
applied  
sciences

Article

Human Factors Analysis of Air Traffic Safety Based on
HFACS-BN Model

Tao Lyu 1,* , Wenbin Song 1,* and Ke Du 2

1 School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
2 School of Communication, East China Normal University, Shanghai 200240, China; newsduke@126.com
* Correspondence: lvtao-sjtu@sjtu.edu.cn (T.L.); swb@sjtu.edu.cn (W.S.)

Received: 25 September 2019; Accepted: 20 November 2019; Published: 22 November 2019 ����������
�������

Abstract: Air traffic control (ATC) performance is important to ensure flight safety and the
sustainability of aviation growth. To better evaluate the performance of ATC, this paper introduces the
HFACS-BN model (HFACS: Human factors analysis and classification system; BN: Bayesian network),
which can be combined with the subjective information of relevant experts and the objective data of
accident reports to obtain more accurate evaluation results. The human factors of ATC in this paper
are derived from screening and analysis of 142 civil and general aviation accidents/incidents related
to ATC human factors worldwide from 1980 to 2019, among which the most important 25 HFs are
selected to construct the evaluation model. The authors designed and implemented a questionnaire
survey based on the HFACS framework and collected valid data from 26 frontline air traffic controllers
(ATCO) and experts related to ATC in 2019. Combining the responses with objective data, the noisy
MAX model is used to calculate the conditional probability table. The results showed that, among the
four levels of human factors, unsafe acts had the greatest influence on ATC Performance (79.4%),
while preconditions for safe acts contributed the least (40.3%). The sensitivity analysis indicates the
order of major human factors influencing the performance of ATC. Finally, this study contributes to
the literature in terms of methodological development and expert empirical analysis, providing data
support for human error management intervention of ATC in aviation safety.

Keywords: air traffic control; human factors; aviation safety; HFACS; Bayesian networks; noisy
MAX model

1. Introduction

Safety is an important prerequisite for the sustainable and healthy development of the aviation
industry [1]. As a critical area of aviation safety, air traffic control (ATC) requires highly skilled
operators to work together in a large and complex human–machine system [2]. In an ATC system,
air traffic controllers play a central role, and they have to cooperate with the various components of
the ATC system to ensure the safety, order, and efficiency of air traffic flow [3]. Like other complex
sociotechnical systems, there are always some risks of interference in the system [4]. Uncooperative
interactions between controllers and system components hold potential for human errors, leading to
safety breakdowns [5]. In fact, during the second half of the 20th century, the technical environment
changed and the focus of attention in aviation industrial sectors shifted from technological problems to
human factors problems and, finally, to problems with organizations and safety culture [6]. Human
error is one of the contributors to more than 70% of aviation accidents [7]. This is demonstrated by
a review of the Australian ATC system, which finds that coordination and communication errors
contribute most to air traffic incidents [5]. In the UK Airprox incident report, human errors in ATC
are related to perception, decision making, communication, and team resource management [8].
ATC-related incident examples include on 1 July 2002, a Tu-154m passenger aircraft (BTC2937) of
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Russian Bashkir Air collided with a former DHL Express Boeing 757-200sf cargo plane (DHX611)
over the Swiss city of Überlingen, killing all 71 passengers and crew of both aircraft. The main cause
of the accident was a Swiss air traffic control center command serious error; on 11 October 2016,
a China Eastern Airlines A320 evaded a runway incursion by narrowly passing over the top of an
A330 that had crossed into the active runway due to improper situational awareness by both the
pilots and tower controllers. As the number of flights increases, air traffic controllers have to learn
from these disasters, and an analysis of human factors may be one of the effective ways to learn
from such “mistakes” to reduce the number of similar disasters [8]. The International Civil Aviation
Organization (ICAO) has been working to improve aviation safety and to apply the latest research
on human factors to the global aviation industry. Investigators tend to analyze safety issues from
a systematic perspective, including human and organizational factors as well as other factors [9].
In this context, the human factor analysis and classification system (HFACS) emerged. HFACS was
originally designed and developed based on the “Swiss-Cheese” model of Reason and the human
error framework, which was used to investigate and analyze human error accidents in American
military aviation operations [10], and the framework’s developers have demonstrated its applicability
to commercial and general aviation accident analysis [11]. Moreover, human factors are important for
understanding human performance in a variety of transportation sectors, and HFACS was further
adapted to investigate ship and railway accidents arising from human errors [12–14]. Celik and Cebi
used HFACS to investigate the human factors in the ship accident [15]. Daramola et al. used the
HFACS framework to investigate aviation accidents in Nigeria between 1985 and 2010 [16]. Chen et al.
used the HFACS framework and Bayesian network to analyze the human factors of crew members
behind the aviation accident and evaluate their performance [9]. Zhou et al. searched for human
factors affecting aviation safety based on the framework of HFACS through the questionnaire survey of
airport staff in Ulaanbaatar, Mongolia. The study focused on the professional opinions of experienced
investigators or operators [6].

