, which reproduces the zero row sum property in
the stiffness matrix, allows for faster re-approximation of the time step matrix stencil function
and appears to improve the stability of the method. In this example, we did not enforce the
symmetry condition featured in Subsection 3.5. Instead, whenever a vertex xi ∈ Xm was on
the boundary of a macro-element ∂Tm, we set the surrogate stiffness matrix to the exact value
stiffness matrix Ãij = Aij . This minor asymmetry, is more amenable to computation because
there is less data transfer and it did not affect the behavior of our multigrid solver. In fact, this
choice improved our results with this problem, which we believe is due to better accuracy in the
surrogate near the singularity in the coefficient; i.e., at the origin x = (0, 0). The success of this
approach suggests that the definition given in (3.10) may be relaxed in other applications as
well.1 In the proximity of this singularity and for p > 2, the coefficient depending on the solution
of the previous fixed-point iteration is getting very close to zero which serves as a challenge for
the approximated off-diagonal stencil functions. Depending on the polynomial degree q, they
might erroneously take on positive values due to overshoots which possibly results in a loss of
positive definiteness of the surrogate matrix. However, this drawback could not be observed in
the scenario considered in the following example.

The unit-disk is discretized by the macro-mesh TH featured on the right of Figure 2. Note
that the vertices of the central macro-elements meet at the origin x = (0, 0); i.e., exactly
where the singularity occurs in the stationary limit u∞. The simulations are conducted on

1See [10] for further evidence.
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the mesh S9(TH), which involves about 4.72 · 106 degrees of freedom. The macro-elements
adjacent to the boundary are mapped to the physical geometry by using the mapping described
in [39]. Furthermore, the least-squares regressions are carried out on the mesh corresponding
to HLS = 4h and the polynomial degree of the approximated stencil functions is fixed to
q = 6. In this scenario, we consider the p-Laplacian operator with p = 3, fix the time step size
∆t = 1 · 10−2, and solve until time Tend = 1. Figure 12 illustrates the standard and surrogate
solutions plotted over the line [0, 1] × {0} for different times t. In the left of Figure 13, the
surface plot of the surrogate solution is depicted. Since the difference of the solutions is very
small, we added in the right of Figure 13 a surface plot of the absolute difference of the surrogate
and standard solution at the final time t = Tend. The surrogate approach required only 5.4% of
the time required by the standard approach. That is, a speed-up by more than a factor of 18.

Appendix A. Proofs.

Proof of Proposition 6.1. By the min-max theorem [21], the k-th eigenvalue of M is

λk(M) = min
W ⊆RN

{
max
‖x‖2=1

{
x>Mx : x ∈W

}
: dimW = k

}

= max
W ⊆RN

{
min
‖x‖2=1

{
x>Mx : x ∈W

}
: dimW = N − k + 1

}
.

Define D = M− N. We first show that λ1(D) ≤ λk(M)− λk(N) ≤ λN (D). Indeed,

λk(M) ≤ min
W ⊆RN

{
max
‖x‖2=1

{
x>Nx : x ∈W

}
+ max
‖x‖2=1

{
x>Dx : x ∈W

}
: dimW = k

}

≤ min
W ⊆RN

{
max
‖x‖2=1

{
x>Nx : x ∈W

}
: dimW = k

}
+ max
‖x‖2=1

{
x>Dx : x ∈ RN

}
= λk(N) + λN (D)

and, likewise,

λk(M) ≥ max
W ⊆RN

{
min
‖x‖2=1

{
x>Nx : x ∈W

}
+ min
‖x‖2=1

{
x>Dx : x ∈W

}
: dimW = N − k + 1

}

≥ max
W ⊆RN

{
min
‖x‖2=1

{
x>Nx : x ∈W

}
: dimW = N − k + 1

}
+ min
‖x‖2=1

{
x>Dx : x ∈ RN

}
= λk(N) + λ1(D) .

This immediately leads us to the inequality |λk(M)− λk(N)| ≤ max{|λ1(D)|, |λN (D)|}. Now, for
at least one i, |λN (D)| − |Dii| ≤ |λN (D)− Dii| ≤

∑
j 6=i |Dij |, by the Gershgorin circle theorem.

Therefore, |λN (D)| ≤
∑
j |Dij | ≤ ‖D‖∞. Similarly, |λ1(D)| ≤ ‖D‖∞.
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