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1. INTRODUCTION

This papers summarizes the research carried out at the International
Center for Numerical Methods in Engineering of Barcelona (CIMNE) up to
September 1991 in the development of finite element methods for the solution of
incompressible and compressible flows. The main motivations for this research
have been the need for efficient numerical methods for the solution of non-
Newtonian incompressible creeping flows typical of metal forming applications,
and the modelling of high speed compressible flows in aeronautic and aerospace
problems.

The research developed can be classified into the following topics:

a) Development of compatible finite elements for solution of incompressible and
compressible inviscid and viscous flows under high speed conditions. The
finite elements algorithms developed have been based in both Stream-Line-
Petrov-Galerkin (SUPG) and Taylor-Galerkin methods. Non structured
grid refinement techniques have also been used. Particular emphasis has
been put in the study of the stability of the solution, and, in particular in
the vicinities of the stagnation point.

b) Development of adequate error estimators and a mesh generator for
combined structured/non structured meshes for the adaptive grid analysis
of Navier-Stokes flows with particular emphasis in the problems associated
to the boundary layer.

c) Verification of the efficiency and accuracy of the methodologies and
algorithms developed for different 2D incompressible and compressible flows
for inviscid and viscous situations.

In the following pages we present an overview of the algorithms and methods
developed. The lay out of the report is as follows. First incompressible flows are
dealt with. Here the basis of the SUPG approach for the mixed velocity-pressure
and penalty formulations is described together with the methodology followed to
derive compatible finite elements satisfying the LBB condition. Some techniques
for pressure recovery, circumvection of the LBB restriction and extension of the
finite element formulation to a finite volume format are also discussed.

The second part of the report deals with compressible flows. Here a brief
description of both Petrov-Galerkin and Taylor-Galerkin approaches developed
are described for both inviscid and viscous situations.

The third part of the report is devoted to the methods for error estimation,
mesh generation, and adaptive grid refinement using non-structured finite
element meshes. The use of a combination of a structured mesh for modelling
the boundary layer zone and a non-structured mesh for the rest of the domain
is also briefly described.

In the last part of the report some examples of application of the methods
developed to incompressible and compressible 2D flow situations are presented.



The examples include 2D incompressible flow past a ramp and a cylinder.
Mach 5 compressible insvicid flow over a compression corner and also for a
compression /expansion problem. Mach 3 compressible inviscid flow over a
2D vedge, Mach 10 compressible viscous flow over a 2D ramp and Mach 8.5
compressible inviscid and viscous flows past a double ellipse. Finally some
conclusions of the research performed are presented.

2. FINITE ELEMENT ANALYSIS OF INCOMPRESSIBLE FLOW

2.1 Basic equations

Table I summarizes the basic equations of incompressible viscous flow
[37]. In the table u, & and & are the velocity, strain rate and stress vectors,
respectively; p is the fluid pressure, by the vector of forces per unit volume
(area), p the density and p the viscosity. The energy balancing equation will
be neglected here for simplicity.

Note that substituting the strain rate-velocity and stress—strain rate
equations into the momentum equation, the usual form of the Navier-Stokes
equations is found. The two basic equations of the problem (momentum and
incompressibility) can therefore be written in terms of the velocities as

p [%‘ti + (VuT)Tu} —L™DLu+LTmp—by =0 (1a)

€ =Viu=0 (1d)

The finite element solution of eqs.(1) can be attempted in many
different ways via a mixed velocity-pressure (u — p) formulation (30], [37];
a penalty formulation [34], [37]; a least square formulation [13], [27]; an
augmented Lagrangian formulation [7]; a mixed velocity-pressure-deviatoric
strain formulation [30], [37]; a stream line formulation [37], etc. In our research
we have considered only the u — p and penalty formulations in the context of a
Strem-Line Petrov-Galerkin (SUPG) approach.

2.2 A SUPG velocity-pressure finite element formulation

We will consider the standard SUPG weighted integral form of eqs.(1) as
2]

/ wI [p (g—ltl + (VuT)Tu) —L'DLu+ L mp—by|d2=0 (2a)

Q

/ WpVTudQ =0 (2b)
Q

The SUPG weighthing functions to be considered for the momentum
equation are of the form



Equilibrium (momentum)
T du g% 3
L'e+by—p E%—(Vu) ul=0

Strain rate-velocity

€ =Lu
Stress-strain rate
o=Dé—mp - p= —%
Incompressibility
€ =Viu=mTLu=0
2D flow:
u= [U,”]T , €= [ém,é:c"i’:cy]T y T = [U'a:,ffy,T:cy]T
Iil
3 g 2 0 0
m=[1,1,0f , L=1|0 | » D=p|0 2 0
4 8 1
5 = 0 0
T 0 9.
bo = [boz,boy]” , V= [g, @]

Table I. Basic equations of incompressible fluid flow.

Wuzwu‘f'v_vu

(3)

where W, is continuous across interelement boundaries and W, is the
discontinous stream upwind contribution. For the continuity equations both
continuous and discontinuos Wp functions can be used. Each of Wy, Wy
and W) are assumed to be smooth on element interious. For convenience the

viscosity and pressure terms in (2a) are integrated by parts to give




/W { + (Vu”)TuT

= / WIbodQ + ]{ WItdl + 7 (4)
Q r

dQ + / [(LW,)"DLu — (LW )" mp| dQ =

where t are the tractions acting on the fluid boundary I'. The term T takes into
account the use of discontinuous weighting functions in the SUPG approach
and it can be generically written as

f:_z/

where N E is the total number of elements.