Through the above review, we found that the existing research can be further improved in the
following aspects. First of all, the detailed information about the behavior of air traffic controllers
obtained from the accident reports is relatively limited, such as the degree of ATC safety culture,
the salary of controllers, whether the ATC supervision plan is complete, etc., which is more or less
unavailable in the accident reports [9]. In addition, the reasons behind air accidents seem to be very
complex, and the quantitative causal relationship between human factors is usually limited and highly
uncertain. Faced with the problem of missing and incomplete data, this paper appliedthe Bayesian
network (BN) model, which is one of the most effective theoretical models in the field of uncertain
knowledge expression and reasoning. The model can integrate objective information and subjective
information from multiple sources, and make an inferential analysis from incomplete, inaccurate,
and fuzzy information [17]. Such a combination of HFACS and BN model will advance our full
understanding of the underlying causes of ATC safety failure, and the interrelationships among the
risk sources and their total effects on ATC performance. In the calculation of a conditional probability
table, this paper adopts the noise maximum model, which allows the processing of multi-state nodes
in the network [18,19].

The rest of this paper includes the methodology applied in the study, data collection and modeling,
results analysis, discussion and conclusion, and further research work.

2. Methodology and Materials

2.1. Human Factors Analysis and Classification System (HFACS)

HFACS is valuable for systematically analyzing the causes of an accident and currently remains
at identifying the core risk factors of accidents. It describes four levels of human error: Unsafe acts,
preconditions for unsafe acts, unsafe supervision, and organizational influences (Figure 1) [20]. Since
its initial development, HFACS has proved to be an effective tool for human error analysis in various
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fields, such as railway [13], mining [21], and maritime transport [22], as argued previously. This study
utilizes the Bayesian network (BN) to construct a quantitative prediction network among different
levels of risk factors in HFACS and between risk factors and ATC performance.
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2.2. Bayesian Network Model

Bayesian network, also known as belief network or causal network, is a probabilistic directed
acyclic graphical (DAG) model [23]. Nodes in DAG denote random variables, directed line segments
represent conditional dependencies among random variables, and conditional probability tables store
joint conditional probabilities between corresponding nodes [24–26]. It is assumed that node B directly
affects node A and connects the two nodes with A directed line segment, i.e., B→A, where B stands for
“Parents” and A stands for “Children”. The connection strength between the two nodes is expressed by
conditional probability P (A|B), as shown in Figure 2a. A Bayesian network is formed when variables
involved in a system are plotted in a DAG according to a certain causal relationship, as shown in
Figure 2b, which is a simple example.

In a BN, any trajectory consists of the connection of the three structures in Figure 3.
BN is especially well suited to safety issues and risk assessment, including the aviation field [27].

Jitwasinkul et al., focusing on personal safety behavior, established the BN model to identify the most
critical organizational factors that improve safety behavior [28]. Chen et al. focused on the human
error of flight crew behind aviation accidents [9], while Zhou et al. focused on the safety awareness
of airport staff [6]. Although these applications are in different settings, it can be concluded that BN
can perform human factor and safety analysis, including prediction, diagnosis, decision making, and
provide insight into the relationship between variables. This study thus aims to introduce BN as an
appropriate method to predict ATC performance and to diagnose human factors in ATC failures.
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Figure 3. Three basic structures of Bayesian networks. (a) Head to head; that is, given the condition of Z,
the communication between X and Y is blocked, also known as head-to-head condition independence.
It is obvious that variables X and Y have a common result Z. The joint probability can be expressed as P
(X, Y, Z) = P(X) P(Y) P (Z|X, Y). (b) Head to tail. For a given condition of Y, the communication between
X and Z is blocked, which is called head-to-tail condition independent. X, Y, and Z are connected
serially, and the corresponding joint probability distribution is P (X, Y, Z) = P(X) P (Y|X) P(Z|Y). (c) Tail
to tail. For a given condition of Z, the communication between X and Y is blocked, which is called
tail-to-tail condition independence. Obviously, X and Y have a common cause. The joint probability is
therefore calculated as P (X, Y, Z) = P (Z) P (X|Z) P (Y|Z).

2.3. Noisy MAX Model

In general, the conditional probability table can be obtained from a database or the judgment of
relevant experts [29]. However, it is challenging work to directly get all the conditional probabilities
for a large-scale network since the number of parameters grows exponentially with the number of
parents [30]. At present, the most widely used algorithm is the Noise-OR model proposed by Good [31].
Henrion further extends the model to multivariate variables [32]. Based on Henrion’s model and
formalizing it, Diez proposed a kind of evidence propagation algorithm “MAX gate” [18]. To focus on
the ternary variable BN model, this paper, therefore, adopts the “noisy MAX” dealing with conditional
distribution of multiple variables.

