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Abstract. The geometrically exact beam theory is one of the most prominent non-linear beam
models. It can be used to simulate aerial runways or pantograph-catenaries, where a sliding
contact condition between two or more beams is used. A smooth discretization of at least
C1 continuity is needed to not introduce any unphysical kinks. This can be achieved using
the isogeometric analysis, which we apply to a director-based formulation of the geometrically
exact beam. For a stable time integration scheme we use an energy-momentum conserving
scheme. Using the notion of the discrete gradient, an energy-momentum conserving algorithm
is constructed, including the case of sliding contact between beams.

1 Introduction

The simulation of slender structures is of interest in various fields of engineering. Often Finite
Element (FE) approximations with beam elements are used for this purpose. One of the most
prominent beam models in the non-linear regime is the geometrically exact beam model, also
known as Simo-Reissner beam. It can be viewed as a non-linear generalization of the classical
linear Timoshenko beam model. Possible applications for the beam model are, for example, the
simulation of aerial runways or cable cars. In this application the sliding motion of one beam
along the centerline of another beam is simulated. The contact condition between the beams
can hereby be modeled using a sliding joint.
Many different formulations of the geometrically exact beam model exist in the literature [4, 5, 6],
mostly differing in the description of the orientation of the beam’s cross-section. We use a for-
mulation based on directors, three orthonormal vectors [8], and avoid a formulation based on
rotations, as a path-independent and frame-indifferent discretization of rotations leads to addi-
tional effort in the implementation.
Balance laws for linear and angular momentum as well as the balance of energy form the bases
of Hamiltonian mechanical systems, such as elastic beams. A time discretization using standard
algorithms might not carry over these balance laws from the continuous to the discretized time
domain. This, however, can lead to unphysical solutions or numerical instabilities, especially
in the case of nonlinear configuration manifolds. As shown in many publications [14, 15], it is
advantageous to employ an integration method, which preservers the structure of the contin-
ues problem in the discretization process. In [12] Gonzalez showed a general concept on the
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construction of an energy-momentum conserving integrator using the so-called (G-equivariant)
discrete gradient. Romero shows in [13] that the discrete gradient can be constructed from
explicitly solving for Lagrange multipliers, which ensure the conserving properties. Thus, we
apply an energy-momentum conserving scheme based on the discrete gradient to simulate the
dynamic behavior of the beam.
In general the beam centerline can be assumed to be smooth without any kinks in a physi-
cal real-world setting. However, using a classical FE discretization with Lagrangian elements
the smoothness is not preserved in the computational model, as the Lagrangian elements are
C0-continues over elements boundaries. This can be circumvented by using the concept of the
Isogeometric Analysis (IGA). Initially Hughes et al.[1] introduced the IGA in 2005 with the
goal to reduce the effort in the meshing process and close the gap between design and analysis.
However, the IGA brings also more possibilities and flexibility to the Finite Element Method
(FEM) in general, as well. For example the Non-Uniform Rational B-Splines (NURBS) basis
functions usually employed in the IGA have the advantage that they can be easily constructed
with a continuity of Cp−1, where p is the order of discretization. This is of great interest for
the aerial runway problem as described above. Hence, we employ the IGA for the geometrically
exact beam model.

In the following we give a short outline of the rest of the paper. In Section 2 we give a
short summary of the beam formulation employed, as well as on the IGA concept and energy-
momentum time integration scheme. In Section 3 we introduce a mixed approach to describe
the sliding joint. We then use this approach to constructed a structure-preserving algorithm for
the sliding joint using the G-equivariant discrete gradient.

2 Geometrically Exact Beam

Every point on the beam can be described by the position vector

x(s, t, θ1, θ2) = φ(s, t) + θ(s, t) = φ(s, t) + θαdα(s, t) (1)

where s ∈ [s1, s2], with s1, s2 ∈ R, is the arc-length in the reference configuration. θi ∈ R are
convective coordinates (θ1, θ2, θ3 = s). φ ∈ R3 points to the centerline of the beam and θ gives
the position on the cross-section. We employ the Einstein notation for double indices, where
indices with Greek letters run from one to two (α, β = 1, 2), whereas indices with Roman letters
run from one to three (i, j, k = 1, 2, 3). Three directors di ∈ R3 are defined, where d1 and d2

span the cross-section area of the beam, and d3 is defined by

d3(s, t) = d1(s, t)× d2(s, t) (2)