A standard finite element discretization can now be chosen in which
velocities and pressure are independently interpolated using different shape
(basis) functions Ny and Np as

2 4 p(VuT)Tu— LT — by | d2 (5)

pat

where @1 and p stand for the nodal velocity and pressure variables. Substitution
of (6) into (5) and (4) yields the following system of discretized equations

Ma + f,+ f =0 (7a)

where _ _
M O . f K+K KP
o of] ' *T| Kp o |?

SERERSH

The form of the different matrices appearing in (7b) for an individual
element can be seen in Table II. The global system (7a) can be assembled
from the element contributions in the standard form.

Note that the discontinuous SUPG weighting introduces the computation

(75)

of second derivative terms in KE;). Also in this case the system of equations
(7b) is clearly non symmetric.
For stationary flow conditions (%—‘t‘ = 0) and system (7a) reduces to

RaEIH R ®



K© _ B’DB. + [W7 ILTDB.|d s KO = PIWo, )7 [V(N,i)?]* N, dQ
1] e g J U; J 1% Qe i 3

[K2,]) = — /ﬂ  [BImNy, — [W, J"L"mN,,Jda M) = /,. ( )[W,...]TpNujdﬂ

[R2]) = / W,,mB;d02 ;0= / [Wo]"bod€ + }f [W, ]7¢dT
Q Q(e) '(e)
with B; = LN,, , B; =LW,,

Table II. Different element matrices and vectors involved in the SUPG velocity-
pressure formulation.

For slow flow conditions the convective acceleration terms can be neglected
and therefore matrix K = 0 in eqs.(7b) and (9). The resulting form has been
widely used in past years for creeping flow problems [33, 34]. Note that in this
case the equations are analogous to that of incompressible elasticity, which
provides an interesting unified framework for solving Stokes fluid and solid
problems [30,33,37].

It is well known [31,35] that system (8) has solution if and only if

My 2 Tp (9)

where ny, and np are the number of effective velocity and pressure nodal variables
in the finite element mesh (after discounting prescribed values).

Eq.(9) is a necessary condition to be satisfied for the velocity and pressure
interpolations chosen. More generally, the velocity and pressure fields must
satisfy the well-known LBB div-stability condition [2], [14], [37]. Figure 1 shows
some of the possibilities for triangular and quadrilateral elements explored in
this research. It can be seen that some of the simpler options like the triangular
element with a linear approximation for both velocities and pressures fail to
satisfy eq.(9) and therefore is not, in principle, adequate for incompressible flow
problems [1]. More options of admisible elements satisfying (9) and the LBB
condition can be found in [37].

2.3 Choice of weighting functions W, and Wy

The most obvious choice for Wu and W) is the Galerkin one with Wu = Ny
and Wp = Np. This leads to a symmetric system of equations as can be easily
checked from Table II.

However, it is well known that Galerkin weighting is not optimal for
convection/diffussion type problems. Moreover, it leads to instabilities in the
numerical solution for high values of the Peclet number. The reasons of this are
well known and have been widely reported in literature (4,5,10,12,15,37].
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Figure 1 Some triangular and quadrilateral elements with velocity [O] and
pressure [A] interpolations.



These problems can be overcome by the use of SUPG weighting with (2]

(e)p(e)
W, =Ny + iuTVNu (10a)
2||ul|

In (10a) h(€) is a measure of the element size and a(®) is a parameter which
is a function of the velocity, the element size and the physical parameters of the
flow (viscosity, density, etc.). For 1D convection/diffusion problems an optimal
value of a can be found giving the exact solution at the nodes. Extension to
2D/3D problems are based in the 1D values with some modifications regarding
the definition of the “element size” h(¢) and appropiate weighting along the flux
direction. Figures 2 and 3 gives the values of af:g) for some 1D and 2D elements.
For further discussion the reader is addresed to [4,5,10,12,15,37].

It is also welll known that Petrov-Galerkin weighting has a simple
interpretation for steady state homogeneous problems solved with linear finite
elements as it is then equivalent to the addition of an artificial balancing
diffusion in the direction of the flow. The same interpretation does not hold
exactly if flow sources are present or higher order finite element interpolations
are used. Nevertheless, Petrov-Galerkin weighting can always be associated
to the addition of some kind of balancing diffussion which value can not
however always be precisely defined. Another interpretation of Petrov-Galerkin
weighting comes from the analogy with “upwinding” methods widely used
in finite difference schemes. This analogy has allowed to obtain alternative
expressions to the form (10a) [4], [10], [12].

The SUPG u/p formulation provides an adequate framework for deriving
“robust” compatible finite element approximations. Hovewer, the practical
application of the formulation is somehow cumbersome due to the presence
of zero terms in the diagonal of the global stiffness matrix (see eq. (9)). This
requires the use of adequate solvers or regularization techniques. For this reason
the use of an alternative “simpler” penalty approach has been successfully
explosed. This approach is presented in next section.

2.4 Penalty Formulation

The basis of the penalty approach is to write the incompressibility condition
as

. p
&i=5 (11)
where ) is a large number.