In noisy MAX, the child node Y, taken sequentially from 0 to ymax − 1, has a total of ymax states,
and N parents, Pa(Y) = {X1, . . . , Xn}, representing the causes of Y. The following are two basic axioms
of noisy MAX [18]:

P(Y = 0|Xi = 0,∀i) = 1 (1)

P(Y ≤ y|x1, x2, . . . , xn) =
∏

i

P(Y ≤ y|Xi = xi, X j = 0,∀ j , i) (2)

where the Xi are independent of each other.
The parameters for link Xi → Y are cxi

y , representing the probability of Y = y when parent Xi
takes on the value xi and all other X j values are 0.

cxi
y = P(Y = y|Xi = xi, X j = 0,∀ j , i) (3)
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Define a new parameter:

Cxi
y = P(Y ≤ y|Xi = xi, X j = 0,∀ j, j , i) =

y∑
k=0

cxi
k . (4)

Then, Equation (2) can be rewritten as:

P(Y ≤ y|x1, x2, . . . , xn) =
∏

i

Cxi
y . (5)

Finally, the CPT is obtained using the following formulas:

P(y|X) =

{
P(Y ≤ 0|X)

P(Y ≤ y|X) − P(Y ≤ y− 1|X)

i f y = 0
i f y > 0

(6)

2.4. Research Framework

In order to clearly describe how HFACS and BN effectively combine to predict the performance of
ATC, Figure 4 presents the research framework of this paper.
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Figure 4. Research framework.

Phase 1. First, an HFACS framework was established for the specific analysis of human factors
related to ATC in civil aviation safety. To this end, based on the existing mature HFACS structure, and
aviation accident report, we also interviewed the opinions of experts and engineers in relevant fields
to select the most important ATC human factors that may lead to aviation accidents. Detailed data
information for phase 1 will be provided later in this article.

Phase 2. Next, human factors from the HFACS framework are selected as the node variables of the
BN model to establish the influence relationship between different variables involved in the HFACS
framework. When the BN model is used for prediction, the prior probability of the root node in the
model should be given first. According to the data in the aviation accident reports, and the “Skybrary”
database, as well as the results of the questionnaire survey, the conditional probability tables (CPT)
among the BN nodes can be generated. CPT calculation results of phase 2 are shown in Section 3.2.
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Phase 3. Based on the HFACS-BN model established in the above steps, BN inference and
sensitivity analysis were conducted to predict and analyze the most important factors affecting the
performance of ATC in the model. Finally, it gives corresponding risk factors intervention measures,
and verifies the model to help managers predict aviation safety performance ability.

3. Theoretical Development

3.1. Network Construction

Since 1980, 142 aviation accidents/incidents worldwide related to ATC human factors have been
recorded in “Skybrary,” accounting for more than 13.6% of the 1045 aviation accidents/incidents
in the database in the same period. SKYbrary was initiated by EUROCONTROL in partnership
with International Civil Aviation Organization (ICAO), The Flight Safety Foundation and The UK
Flight Safety Committee, and work with the Federal Aviation Administration (FAA) to upload the
outputs of the Commercial Aviation Safety Team (CAST) to provide reference materials for safety
managers. As shown in Figure 5, the time–frequency distribution shows that the number of aviation
accidents/incidents related to ATC human factors is on a sharp rise, which is understandable because the
leading cause of aviation accidents has shifted from technical problems to human factors; moreover, the
number of aircraft fleet and flight frequency are also increasing. The analysis and identification of ATC
human factors provide practical insights for organizations on aviation safety and ATC performance
management, especially in understanding which key human factors have a significant impact on the
performance of controllers, to further improve ATC work and the safety of ATC operations.
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Figure 6 shows the category of ATC human factors and the frequency of each human factor
according to Skybrary statistics in 142 aviation accidents/incidents worldwide from 1980 to 2019. As we
can see, a total of 14 human factor tags were behind 142 aviation accidents/incidents, and all human
factor tags occurred 410 times; where 94 accidents/incidents related to procedural noncompliance
and 92 accidents/incidents related to ineffective monitoring, while only 2 and 1 accidents/incidents
related to stress and ATC team coordination, respectively. Note that this is because the human factors
behind every aviation accident/incident are complex and diverse, as in the case of the 4 April 2016
accident, a Boeing 737-800 crew taking off in normal night visibility from Jakarta Halim were unable
to avoid an ATR 42-600 undertow, which had entered their runway after ambiguity in its clearance.
Both aircraft sustained substantial damage and caught fire but all those involved escaped uninjured.
The accident report involves four kinds of human factor tags, including the ATC clearance error, ATC
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unit coordination, ineffective monitoring, and procedural noncompliance, hence all human factor tags
occurred 410 times.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 21 
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Generally, the ATC performance model is a complex system with tightly coupled relationships
between nodes. Combined with the opinions of experts in the aviation field, Figure 7 shows the “ATC
Performance” model in this paper, which contains four sequential paths affecting the performance of
ATC, namely “Organizational Influence”, “Unsafe Supervision”, “Preconditions for Unsafe Acts”, and
“Unsafe Acts”, and each influence path contains human factors at the corresponding level.
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In order to better illustrate each node in the ATC performance model, Table 1 describes the source
and detailed interpretation of human factors. It is worth mentioning that the ATC human factor tags
from Skybrary are not very comprehensive, and most of them are distributed on the two levels of unsafe
acts and the preconditions of unsafe acts. However, some human factors related to organizational
influence, such as organizational climate, safety culture, or resource allocation, are difficult to be
directly recorded in the accident report. However, in previous studies [4,33,34], these factors did
affect ATC performance. Therefore, some nodes in the model are not involved in the accident report
mentioned above, which are derived from references and expert opinions.

Table 1. Factors description and its sources.