In the reference configuration at time t = 0 the director d3(s, 0) is equivalent to the tangent of

the centerline d3(s, 0) = φ,s (s, 0). Here the abbreviation of the partial derivative ∂(•)
∂s = (•),s is

introduced. The directors are mutually orthonormal for all t ∈ R, that is

di(t)⊗ di(t) = I (3)

where I is the unit tensor. The relation between the orthonormal basis ei and the directors di

can be expressed by
di = R(s, t) · ei (4)
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Figure 1: Sketch of the geometrically exact beam

where
R(s, t) = di(s, t)⊗ ei (5)

R ∈ SO(3) is an orthogonal tensor belonging to the special orthogonal group SO(3). Instead of
parametrizing the orthogonal tensor R and discretizing the parametrization, we discretize the
directors directly as proposed by Betsch and Steinmann [7, 8] and Romero [10].
The material behavior is assumed to be hyperelastic and described by the Saint Venant-Kirchhoff
model. The strain measures and dynamic terms are well known in the literature and are there-
fore not repeated here. Extensive descriptions can be found in terms of rotations for example
in [5, 6] and using directors in [7, 8, 10, 9].

2.1 Isogeometric Analysis

As mentioned in Section 1 the goal is to represent the given geometry exactly, without
introducing geometrically changes due to the discretization. As mention in Sec. 1 we, thus,
apply the IGA concept to the beam formulation.
The origin of NURBS basis functions lies in computer graphics. A comprehensive introduction
to the topic of NURBS can be found in [2]. A NURBS curve is built from B-Splines. Each
B-Spline basis is defined through a knot vector

Ξp =
[
0, . . . 0︸ ︷︷ ︸
p+1

, ξp+2, . . . , ξnele+p+1︸ ︷︷ ︸
nele−1

, 1, . . . 1︸ ︷︷ ︸
p+1

]
(6)

where the index p denotes the polynomial degree of the shape function and nele the number of
curve segments, which is equivalent to the number of elements in a FEM sense. Eq. (6) defines
an open knot vector, which is classically used in IGA.Using the knot vector a B-Spline basis can
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be computed with the help of the Cox-de-Boor recursive formula [2, 3]

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ)

(7)

where division by zero is defined as zero ( (•)0 := 0). The NURBS basis is constructed form

Rp
i (ξ) =

Ni,p(ξ)wi

W (ξ)
=

Ni,p(ξ)wi∑nCP

î=1
Nî,p(ξ)wî

(8)

where wi is the i-th weight. Introducing the control points Bi, where Bi ∈ Rd is the i-th control
point, a NURBS curve can be constructed

C(ξ) =

nCP∑
i=1

Rp
i (ξ)Bi (9)

where nCP = nele + p is the number of control points.

The weak form is derived by applying the principle of virtual work. After applying a FE
discretization a system of differential algebraic equations (DAE) is obtained

Mq̈+∇V (q) +Gin
T λ = f ext (10)

Φin (q) = 0 (11)

where q contains the values of the control points of the displacements and directors and λ
contains the values of the Lagrange multipliers enforcing the orthonormality of the directors
[8].

2.2 Time Discretization

As described in Section 1 it is of great advantage to use an energy-momentum scheme in
combination with non-linear problems such as the geometrically exact beam. Using the energy-
momentum scheme yields the fully discretized DAE for the geometrically exact beam

Man+ 1
2
+ ∇̄V

(
qn,qn+1

)
+GT

in

(
qn+ 1

2

)
λn+1 = 0 (12)

Φin(qn+1) = 0 (13)

where

qn+ 1
2
=

1

2

(
qn + qn+1

)
(14)

vn =
2

∆t
(qn − qn−1)− vn−1 (15)

an+ 1
2
=

2

∆t2
(
qn+1 − qn

)
− 2

∆t
vn (16)
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∆t is the time step and qn the control point values at time n∆t, and qn+1 the control point
values at time (n+ 1)∆t respectively (analogous for λn+1). ∇̄f is called the discrete gradient
of a function f [12]

∇̄f = ∇f(qn+ 1
2
) +

f(qn+1)− f(qn)−∇f(qn+ 1
2
)∆q

∥∆q∥2
∆q (17)

According to Gonzalez [12] it has to fulfill the following properties to inherit the symmetry
properties (linear and angular momentum and energy) from the continuous problem

• directionality condition

∇̄f
(
qn,qn+1

) (
qn+1 − qn

)
= f(qn+1)− f (qn) (18)

• consistency condition

∇̄f
(
qn,qn+1

)
= ∇̄f

(
qn + qn+1

2

)
+O

(
∥qn+1 − qn∥

)
(19)

In case of a quadratic strain energy function, such as a Saint Veant-Kirchhoff material, the
discrete gradient uses the average of the strains and not the average of the configurations such
as with the midpoint rule [14].