Obviously as X increases the value of ¢;; tends to zero and in the limit
(A — o00) the incompressibility condition is satisfied
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Figure 2 Upwinding weighting functions for linear and quadratic 1D
elements [5], [10]

Eq.(11) allows to eliminate the pressure as
p=Xé; = dmTé = AmTLu = Am"Ba (12)

Substituting (12) in (1a) the momentum equation can be rewritten in terms
of velocities only as



W; = N; + 29O Ty,

|
2[|ul|
4 3 3
u 7]
2
1 2 1
a(®) as for 1D elements with & = uikijuj and h(€) = = hy
= alf? uy

up = velocity in the parent domain
hpy=2 quadrilaterals, =1 for triangles

o{) = fi(8)a + 1 - £:0))8

Quadrilaterals Triangle
fi(0) =1, i=1,3,5,7 (@) =1,4=1,3,5
f2(6) = f6(6) = sin®6 f2(6) = sin%0, f¢(8) = cos? 6
f4(8) = f3(6) = cos® 6 fa(0) = fo(6 — )

a,f as in Figure 1 ; k and h(€) as above

Figure 3 Upwinding weighting functions for linear and quadratic triangular
and quadrilateral elements [5].




p |32+ (Vu?)Tu| + LTm(Am’Lu) - L™DLu - by = 0 13}

After adequate (SUPG) weighting and discretization of the velocity field
the following equation system is obtained

Mii+ [K + K+ MK]a = f (14)
where the new matrix

K = - [ {m B mB; - (Wo "L mmB; } i (19)

Note that only for the Galerkin weighting (W, = N, and W, = 0) matrix

K and the system (14) are symmetric.
For steady state eq.(14) reads

K+ K+ \K]a = f (16a)
which for A — oo gives
Kii = %f =0 (16b)

Obviously, the non trivial solution (@ # 0) requires matrix K to be singular
[37]. Singularity of K can be achieved via reduced integration techniques or
via assumed presure distributions techniques. The use of reduced integration
procedures has been very popular in last decade amongst finite element
practitioners. A full description of this technique can be found in [37]. However,
it is widely acknowleged today that this approach has a certain number of
disadvantages, like the possibility of introducing internal mechanisms in the
element which can polute the solution.

The alternative is to prescribe “a priori”a pressure field, satisfying eq.(9),
as

p=Npp (17)

where p = [p1,p2,- - ,Pnp]T contains the values of the pressure at np specified
points and N, are interpolating basis functions.

Now using the penalty condition (11) we can express (17) in terms of the
nodal velocity parameters as

p = ANp,m'B?i = )Bii (18a)

with



B = N,m”B? (18b)

In (18b) B? is the strain-rate matrix computed at the np points where the
pressure variables p have been specified.
The final form of the penalty matrix K in (15) reads now

KE;) = / [(mTB;]"B,d0 (19)
Q

Note that K is now always non symmetric. However, this approach yields
good results providing a compatible pressure field is chosen [37].

An alternative procedure based on the same concepts is to introduce the
penalty parameter in the u—p formulation so that the incompressibility equation
reads now

1
/ Wp [Xp + mTLu} dQ =0 (20)
Q

Choosing now a compatible interpolation for pressures and velocities, the
system of eqs.(8) can be written for the stationary case as

K+K KP|fa)| |[f
& felte)- o) 2
where C = fﬂ NngdQ.
The second row of equations allows to eliminate the pressures as p =

—AC~1KPa. Substitution of this value in the first row yields a final system
of equations identical to (16a) with K given by

K = —KPC™IKP (22)

thus allowing a solution involving the nodal velocities @ only.
It can be proved that matrix K of (22) is singular if the condition (9) is
satisfied, thus ensuring the existance of the solution for A — oo.

2.5 Pressure recovery in the penalty formulation

In the penalty method the velocities are the only independent variables
and the pressure has to be computed “a posteriori” from the known velocity
field. The simpler option is to compute the pressure via the incompressibility
condition (eq.(12)).

This method is inaccurate as it implies multiplication of a very large number
(A) and the value of the volumetric strain rate which should be as close as zero
is possible.



An alternative procedure exploited by Sohn and Heinrich [29] is to compute
the pressure by solving a Laplacian form derived from the momentum and
continuity equations. Thus, by differentiating the £ and y momentum equations
with respect to ¢ and y, respectively and substituting the result in the continuity
equation, one gets

o2 o2 0, ¢ '
(—8? + 8_3/2) p= _B_a:(u Vu) — a(u Vu) (23)

Solution of (23) using standard FEM yields correct values for the
pressure distributions. Note, however, that (23) involves second derivatives
of the velocity field. This presents no difficulty when second or higher
order approximations for u are used. However, for linear elements the
second derivatives of u must be computed via a smoothing technique of the
discontinuous first derivative field [29].

2.6 Transient solutions using the penalty approach

It is known that explicit algorihms are unconditionally unstable when the
solution of the initial value problem (7a) is attempted. In order to avoid the
need for solving large implicit systems, several authors have proposed the use
of algorithms that uncouple the velocity and pressure fields and then correct
iteratively velocities and pressures. The differential equation for the velocity
may be solved explicitly, whereas implicit algorithms have to be used for the
pessure equation (see, e.g. [2'], [8’]).

In other cases, pressures are eliminated “a priori”through the penalty
equation, thus leading to an equation involving velocities only. When the
penalty parameter tends to infinity explicit algorithms become unconditionally
unstables, and the use of implicit schemes is mandatory. A popular integration
method is the generalized trapezoidal rule. For a general nonlinear systems of
the form

& = F(z,1) (24)

F being a nonlinear vector functions and ¢ = z(t) the vector of nodal unknowns,
this method reads: given z”, find z™t! satisfying

2"t — 2" = AtOF" T (z,t) + At(1 — 0)F™(z, 1) (250)

where At is the time step increment, 6 a parameter (0 < 6 < 1), zF the unknown
at t* = kAt and

F¥(z,t) = F(z*, %) (25b)



For § = 0, the scheme is known as the explicit Euler method
(unconditionally unstable for the incompressible Navier-Stokes equations), for
6 = 1/2 as the Crank-Nicolson method (unconditionally stable and second
order accurate) and for # = 1 as the backward or full implicit Euler method
(first order accurate and unconditionally stable).