Factors HFACS Level Description Source

Safety Culture

Organizational
Influence

It includes the safety policy of the ATC department,
safety education, as well as preventive measures CAA (2003) [35]

Team Human
Resource Allocation

The duty of the team members is not clear, the collocation
is not reasonable, the work is not coordinated and so on N.S. Olsen [33]

Salary and Reward It refers to salary and workload that do not match,
employees that are not satisfied with the salary and reward CAA (2002a) [35]

ATC Communication Communication between controllers, including briefing
on handover Shappell [36]

ATC/Flight
Crew Cooperation

It refers to the communication and coordination between
ATCOs and crew members SKYbrary [37]

ATC Software/Hardware It includes ATC equipment layout, hardware failure,
software interaction and so on SKYbrary [37]

Lack of Supervision Plan

Unsafe Supervision

ATC supervision is not in place, not comprehensive,
not meticulous, etc. N.S. Olsen [33]

Poor Management
Discipline

It means the management style discipline/supervision effect
are poor Experts’ opinions

Failed to Enforce
Regulations

It leads to an inadequate understanding of the rules by air
traffic controllers and may raise safety risks Zhou [6]

Failed to Correct
Inappropriate Acts

It occurs when ATCO does not correct unsafe acts
during control N.S. Olsen [33]

Ineffective Monitoring It includes monitoring flight path, aircraft systems,
operational factors, crew/situational awareness. ICAO [38]

Visibility

Preconditions for
Unsafe Acts

Poor visibility due to weather or environmental conditions,
unable to effectively monitor aircraft status SKYbrary [37]

Air–Ground
Communication
Interference

Ground–to–air communication frequency is seriously
disturbed by the external environment Experts’ opinions

Mental State Mental, emotional or physical tension, strain or distress N.S. Olsen [33]

Noise It includes ambient noise from air traffic controllers,
noise from crew members, or other noises in the radio Experts’ opinions

Training Lack of training materials or inadequate training Teperi [34]
Physical Fatigue Factors related to a lack of sleep or long work days IATA (2006)

Nonstandard Flight
Progress Strip

Unsafe Acts

Aircraft call number, departure location, aircraft model and
other information are not standard SKYbrary [37]

Distraction Distraction refers to the lack of concentration of air traffic
controllers, which affects the normal work of ATC Chang [35]

Use Non-standard Terms It refers to the use of informal terms in air traffic
control activities SKYbrary [37]

ATC clearance error There are two types: intended clearance given to wrong
aircraft or wrong clearance given to intended aircraft SKYbrary [37]

Emergency Mishandling ATCO do not have a good command of special situation
handling procedures, poor psychological endurance ICAO [38]

Operation/Decision Error Mis operation or decision-making by the ATCO in the
control process N.S. Olsen [33]

ATCO Misspeaking It refers to careless, absent-minded, insincere control work,
resulting in instruction errors ICAO [38]

Procedural
Noncompliance

Not following procedures: FARs, OEM standards, SOPs;
It always results in a greater risk for the operation SKYbrary [37]

3.2. Data Collection

Generally, when the number of parents involved in a BN is large, collecting a conditional probability
table (CPT) of each node from the accident/incident reports or experts’ opinions is a challenging task.
Since the accident reports related to ATC cannot record all the information of each node, it is difficult
to deduce CPTs directly from the database. In this paper, the original parameters of CPT are obtained
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by combining the analysis of aviation accident reports and survey. However, the limitations of the data
need to be noted, as the survey related to human factors is susceptible to the influence of statistical
factors. These expert estimates, plus the need to be cautious about statistical fluctuations, limit the
accuracy of conditional probability estimates [39].

3.2.1. Objective Marginal Probability

The marginal probabilities are obtained by analyzing literature review and ATC accident reports.
Two nodes of “ATC Clearance Error” and “Distraction” are taken as examples to illustrate how to
obtain the marginal probability from the database. Of the 142 aviation accidents/incidents recorded
by the “SKYbrary” between 1980 and 2019, 48 accidents/incidents were related to “ATC Clearance
Error,” and 29 were related to “Distraction.” According to the above 142 relevant records, the marginal
probabilities of nodes were calculated, as shown in Table 2.

Table 2. Marginal probabilities for nodes ATC clearance error and distraction.

Node ATC Clearance Error Distraction

State Yes No Yes No
Number 48 94 29 113

Probability 0.3380 0.6620 0.2042 0.7958

3.2.2. Subjective Conditional Probability

The Noisy MAX model is used to generate conditional probabilities, and the survey is conducted
to obtain the original parameters, involving human factors at four levels of HFACS [30]. Each node in
the survey has two types of questions, corresponding to the dependencies between parent and child
nodes and the countermeasures to be taken. Questions are divided into the following two types:

• Type 1 is used for conditional probabilities assignment, which requires respondents to give
conditional probabilities under the condition that only child and parent are considered.

• Type 2 is used for model validation, which requires respondents to select the countermeasures of
different nodes that should be taken.

We successfully collected valid questionnaire sheets from 26 air traffic controllers and experts
familiar with ATC in China. The Likert scale was adopted to evaluate the survey, with 1 point
representing a very low probability and 5 points representing a very high probability, which were used
to indicate the influence degree of one node on another node. Taking the node ATC organizational
climate in Figure 7 as an example, the Type 1 question amounted to: What is the probability that
“Safety Culture = good” results in “ATC Organizational Climate = good”?