2.2.1 Flying Spaghetti

e1

e2

e3

8

6

F(t) M(t)

Figure 2: Sketch of the geometrically exact beam

To show the conserving properties we simulate the well known “Flying Spaghetti” example
[6]. The initial geometry is shown in Fig. 2. An initially straight beam is loaded with a point
force and a moment at one end. Both are given by

F(t) =

{
8 e1 for t ≤ 2.5

0 else
M(t) =

{
−80 e3 for t ≤ 2.5

0 else
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Figure 3: Simulation results of the Flying Spaghetti
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Figure 4: Sketch of the sliding beam problem

The beam parameters are given by

GA = 10.000 EA = 10.000 Aρ = 1

EI = 100 GJ = 200 Mρ = 10

The evolution of the energy and angular momentum are displayed in Fig. 3, where a constant
time step of ∆t = 0.1 was used. It can be seen that both quantities are constant over the whole
simulation time after t = 2.5, from which on no external loads are present anymore.

3 Sliding Joint

For the sliding beam problem, we assume that two beams are in contact, where one beam
is moving along the centerline of the other for a given fixed point. A sketch of the problem is
shown in Fig. 4. For convenience we here chose the end, point A1, of beam A. Due to the
collocation properties of the open knot vectors, this simplifies the implementation. However,
a generalization can be performed in an analogous way. The goal is to simulate the sliding
without any unphysical kinks, which might arise due to the chosen discretization. Hence, the
discretization order has to be choosen of order higher than one (p > 1).
Here beam A slides along the centerline of beam B, while always staying in contact at point

A1. Both beams are modeled as geometrically exact beams and can deform. A detailed sketch
of the contact is shown in Fig. 5.
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Figure 5: Detailed sketch of the contact problem

The described contact problem is similar two a Node-to-Segment (NTS) algorithm, known from
contact mechanics. The construction of the structure conserving algorithm thus follows closely
the NTS algorithm of [16].
The contact constraints can be formulated as

Φc =

[
(φA1 −φB(sc)) · n1

(φA1 −φB(sc)) · n2

]
(20)

where the normal vectors can be calculated using the Sernet-Fernet frame

t =
φB,s (sc)∥∥φB,s (sc)

∥∥ (21)

n1 =
φB,ss (sc)∥∥φB,ss (sc)

∥∥ (22)

n2 = t× n1 (23)

φA1 is the position vector of point A1. sc is the arc-length of beam B at the contact point. Thus,
φB is the position of the centerline of B, where the contact occurs. The mutually orthonormal
vectors n1 and n2 span the plane perpendicular to the tangent of the centerline at the arc-length
sc.

3.1 Mixed approach

We here introduce sc as well as n1 and n2 as augmented coordinates [17]

q̂ =

sc
n1

n2

 (24)

The normal vectors n1 and n2 are equivalent to normal vectors in Eq. (20), hence no additional
subscripts are introduced. The augmented coordinates are appended to the global coordinate
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vector

q̄ =

[
q
q̂

]
(25)

With the augmented coordinates arise additional constraints confining the augmented coordi-
nates

Φa =



(φA1 −φB(sc)) ·φB,s(sc)

n1 · n1 − 1
n2 · n2 − 1
n1 · n2

n1 ·φB,s(sc)

n2 ·φB,s(sc)

n1 ·
(
φA1 −φa+p

B

)


(26)

The superscript a depends on the element (or knot span) on which the contact occurs on beam
B. φa+p

B is position of the a+ p-th control point. The first constraint Φa,1 determines the
augmented coordinate sc. The constraints Φa,2 through Φa,4 ensure that the vectors n1 and n2

are orthonormal. Similarly, Φa,5 and Φa,6 enforce that tangent vector φB,s(sc) is orthogonal to
the plane spanned by n1 and n2. Φa,7 hinders the rotation of n1 and n2 around φB,s(sc).
The contact constraints and the constraints of the augmented coordinates are collected in the
constraint vector

g(q̄) =

[
Φ̄c(q̄)
Φa(q̄)

]
(27)

3.2 G-equivarient discrete gradient

According to Gonzalez [12] the discrete G-equivarient gradient for a function f is given by