In our numerical experiments, we have observed that the increased accuracy
obtained with § = 1/2 compensates the cost of evaluating the term F"(z,t) in
(25a) when results are compared with the choice § = 1. However, if z! is
computed from z0 (the initial condition) using § = 1/2, oscillations are found
that may pollute the solution for several time steps. This is due to the inability
of the (finite) time increments to resolve the rapidly oscillating harmonics
associated with the time expansion of the unknown z(¢). This problem is solved
using @ = 1 in the first time step (thus damping those harmonics) and § = 1/2
for the following.

With this considerations in mind, an scheme for solving the ordinary
differential equation (14) could read as follows:

1. Assume @° be given (initial condition).
2. Find a! solving.

M + A¢(K + K(@') + 2AK)]a* =

= Atf" + Mu

3. Fix 6(6 = 1/2, for example). For n =1,2,---, N (total number of time
steps), find @" 1! solving.

[M =+ Atg(K + I_{(ﬁn‘H) I AI"{)]I—ln-H
o e DA (260)
+[M — (1 — 0)A(K + K(@") + AK)]a"

The nonlinear systems (26a) and (26b) can be solved using either Picard
or Newton—Raphson iterations. Usually, only in the first time steps several
iterations are required. In that case, one or two initial Picard iterations can
be performed in order to obtain a good initial iterate for the Newton—Raphson
scheme.

In Section 6 we present some examples of application of the penalty
formulation presented.

2.7 Alternatives for circumventing the restrictions of u/p formulation

In Section 2.2 we have seen that the requirements of solvability pose
dificulties in the use of arbitrary finite element interpolations. These conditions
emerge due to the zero diagonal term in eq.(8) which yields a singular system



unless, for any assemble of elements, the number of variables of i is larger than
that of p.

Avoidance of this difficulty by use of penalty forms (and reduced integration)
which introduce a small non-zero term in the diagonal as shown in previous
sections, is not robust and it is doomed to failure, unless a prior: the L.B.B.
conditions are satisfied. For this reason alternative stabilization methods are
needed [2]. Hughes et al. [14] have shown for Stokes flow that such stabilization
can be achieved by the following weighting of the continuity equation

(e) (n(e))2
/ NpVTudQ + / w[VN,,]’-" [-L7DLu +
Q Q 2p

- (27)
+ LTmp — bg]d2 =0

where a(€) is a parameter similar to that of eq.(10a) for the SUPG formulation
and h(®) is again a mesure of the element size [14].

Eq.(27) differs from the standard Galerkin approximation by the addition
of the second integral in (27). This integral can be added as the underlined
terms in (27) are nothing else than the momentum equation which is already
approximated via eq.(3) (neglecting inertia terms).

After standard u — p discretization eqs.(3) and (27) lead to the following

system
[y ®){p)={e) 29

where the new matrices L, H and g are given by

(e)(nle))2
H = / w[vzv,,]TLTmdin
Q 2p

e)(1(e))2
L= A a(g+)[VNP]TLTDBdQ (29)

(e) (n(€))2
g = / %[VNP]TbOdQ + boundary terms
Q

Note that eq.(28) can now be directly solved with any equation solution
scheme and the need for different appoximations for u and p dissappears.

Sampaio [27] has presented a formulation similar to the above by
combination of the application of Galerkin method to the steady state continuity
equation with the least square method to the discretized momentum equation.
In doing so the parameter a(®) in (27) comes naturally from the time



discretization and thus can be chosen to correspond to the stability limit of
time step, which has proved to give optimal upwinding for convection-diffusion
problems.

More recently Zienkiewicz and Wu [36] have shown how an equation system
of the form (28) can be obtained by seeking the stady state solution through the
use of various time marching schemes like Taylor-Galerkin, Runge-Kutta, etc.
Unfortunally in all cases the steady state equations arrived are unsymmetric
(see eq.(28)). This brings additional cost if the steady state equation is solved
directly, but it is of no importance of time step iterative solvers are used. This
has been observed already by Schneider et al. [28] and Kawahava et al. [16],
when using the so called “velocity correction method” for solution of steady
state incompressible flows.

3. A FINITE VOLUME u-p AND PENALTY FORMULATIONS

The finite volume method evolved in the early seventies via finite difference
approximations and today has many proponents amongst CFD practitioners
[17,18,26]. Comprenhensive descriptions of the finite volume techniques are
given by Patankar [21] and Hirsch [11]. Recently Zienkiewicz and Ofiate [38]
have shown that finite volume equations can be derived as a particular case
of standard finite element approximations. This fact can be easly exploited to
derive alternative finite volume formulations from the ones described in previous
sections. Research in this field is currently under development at the authors’s
institution.

The basis of the finite volume method is the choice of unit weighting
functions within the analysis domain. Thus settin jg Wy = Iin eq.(3) and
applying the divergence theorem to the term (VuT)*u yields

—dﬂ+fM v2 ?{tdr—/bdnzo (30)
T Q

where the boundary tractions t are obtained as

t = Mo = M(DLu — mp) (31)

The continuity equation (4) takes the following form, after application of
the divergence theorem

f nTudl’ = 0 (32)
r

In (30) and (32) n = [ng,ny]7T is the normal vector to the external boundary
I' and M=[776‘c . 'ny].

ny ng



The domain can now be discretized in finite elements in the standard form
with interpolation of velocities and pressure given by eq.(6).