Type 2 question: Which of the following measures do you think would reduce human errors and
improve ATC performance? Choose several most influential factors or give your opinions. For instance,
the corresponding measure lists include regular safety awareness training, improve management discipline,
reasonable arrangement work time, strengthening ATC professional skills training, and so on. After the
original probabilities were collected and normalized, the noisy MAX model above was used to generate
CPT. Table 3 shows an example of CPTS. Out of those 42 sets of questionnaires, 26 sets were valid, reaching
a valid response rate of 61.9%. The respondents’ backgrounds are described in Table 4.

Table 3. Example of conditional probability table (CPT) inputting.

ATC Organizational
Climate

ATC/Crew Cooperation Communication Safety Culture

Good Normal Poor Good Normal Poor Good Normal Poor

Good 0.4776 0.2619 0 0.4468 0.3095 0 0.4762 0.3182 0
Normal 0.3406 0.4048 0 0.3404 0.4286 0 0.3333 0.4318 0

Poor 0.1818 0.3333 1 0.2128 0.2619 1 0.1905 0.25 1
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Table 4. Respondents’ background.

Item Frequency Percent (%)

Gender
Male 21 80.8
Female 5 19.2

Education
Bachelor degree 15 57.7
Master 7 26.9
Ph.D. 4 15.4

Position
Tower control 6 23.1
Approach control 8 30.8
Area control 8 30.8
ATC expert (Dr., Prof.) 4 15.3

Work experience
<3 3 11.5
3−5 8 30.8
>5 15 57.7

Control mode
Procedural Control 14 53.8
Radar Control 8 30.8

3.3. Sensitivity Analysis

Sensitivity analysis is a general method to study the influence of inaccurate parameters on model
output and to compare the importance of different factors. The analysis based on it will be shown
in Section 4.3. The sensitivity function can be used to express the sensitivity change of the posterior
probability of the target variable [40]. X is defined as the probability of the variable taking a certain state,
Y is a query, then according to the evidence E, the posterior probability S (Y|E) (X) can be expressed as
the normalized function of X:

s(y|e)(x) =
αx + β

λx + 1
. (7)

Here, replace the values of X with 0, 0.5, and 1, respectively, and substitute the posterior probability
values of the target variable to determine the values of α, β and λ:

β = s(0)

λ =
β−s(0.5)

s(0.5)−s(1) − 1

α = s(1) ∗ (λ+ 1) − β

. (8)

Then, according to the partial derivative of S (Y|E) (X) with respect to X, the sensitivity value of S
on X can be obtained:

f ′(x) =
∂s(x)
∂x

=
α− βλ

(λx + 1)2 . (9)

The more sensitive the target variable is to the factor, the more drastic the change of S(Y|E) (X) is
with the factor X value.

4. Results

The BN model was implemented in GeNIe software. After the BN model was estimated, sensitivity
analysis of probability was carried out by giving evidence of different subsets. In addition, the final
target variable “ATC Performance” was performed with bottom-up probability reasoning to calculate
the posterior probability of each human factor. Finally, content validity and predictive validity were
applied to verify the BN model.
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4.1. Key Factors

By setting the human factors in Figure 7 to different states (“Good, Normal, Bad” or “Yes, No”),
the percentage of posterior probability increase of the target variable was calculated to measure the
importance of different human factors on ATC Performance.

As shown in Table 5, the five most important human factors affecting ATC Performance are
training, physical fatigue, mental state, ineffective monitoring, and ATC software/hardware. Obviously,
training contributes the most to the performance of air traffic controllers, which means that the
professionals interviewed believe that the above human factors are most likely to exist in air traffic
accidents related to air traffic controllers. One interesting human factor is ineffective monitoring,
which will affect the organization’s safety culture, and the attitude, performance, and efficiency of the
controllers, ultimately affecting the air traffic safety.

Table 5. Computation results of changing states of influence factors.

No. Node State P (ATC
= Good) State P (ATC

= Good) State P (ATC
= Good)

Increased
Percent

1 Training poor 0.633 normal 0.656 good 0.662 4.58%
2 Physical Fatigue poor 0.645 normal 0.657 good 0.661 2.48%
3 Mental State poor 0.647 normal 0.658 good 0.662 2.32%
4 Ineffective Monitoring yes 0.654 - / no 0.669 2.29%
5 ATC Software/Hardware poor 0.650 normal 0.657 good 0.660 1.54%
6 Failed to Enforce Regulations yes 0.652 - / no 0.661 1.38%
7 Failed to Correct Inappropriate Acts yes 0.652 - / no 0.661 1.38%
8 ATC/Flight Crew Cooperation poor 0.652 normal 0.658 good 0.661 1.38%
9 ATC Communication poor 0.652 normal 0.659 good 0.661 1.38%