The discretized form of equations (30) and (32) can now be applied to
the control domain (finite volume) surrounding each node in the finite element

mesh. This gives for each control domain “v” the following system of equations
M®a®) L 70) L g®) — o (33)
where
() - [M) 0 . 1) —
M [ o o - M ) N dQ (34a)
] () NG
f(v) = {f?,) } ; al’) = { f’} (34b)
with
(@ _ L f MNu@)2r- § MDBa - mN,p] dr (34c)
2 Jr@) r(v)
£ = ]{ nT[N,a)dr (34d)
r)
and £(v) = _ f bdf (34e)
Q)

In (34) () and I'(") are the area and boundary of the control domain

chosen and (1‘1)12 = [(ui)z, (vi)z,ui'vi]T. Note that the computation of the “flux”

vectors f}(:;) and f'c(v) now involve only integrals along the domain boundary.

Figure (4) shows some examples of control domains based on linear triangles
leading to standard “vertex centered” and “cell centered” finite volume schemes
[11], [21]. Examples of control domains using higher order interpolations in
quadrilateral or triangular meshes are shown in Figure 5.

Equations (33) can now be solved in time using any explicit/implicit
integration scheme.

If the penalty approach is used the finite volume equations are simplified
simply by making

MO =M §e) = ) (35)

and substituting the pressure term in (34c) by amTBa where the strain rate
matrix B can be obtained by any of the different alternatives explained in
Section 2.4.

Further research in this area is currently under development and it will be
reported in a near future.
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Figure 4 Control volumes for “vertex centered” (2) and cell centered (b)
finite volume schemes.
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Figure 5 Examples of control domains usi
triangular or quadrilateral meshes _

ng higher order Interpolations in



4. COMPRESSIBLE FLOW

4.1 Basic equations

For compressible flow conditions the Navier-Stokes can be written in the
following conservation form

Oou Of; Og; B
ot "+ ox;  0x; +ta=0 (36)

for 2D problems

u = [p, puy, puZ’PE]T
£; = [pus, puius + péii, puius + pba;, (E + p)u;]™

. o (37)
gi = [0, —T14, —T2i, —T3i, 3—%7(_"'1'3'“3') B kﬁ_wi]T

q = —[0,b1,b;,b5,0]7
with

o 6ui+6uj_gauk
T = F Oz;  Oz; 30z (38)
p=RTp

In above all terms have been previously defined except, k, R, T and E which
are the thermal conductivity, the universal gas constant, the temperature and
the total energy, respectively.

The inviscid form of the compressible flow equations (Euler equations)
is simply obtained neglecting the contribution of vector g in (36). Also for
adiabatic conditions the energy terms are neglected in (36)—(37).

4.2 Transition from incompressible to compressible flow

Eq.(36) can be written omitting energy terms as

Lo 9p | O(pu;) _
Continuity: T 9z 0 (39)
_ d(pui)  O(puiuj) 8p Omy .
Momentum: ey + azj + 92 — 6:vj —-b=0 (40)

Substracting (40)—(39) and rearranging terms we can write



Op  Oui [ap |_

51 +p6mi +| gEui|=0 (41)
Oui Oui\ O . _

”(at +“Jazj)_”ﬂ+ami_bi‘° (42)

The steady form of above equations is identical to that of incompressible
flow (see Section 2.1) if the bracked term gf_ui = 0. Clearly this will happen in

zones where small velocities (u; — 0) or small density changes occur ({%L — 0).

Therefore, numerical finite elements (or finite volumes) algorithms to model
compressible flow problems should be robust enough to predict accurately the
behaviour in global or local incompressible flow zones. Thus, all considerations
for element and algorithm design, made in previous sections for incompressible
flow are again applicable.

4.3 Petrov-Galerkin finite element models for compressible flows

The spatial weighted residual form of eq.(36) can be written in standard
form as

ou 0f; Og;
T i i —
/Q W [ T ox; T s +q|d2=0 (43)

The unknown vector u can now be interpolated using finite element shape
functions N as

u = Na (44)

Eq.(44) allows to obtain the relationship between the flux vectors fand g
and the nodal unknow parameters a through (37) and (38) as

f;=1f(a) ; gi=gi(a) (45)

Substitution of (44) and (45) in (43) and integrating by parts the flux terms
allows to obtain the discretized system of equations in the form

Ma+f,+p=0 (46)

where

M = / WTNdQ (47a)
Q
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p= / WThdQ + f WZ(f; + g;)n;dT (47¢)
Q r

where n; = ng and ng = ny are the components of the unit normal vector.
Different choices for the weighting functions W are of course now possible.
The obvious Galerkin choice (W = N) should however be disregarded as it
leads to numerical instabilities of the type mentioned in Section 2.2.
The usual practice is to choose a SUPG weighting similar to that of eq.(11a)
with

W =N+ 2—“111—”[ah]uTVN (48a)
where
aphp 0
[ah] = ol - (48b)
0 ache

The form of the upwinding parameters for each of the equations is shown
in Table III [3’]. In most cases the option hy = hy = hy = he = h(¢) where
h(€) is a characteristic element lenght is taken. It is interesting to note that for
the steady-state case and q = 0 the Petrov-Galerkin weighting with a linear
finite element interpolations is again equivalent to adding a diffussion along the
velocity stream lines [3].

Brueckner [3] and Brueckner and Heinrich [3’] have shown that eq.(48a)
holds only if the energy and constitutive equations are written in terms of
the specific energy. However if the expression of the total energy is used, the
convective velocity is different for each flow equation. This implies that both
eq.(48a) and the upwinding parameters must be subsequently modified.

The SUPG approach, together with adequate finite element interpolation
and time integration schemes, seems to be an efficient procedure for solving
high speed compressible flow problems. Some examples of application of this
technique can be found in [3,3’].

The above procedure can be refined by means of adding shock capturing
terms [12-15] and using adaptive refinement techniques as explained is Section
5. However, it has been shown that Petrov-Galerkin models have an inherent
capacity to capture shocks and no further addition of extra viscous terms seems
to be needed [3,3’]. This point will certanily be subject of debate and further
research in the near future.
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Re = Reynolds number , Pr = Prandtl number

~= ratio of specific heats. Usually hy = hy = he = h(e)

Table III. Typical upwinding parameters for compressible flow [3,3’].

4.4 Taylor-Galerkin approach for Euler equations

To explain the basis of the Taylor-Galerkin approach we will consider first
the inviscid (Euler) form of eq.(36) with no source terms, i.e.

Ou Bfi

A Taylor expansion in time of the unknown u is performed first as

Ou\" At (*u\"
n+l _ . n —
u"m =u +At(8t) + > (Btz) (50)

From (49) we can obtain

du of; ’u 0 o1,
5t ow w—%i%mg \Sla)

with

A= (51b)

~ du

Substituting (50b) in (50a) we can rewritte (50a) as

of;\"  At? 0 of, \"
n__ _ 1 . k
Au” = —Al (axi) T3 Ox; (A1 axk) (52)

Note that the At? terms in (52) can be interpreted as a balancing diffusion
added to the original equations (49).



A finite interpolation can now be chosen where the incremental unknowns
Au™ are interpolated from the nodal values Aa’ by

Au =) N;Aal (53)

with N; = N,;I where N; is the shape function of ith node.
The Galerkin weighted residual form of eq.(52) is written next as

of; At? 0 of|
T AT _ T T k
/QNJ Au”"df} /QN At (6x1> dQ) + — > NJ ox; (A oy )dﬂ (54)

Integration by parts of the second integral in the right hand side of (53)

leads to
/ N?Aundﬂ = —At/
Q Q

A; dr’
+ ﬁ 2 N a np

o —k J04

N; —A"
+ Bxk

v ox;

At ., ON; ] .

Substitution of the approximation (53) in (55) leads to a system of equations
which can be written in the form

MAa" + At(fa +£)" =0 (56)
with
r oN1T o,
M= [ NTNdQ 5 fo= [ [N4+2 A,— —k 40 (57)
Q Q Ox;| Oxy
At of
and f= ﬁ 5 NTA; 6xk nj,dTl’ (58)

The terms in brackets in the integral related to f, can be interpreted as a
weighting function

At ON
W=N+—A;,—
A (59)
Note the analogy of this expression with that of the upwind weighting
function (1la). This provides an interesting analogy between the Petrov-
Galerkin upwind parameters and the time increment entering in (59).
Eq.(56) can be solved in a single step for the values of Aa™ as



Aa™ = —AtM™(f, 4+ £)? (60)

from which the unknown values can be updated for the next time increment
as a”t! = a™ + Aa™. The full transient solution of (60) implies inverting the
consistent mass matrix M for each time increment. However, if only the steady
state solution is needed a “lumped” form of M can be used, thus allowing for
a straight forward computation of Aa™ very adequate for coding in parallel
processing systems.

Stability of the solution is controlled by the time increment shown in r.h.s
of (60) which should be thus properly computed as to satisfy the standard
stability requirements [37]. Peraire et al. [24,25] have successfully used a
two-step solution of eq.(55) which avoids computation of matrix A; at each
increment.

Both one and two step algorithms are usually combined with a solution
smoothing and the use of adaptive refinement techniques. Current research aims
to the optimal definition of the time increment in (59) so that the minimum
extra balancing diffussion is needed.

Zienkiewicz and Wu [36] have recently shown the intrinsic capability of the
Taylor-Galerkin method for providing a system of equations of the form (28),
thus overcoming the difficulties associated to the limit incompressible case as
explained in Section 2.6. This allows the successfull use of this approach with
elements with equal interpolation for all variables.

4.5 Taylor-Galerkin approach for viscous flows

Performing a Taylor expansions similar to that of egs.(30) and using eq.(36)
allows to obtain

dg? Off\ At2[ 8 of; of; 1™
n+l _ ..n > %l
" =ur+4a (an an> y 2 [azi (Azaxk) Gaxj (61)

where A; = % and G; = %%11 are matrices of vector gradients and where
derivatives or products of higher order than two have been neglected.

Eq.(61) can be now discretized using Cj finite elements.

The Galerkin integral form of (61) can be written as

og
/ NT AudQ = At / NT {—2—
Q Q 0x;

O AL[ L0 0 (, 08\]™ 40 (62)
0x; 2 ox; 0x; *Ox,




where Au = u™t! —u”. Note that both A and G matrices have to be computed
and stored for each time increment.
Integration by parts of A; and g; terms in (62) gives

oNT | off
/ NTAudQ = —At/ NT 4 810N AT —Ea0—
Q Q 2 0x; 0xy,

ONT At [ n  Of;

f n
+f [ﬁNTAiﬂnk -I—AtNTgk’nk] dar
rl2 X

n

dO+ (63)

Substituting of (53) into (63) leads to the system of equations
MAa"™ = RHS" (64)

where the right hand side terms RH S can be deduced from (63).

Eq.(64) can be solved using a single or two-step approaches [24,25]. Also
if only steady state solutions are to be obtained a lumped mass matrix can be
used.

5. ERROR ESTIMATOR AND MESH ADAPTIVITY

For creeping incompressible flow problems the following error norm based
on the analogy of Stokes flow with elasticity can be successfully used [32]

lel* = A([é —&"[o' — &' — [p - pllé — is))d0 (65)

where &, ¢/ and p are exact values of stresses rates, deviatoric strains and
pressure and (A) stands for computed values.