10 Noise high 0.652 normal 0.658 low 0.661 1.38%
11 Safety Culture poor 0.652 normal 0.659 good 0.660 1.23%
12 Air-Ground Communication Interference serious 0.653 normal 0.658 slight 0.661 1.23%
13 Visibility poor 0.653 normal 0.658 good 0.661 1.23%
14 Lack of Supervision Plan yes 0.653 - / no 0.660 1.07%
15 Team Human Resource Allocation poor 0.654 normal 0.659 good 0.661 1.07%
16 ATC clearance error yes 0.655 - / no 0.662 1.07%
17 Procedural Noncompliance yes 0.657 - / no 0.664 1.07%
18 Operation/Decision Error yes 0.654 - / no 0.660 0.92%
19 Poor Management Discipline yes 0.654 - / no 0.660 0.92%
20 Salary and Reward low 0.655 middle 0.659 high 0.661 0.92%
21 ATCO Misspeaking yes 0.655 - / no 0.660 0.76%
22 Emergency Mishandling yes 0.655 - / no 0.660 0.76%
23 Nonstandard Flight Progress Strip yes 0.656 - / no 0.660 0.61%
24 Distraction yes 0.656 - / no 0.660 0.61%
25 Use Nonstandard Terms yes 0.657 - / no 0.660 0.46%

4.2. BN Inference

The process of finding the key factors is a top-down probabilistic diagnosis. In Figure 7, the value
of the final target variable “ATC Performance” is replaced by 1, and the posterior probability of all
parent nodes can be obtained; that is, the so-called bottom-up diagnosis. Here, the probability of “ATC
Performance = Bad” is set to 1 to obtain the posterior probability of all nodes. The higher the posterior
probability of human factors, the greater the contribution of this factor to aviation accident risk.

Figure 8 shows the marginal probability distribution of the four levels in the HFACS model.
Unsafe acts had the greatest influence on ATC Performance (79.4%), while preconditions for safe acts
contributed the least (40.3%).

Apparently, as shown in Figure 9, unsafe acts contributes the most to the overall risk of accidents,
including violations and air traffic control errors, with a posteriori probability of 71.3% and 52.6%,
respectively. This means that the respondents believe that these human factors are most likely to be
present in air accidents involving controllers. The second group of factors with more considerable
influence belong to unsafe supervision, and preconditions of safe acts level include inadequate
supervision, ATCOs states, whose posterior probabilities range between 40% and 65%. The contributions
of the other levels to the ATC performance are similar (23%–35%), in which the supervision violation at
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the level of unsafe supervision and the organizational climate at the level of organizational influence
contribute the least to the performance (posterior probabilities are less than 25%).
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4.3. Model Validation

A BN model without verification is incomplete. This study adopts the following two methods:

• Content validity: In order to check the validity of Content, it is necessary to ensure that the BN
network only considers the relevant human factor variables and their relations related to ATC.
In this regard, all human factors are derived from the literature review and the viewpoint of
front-line ATCOs, who also provide great help for the subsequent input of conditional probability
between nodes.

• Predictive validity: The most direct and effective verification method is to compare the diagnosis
results of the BN model with the database used, which include countermeasure preferences and
sensitivity verification.

Firstly, as mentioned above in Section 3.2.2, there are questions designed for the preference of
countermeasures. According to their prior knowledge, the respondents were required to select the six
most influential factors from lists that would reduce human errors and improve ATC performance, then
compare them with the posterior key human factors calculated by the Bayesian network. Figure 10
shows the countermeasure preferences of 26 frontline ATCOs and relevant experts. Interestingly,
“Increase the salary of ATCOs” (chosen by 68.20% of the respondents) is the most popular response.
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Higher salaries may have a positive effect on ATC mental state and physical fatigue. Followed by
“Reasonable collocation of team members” (53.13%) and “Improve the selection criteria of ATCOs”
(41.35%). Understandably, air traffic controllers selected with higher standards tend to have better
professional qualities, which can make up for the possible consequences of insufficient training. At the
same time, reasonable collocation of team members can also reduce ATC work burden and pressure.
In contrast, “Regular safety awareness training” and “Strengthen organizational management” are the
least popular measures chosen by 13.32% and 15.53%, respectively. The possible explanation is that
respondents are satisfied with the current situation of safety awareness training and organizational
management. The above results are roughly consistent with the observations in Section 4.1. However,
respondents’ preference for countermeasures only indicates their observation and understanding of
ATC performance in this region, and cannot be extended to other regions of the world.
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Secondly, the sensitivity analysis of the target node “ATC Performance” was conducted to
determine how much uncertainty can be reduced by each human factor. The mathematical function and
analysis were shown in Section 3.3. Figure 11 shows the human factors with relatively high sensitivity.
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The study found that the target variable was relatively sensitive to training, physical fatigue,
mental state, ineffective monitoring, and ATC software/hardware. This finding is also consistent with
previous observations.

5. Conclusions

As reviewed in Section 1, traditional accident analysis or risk assessment methods are difficult to
quantify rare accidents related to aviation safety. HFACS-BN model provides an additional method
for identifying the major human factors that may lead to aviation accidents. Through the analysis
of 142 aviation accidents/incidents related to ATC human factors worldwide from 1980 to 2019, the
ATC performance model identified 25 major human factors (Figure 1). In addition, the subjective
data of the human factors perceived by ATCOs are further collected to supplement the objective data
of aviation accident report. CPTs are elicited by the noisy MAX model, and two inference methods
of probability prediction and probability diagnosis are used to analyze the causal relationship and
posterior probability among variables in the BN model.

Concerning the four levels of the HFACS framework, the influence of human factors on various
levels is quite different. Unsafe acts (79.4%) and unsafe supervision (56.9%) contribute the most to ATC
performance, while preconditions for safe acts (40.3%) has the lowest Influence. Overall, the top five
most influential factors for ATC Performance are training, physical fatigue, mental state, ineffective
monitoring, and ATC software/hardware; specific values are described in Section 4. The above results
further imply that the formulation of aviation safety policy should pay more attention to the supervision
level and individual factors. Furthermore, due to the complexity between human factors and accident
risk, the coupling relationship and chain reaction between human factors should be fully utilized in
the safety-related capacity building for ATCO; for example, reasonable allocation of team members
may increase work efficiency and reduce the physical strain.

The contribution of this study is mainly reflected in the following aspects. Firstly, the HFACS
framework and BN model are used to provide a systematic and operable method for aviation safety
research. Secondly, it makes full use of the ATCO’s professional knowledge to overcome the issues of
database availability, as mentioned above in Section 3.2.2, to calculate the order of key factors, and
to derive effective countermeasures against human errors. Thirdly, the modeling method and data
analysis strategy of this study can also be further applied to security research in non-aviation fields.
Examples include areas involving human-factor-related accident risk mechanisms such as public
transport or mining systems.

This study is, however, not free of limitations, including:

• Almost all accidents have multiple contributory factors and that pilot error is often the probable cause.
• Air traffic control systems vary in size and structure around the world so that where one investigative

agency may find ATC, or an associated controller or controllers, responsible for a particular accident,
another one may not.

• These data are limited to summarized accident reports based on queried keywords and not based
on independent evaluations of all accidents, probable causes, or contributing factors.

• Expert opinions were gathered from one ATC system (i.e., China) and perceptions may not reflect
a comprehensive global view.

• The use of expert evaluation and the noisy MAX algorithm to evaluate the prior probability of the
root node in the BN model will inevitably involve cognitive bias.

Finally, the current BN model in this study may change with the passage of time and the cognition
of various human factors by the frontline ATC. More research should be accumulated in the future to
monitor the changes in human factors and causal relationships related to aviation safety, reducing the
contribution of human errors to the risk of aviation accidents.
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6. Key Points

• “Human error” is an unhelpful yet common explanation for the cause of accidents/incidents in
complex activities featuring vast combinations of people and technology (e.g., aviation) [41].

• To better understand the conditions influencing human error in aviation accidents/incidents
related to air traffic control, we analyzed the “SKYbrary” database based on the HFACS model
and preliminarily identified the human factors affecting ATC performance.

• A subsequent analysis based on BN model combined with accident statistics and expert opinions
found that inadequate training, physiological fatigue, and ineffective monitoring were important
factors affecting ATC performance continuation aggravated by the lack of regulatory plans.

• Meanwhile, validated the effectiveness of key human factors with the help of sensitivity analysis
functions and provided countermeasures to improve ATC performance through surveys of respondents.
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Appendix A

The aviation accident database is an important data source for the construction of the Bayesian
network. Based on 142 accidents/incidents related to ATC human factors in 1980–2019 listed on
Skybrary, this paper conducts detailed and specific accident analysis, which provides an essential basis
for the establishment of CPT. Brief information on the aviation accidents/incidents shown in Table A1.

Table A1. Brief information on air accidents/incidents.

Date Aircraft Type Location

A

2013 A109 Vicinity London Heliport London UK
2008 A310 Khartoum Sudan
2008 A310 Vicinity Quebec Canada
2009 A318/B738 En-route, Trasadingen Switzerland
2007 A318/B739 Vicinity Amsterdam Netherlands
2011 A319/A321 En-route, west north west of GeneVaSwitzerland
2011 A319/PRM1 En-route, near Fribourg Switzerland
2016 A319 Santiago de Compostela Spain
2010 A319/A319 En-route, South west of Basle-Mulhouse France
2011 A320/A320 Zurich Switzerland
2012 A320/A346 En-route Eastern Indian Ocean
2017 A320/AT76 Yangon Myanmar
2012 A320/B738 Barcelona Spain
2016 A320/B738 Vicinity Delhi India
2013 A320/B739 Yogyakarta Indonesia
2011 A320/C56X Vicinity GeneVa Switzerland
2014 A320/CRJ2 Port Elizabeth South Africa
2010 A320 Oslo Norway
2000 A320 Toronto Canada
2013 A320 En route, north of Marseilles France
2009 A320 En-route, Denver CO USA
2014 A320 Vicinity Naha Okinawa Japan
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Table A1. Cont.