Since &, ¢’ and p are not known, an approximation of higher order accuracy
than that given by the finite element method is used as

le]l* = /ﬂ([é* — &7 (o™ — &' - [p* - plle}; — E])d (66)

Values of &* and ¢'* can be obtained by projecting the discontinuos
numerical solution into a continuos basis. The simplest option is to use nodal
averaging of discontinuos element values. However, more sophisticated local
and global smoothing techniques can be used [37]. For values of p* identical
procedures can be used. However if p is continuous it is usual to neglected its
contribution in the error norm [37].



The porcentage error in the mesh is now defined as

llell _ llell
lall = Tl (67)
with  ||4)|® = / ("6 — péi;)dQ (68)
Q

The optimal mesh is usually defined as such in which the error is the same
for every element. This allows to define the permissible error per element as

2711/2 ~n211/2
e [2E] <o L] .

Te Ne

where 77 is a specifed percentage error and ne is the total number of elements
in the current mesh.

The refinement strategy implies the following steps

1) Compute ep by eq.(69).

2) Compute an error index for each element as

£e) le]|¢)

(70)
€p

where ||¢]|(¢) is obtained from eq.(66).

3) Since the error norm is 0(h™) asymptotically where h is the element
size and m the order of polynomial in the finite element or finite volume
approximations, the new element size is computed as

: ()],
(b new = ey (71)

In practice the upper and lower limits of k() are specifed so that the range
of element sizes is controlled.

Examples of applications of this technique for transient and steady state
incompressible flow can be found in [32].

For high speed flow situations the error norm (65) can also be used,
however the flow-elasticity analogy does not hold and (65) will yield only
an approximation of the actual error messure, however useful for practical
applications.

A common option in practice for one-dimensional compressible flow
problems, is to assume the error for each variable v as

d*v
ey ~ C(h(®))? = (72)




where | - |¢ means an average value over the element. The condition of uniform
error distribution implies now simply

d*v

(e)y2
(h*) dz?

= k (constant) (73)

e

where h(¢) is the element lenght.
Above concepts can be extended to 2D /3D flow situations as follows:
At each element center the following matrix is computed

0%v . . 1,2 for 2D problems
. = 1.7 =
t] Oz;0z; J 1,2,3 for 3D problems

(74)

where v is the variable which error is to be computed. Typically v = porv = M
(mach number) are chosen.

The eigenvalues of M(©) are computed (i.e. Aﬁe), ,\g” ) for 2D problems).
From eq.(73) it can be written

BEPAE = REOPAL) = (hin)?Amas (75)

where hy,;, and Apgz are the specified values of the minimum element size and
the maximum eigenvalue computed in the mesh, respectively.
Eq.(75) yields the new element sizes as

N o B (76)

Usually hﬁe) = h,(f) is taken, thus implying equal size elements. However the

possibility of stretching the elements (i.e. hge) # hge)) has also been successfully
exploited in practice [22,23].

The mesh is redefined using the new element sizes given by (76). This
can imply either refinement or enlargement of some element zones. The
definition of the new mesh can be based on the enrichment of the previous
one, subdividing or eliminating elements, or in the complete regeneration of a
new mesh [19,20,22-25]. For the second option an efficient mesh generator for
triangular or quadrilateral elements of different orders has to be used. This mesh
generator developed at CIMNE allows to combine structured with unstructured
meshes in the same domain. An example of application is the modelling of the
boundary layer region with an structured mesh whereas an unstructured mesh
is used for the rest of the flow domain (see Examples 6.2.5 and 6.2.6). The
unstructured mesh generator developed and used in the examples presented
nextis based on the advancing front technique [22], [24].



6. EXAMPLES

6.1 Numerical examples of incompressible flow problems

In this section we present two examples solved using the SUPG penalty
formulation described in Sections 2.4-2.6. It is not our aim to give a complete
description of the following tests, but rather to show that the method developed
is robust an eflicient. We recall that the basic ideas are the use of the
SUPG formulation to deal with the convective term, a mixed velocity—pressure
interpolation leading to div—stable elements and the elimination of the (already
interpolated) pressure through penalization. Results obtained compare very
well with those reported in the literature.

6.1.1 Flow over a forward step

Figures 6a and 6b show the domain and the pressure contours obtained.
The domain has been descretized using a uniform structured mesh with 1721
nodal points and 408 biquadratic elements and linear interpolation for the
pressure within each element (see Figure 1). In the left boundary (inflow) a
parabolic velocity profile has been prescribed. The Reynolds number based on
the maximum value of this profile and the step height is 167. The boundary on
the right has been left free and zero velocities has been prescribed every where
die.

A detail of the streamlines in the recirculation zone is shown in Figure 6c¢.
The position of the reattachment point agrees with other results found in the
literature using finer meshes.

6.1.2 Flow past a cylinder

The streamlines pattern and the domain are shown in Figure 7. A uniform
velocity has been prescribed on the left boundary and zero normal velocities
on the upper and lower boundaries, whereas the right one has been left free.
The Reynolds number based on the cylinder diameter is 100. The domain has
been discretized using 500 biquadratic elements with linear interpolation for the
pressures (Figure 1), giving a total of 2100 nodal points.

The symmetric steady—state solution perturbed by a rotating velocity field
near the cylinder has been used as initial condition to advance in time. We
have used the Crank—Nicolson scheme (backward Euler for the first time step)
with a time increment A¢ = 0.3 and Newton-Raphson iterations within each
time step.

Results shown in Figure 7b correspond to time step No. 301, when the
oscillations in the velocity field behind the cylinder are fully developed. The
period of these oscillation has been found to be 6 time units.
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Figure 6 Viscous flow over a forward step (Re = 500/3). (a) Geometry and FE mesh
of 408 biquadratic elements with linear pressure interpolation. (b) Pressure
contours. (c) Streamlines in the circulation zone.
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Figure 7 Flow past a cylinder. (a) Geometry and mesh of biquadratic elements
with linear interpolation for pressure. (b) Streamlines pattern for time step

301 (At = 0.3).