2013 A320/B738 Vicinity Delhi India
2013 A320/E190/B712 Vicinity Helsinki Finland
2015 A321/B734 Barcelona Spain
2011 A321/B738 Dublin Ireland
2012 A332/A333 En-route, north West Australia
2004 A332/RJ1H Vicinity Zurich Switzerland
2014 A343/B763 Barcelona Spain
2012 A343/GLID En-route, north of Waldshut-TiEngEn southwest Germany
2012 A343 Vicinity Paris CDG France
2009 AS50/PA32 En-route Hudson River NJ USA
1999 AT43 Vicinity Pristina KosoVo
2004 AT45/B733 Munich Germany
1999 AT72/B732 Vicinity Queenstown New Zealand
2009 AT72 Mumbai India
2017 AT75/B739 Medan Indonesia
2014 AT76 Surabaya Indonesia

B

2014 B190/B737 Calgary Canada
2008 B190 Vicinity Bebi south eastern Nigeria
1990 B722/BE10 Atlanta GA USA
2004 B732/A321 Manchester UK
1988 B732 En-route, Maui Hawaii
1982 B732 Vicinity Washington National DC USA
1991 B733/SW4 Los Angeles CA USA
2010 B733/Vehicle Amsterdam Netherlands
2008 B733 Vicinity Helsinki Finland
1996 B734/MD81 En-route, Romford UK
2010 B734 Amsterdam Netherlands
2008 B734 Palembang Indonesia
2015 B734 Sharjah UAE
2010 B734 Vicinity Lyon France
1999 B735 Vicinity Billund Denmark
2013 B735 Vicinity Kazan Russia
2001 B735/B733 Dallas-Fort Worth TX USA
2006 B737/B737 Vicinity Geneva Switzerland
2005 B737 Chicago Midway USA
2011 B737/C212 En-route/maneuvering, near Richmond NSW Australia
2018 B738/A320 Edinburgh UK
2016 B738/AT46 Jakarta Halim Indonesia
2004 B738/B744 Los Angeles USA
2007 B738/CRJ1 New York La Guardia USA
2006 B738/E135 En-route, Mato Grosso Brazil
2013 B738 Alicante Spain
2009 B738 Kingston Jamaica
2017 B738 Sint Maarten Eastern Caribbean
2010 B738 En-route, east of Asahikawa Japan
2010 B738/B734 Johannesburg South Africa
2010 B738/B738 Girona Spain
2012 B738/B738 Vicinity Oslo Norway
2010 B738/B738 Vicinity Queenstown New Zealand
2011 B738/B763 Barcelona Spain
2000 B744/A321 Vicinity London Heathrow UK
2010 B744/Vehicle Luxembourg Airport Luxembourg
2009 B744 Mumbai India
2007 B744 Sydney Australia
1996 B752 En-route, Vicinity Chancay Peru
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Table A1. Cont.

2001 B762/A310 Toronto Canada
2002 B762 Vicinity Busan Korea
1998 B763/B744 Amsterdam Netherlands
2007 B763/B772 New Chitose Japan
2014 B763 Addis Ababa Ethiopia
2010 B763/B738 Vicinity Melbourne Australia
2009 B772 St Kitts West Indies
2015 B773/B738/B738 Melbourne Australia
2007 B773 Auckland Airport New Zealand
2016 B773 Dhaka Bangladesh

C

1997 C185 Wellington New Zealand
2012 C30J En-route, northern Sweden
2009 C525/B773 Vicinity London City UK
2004 C550 Vicinity Cagliari Sardinia Italy
2006 CRJ1 Lexington KY USA
2014 CRJ2/A320 Vicinity Port Elizabeth South Africa
2008 CRJ7/C172 Allentown PA USA
2009 CRJ9/Vehicles Whitehorse YK Canada
2017 CRJ9 Turku Finland

D

2012 D328/R44 Bern Switzerland
1990 DC91/B722 Detroit MI USA
1983 DC93/B722 Madrid Spain
1994 DC93 Vicinity Charlotte NC USA
2002 DC95/C206 Toronto Canada
2017 DH8B Kangerlussuaq Greenland
2013 DH8C/P180 Ottawa ON Canada

E

2009 E145/DH8B Cleveland USA
2011 E145/E135 Chicago O’Hare USA
2016 E190/D328 Basel Mulhouse France
2011 E190/Vehicle Denver COUSA
2010 E190 Oslo Norway
2016 E195/A320 Brussels Belgium

F

2012 F100/EC45 Vicinity Bern Switzerland
2000 F15/B752 En-route, South East of Birmingham UK
2005 F15/E145 En-route, Bedford UK
2016 F50/P28T Vicinity Friedrichshafen Germany
2014 FA50/Vehicle Moscow Vnukovo Russia

M

1994 MD82/C441 Lambert-St Louis MI USA
2004 MD83 Vicinity Nantes France
2001 MD87/C525 Milan Linate

P

2012 PRM1/CRJ2 Nice France

R

2009 RJ1H/UNKN Vicinity Malmo Sweden
2011 RJ85/Vehicle Gothenburg Sweden
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Table A1. Cont.

S

2011 SF34/AT72 Helsinki Finland
2000 SH33/MD83 Paris CDG France
2012 SU95 maneuvering near Jakarta Indonesia

T

2002 T154/B752 En-route, Uberlingen Germany
2011 TBM8 Birmingham UK

V

2006 Vehicle/B738 Brisbane Australia
2013 Vehicle/B773 Singapore
2008 Vehicles/B737 Toronto Canada

W

1993 WW24 Vicinity John Wayne Airport Santa Ana CA USA
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