6.2 Examples of high speed compressible flow
6.2.1 Mach 5 inviscid flow over a compression corner

Figure 8 shows the geometry of the problem and the initial mesh of 250
three node triangular elements with equal interpolation for all variables. The
analysis has been performed using the Taylor-Galerkin approach presented in
Section 4.4. Figure 8 also shows the sequence of adaptive remeshings and the
results for the pressure contours obtained with each mesh. The improvement
in the definition of the shock is obvious.

6.2.2 Mach 5 inviscid flow with compression and ezpansion

The compression ramp geometry of the previous example was extended to
include an expansion corner. Numerical results for this problem were obtained
with the Petrov-Galerkin approach proposed in Section 4.3 using again linear
triangles. The initial and improved meshes and the pressure contours are shown
in Figure 9.

6.2.3 Mach 3 inviscid flow over a wedge

The Taylor-Galerkin approach is now applied to the analysis of a high speed
inviscid flow over a wedge. The initial and final meshes of linear triangles
together with the corresponding Mach number contours are shown in Figure 10.
Again the improvement in the solution by the adaptive procedure is substantial.

6.2.4 Hypersonic inviscid flow over a double ellipse

This example corresponds to the laminar inviscid non reactive flow past a
double ellipse for Mo, = 8.5 and a = 30°. The temperature at infinity is 56° K
and at the body 288° K. Again numerical results have been obtained with a
Taylor-Galerkin approach and 3 node equal interpolation triangles. Figure 11
shows the finite element meshes obtained after three consecutive remeshings
together with the Mach number and the pressure contours for the final mesh.
The plots of the pressure coefficient and the Mach number variation along the
stagnation streamline also the finer mesh are also shown in Figure 11 [20].

6.2.5 Hypersonic viscous flow past a double ellipse

This case is an extension of previous example to viscous flow conditions. A
value of Re = 1.67 x 107 has been assumed. The full Taylor-Galerkin aproach
for viscous flows presented in Section 4.5 has been used.

Figure 12a shows the final finite element mesh of 3 remeshings of 16212
elements and 8315 nodes. Note that the boundary layer region has been
modelled using an structured mesh of linear triangles whereas an structured
mesh is used in the rest of the flow domain. Details of the boundary layer



discretization and the Mach number contours are shown in Figures 12b and
12¢, respectively.

Separated flow conditions in the upper fuselage region obtained in this case
as deduced from the final contours of specific total energy are shown in Figure
13a. A study of convergence has also been performed. Figure 13b shows
contours of residuals at the first time increments showing high errors in the
boundary layer region as expected.

A small global time step has been used during the first 300 time increments
to prevent instabilities during the build—up of the boundary layer. A plot of the
residual contours in the converged steady state regime is shown in Figure 13c,
where the separation effect can clearly be observed.

Figure 14a shows the variation of the specific total energy along the
stagnation streamline. The step gradients of the shock and the boundary layer
are captured without oscillations. The same effect is observed in the variation
of the Mach number along some directions across the shock plotted in Figure
14b.

Finally, Figure 15 shows the paths of some flow particles and details of the
recirculating flow near the canopy. For further details on this example see [25].

6.2.6 Hypersonic viscous flow past a 2D ramp

The flow conditions are the following Mo, = 10, Re = 143800, temperature
at infinity 50°K and at the wall 290° K.

Figure 16a shows the final finite element mesh of 11440 elements and 5914
nodes. Again a structured mesh was used to model the boundary layer zone,
whereas an unstructured mesh was used in the rest of the flow region.

In this case due to the low Reynols number a thick boundary layer appears
and no recirculations was observed (see Figure 16b). The Mach number and
density contours are shown in Figures 16¢ and 16d, respectively where the shock
induced by the boundary layer build up is clearly detected [25].

7. CONCLUSIONS

In this work a detailed study of the solution of incompressible and
compressible flows using finite elements has been performed.

The use of a SUPG penalty formulation together with compatible velocity—
pressure approximations provides a robust computational framework for the
solution of incompressible viscous flow problems.

For compressible flows accurate oscillation—free solutions have been obtained
with the Taylor-Galerkin approach for both insviscid and viscous flow problems
using simple linear triangular elements. This is in line with recent research
reported on the ability of the Taylor-Galerkin approach to overcome the div—
stability LBB conditions [36].
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Figure 8 Mach 5 invisid flow over a compression corner. Sequence of refined meshes
of linear triangular elements and pressure contours.
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meshes of linear triangular elements and pressure contours.
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Figure 13 Hypersonic viscous flow (M, = 8.15) past a double ellipse. (a) Final
contours of specific energy. (b) Contours of residuals errors at onset of
iterations. (c) Contours of residual error at final solutions.
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Figure 14 Hypersonic viscous flow (Ms = 8.15) past a double ellipse. (a) Variation
of total specific energy along the stagnation streamline. (b) Variations of
Mach number along some selected directions.
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Figure 15 Hypersonic viscous flow (M, = 8.15) past a double ellipse. (a) Paths of
some flow particles. (b) Recirculating flow near the canopy.
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Further research at CIMNE in these areas will address topics such as the
development of robust finite element algorithms for the solution of coupled
thermal-flows in the incompressibility range, the assesment of the robustness
of the Taylor—Galerkin approach in combination with compatible elements, the
definition of the optimal mesh for each particular problem and the study of the
general cost-efficiency of the computational models developed.
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