∇̄G
f = ∇qπ∇̄π f̄ (28)

where ∇̄π f̄ is the discrete gradient given by (17). The discrete G-equivarient discrete gradient
fulfills two conditions

• equivariance condition

∇̄G
f(Φg(qn+1),Φg(qn)) =

(
∇Φg

(
qn+ 1

2

))−T
· ∇̄G

f
(
qn+1,qn

)
(29)

• orthogonality condition

∇̄G
f
(
qn+1,qn

)
· ξp

(
qn+ 1

2

)
= 0 (30)

π is a set of (quadratic) invariants. They can be found according to Cauchy’s representation
theorem [4]. The formulation of the invariants is dependent on the chosen discretization order,
which, as mentioned above, has to be greater than one. We show here the formulation for a
discretization order of p = 2. Formulation for higher orders follow in a similar fashion. The
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vector of invariants is given by

π =



sc
nT
1 n1

nT
2 n2

nT
1 n2(

φA1 −φa+2
B

)T
n1

(φA1 −φa
B)

T n1(
φa+1
B −φa

B

)T
n1(

φa+2
B −φa

B

)T
n1

(φA1 −φa
B)

T n2(
φa+1
B −φa

B

)T
n2(

φa+2
B −φa

B

)T
n2(

φa+1
B −φa

B

)T
(φA1 −φa

B)(
φa+2
B −φa

B

)T
(φA1 −φa

B)(
φa+1
B −φa

B

)T (
φa+1
B −φa

B

)(
φa+2
B −φa

B

)T (
φa+1
B −φa

B

)(
φa+2
B −φa

B

)T (
φa+2
B −φa

B

)



(31)

We introduce the following abbreviations

N̄ =
[
Na+1(π1) Na+2(π1)

]T
(32)

N̄,π1 =
[
Na+1 ,π1(π1) Na+2 ,π1(π1)

]T
(33)

π̂ =
[
π7 π8

]T
(34)

π̃ =
[
π10 π11

]T
(35)

π̊ =
[
π12 π13

]T
(36)

π̄ =
[
π14 π15

]T
(37)

π∗ =
[
π15 π16

]T
(38)

With the help of Eq. (32) - (38) the constraints are rewritten in a compact manner

ḡ(π) =



π6 − N̄
T
π̂

π9 − N̄
T
π̃

N̄
T
,π1

π̊ −N2(π1)N̄
T
π1
π̄ −N3(π1)N̄

T
π1
π∗

π2 − 1

π3 − 1

π4

N̄
T
,π1

π̂

N̄
T
,π1

π̃

π5



(39)
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The reformulation can be achieved by using the partition of unity of the shape functions.
The contact constraints than lead to the following set of DAE’s

Man+ 1
2
+ ∇̄V (qn+1,qn) +GT

in(qn+ 1
2
)λn+1 + ∇̄G

ḡ(πn+1

(
q̄n+1),πn(q̄n)

)
λc,n+1 = 0

Φin(qn+1) = 0

ḡ(πn+1(q̄n+1)) = 0

(40)

3.2.1 Rotating beam

As a verification example we simulate two beams. They can move freely except for the sliding
contact constraint between them. The initial configuration is shown in Fig. 6. The beams have
the following initial velocities

v0 =
[
1 8 z 0

]T
v =

[
0 0 1

]T
as well as an angular velocity distribution

ω0 =
[
2 0 0

]T
as shown in Fig. 6a. The beam parameters are given by

GA = 5.000 EA = 10.000 Aρ = 1

EI = 10 GJ = 10 Mρ = 1 · 10−3

The simulation results for the energy and the angular momentum are shown in Fig. 6, where
a time step of ∆t = 0.0275 is used. In Fig. 6b the total energy of both beams is shown for
two different time stepping schemes, the energy-momentum method (EM), developed above and
the classical midpoint rule. As can be clearly seen, the midpoint rule leads to an energy blow
up, whereas the proposed EM method conserves the energy. In Fig. 6c the angular momentum
results of the EM scheme of the total system are shown. It can be seen that all components are
conserved.

4 Summary and outlook

We employed the well-known isogeometric concept to the geometrically exact beam formu-
lation. Instead of describing the cross-section orientation of the beam with rotation variables,
directors were used. This was done to simulate a sliding spherical joint between two beams
with the goal to construct an energy-momentum conserving algorithm. The contact condition
was described using augmented coordinates enabling the construction of a vector of invariants,
which is needed for the construction of the discrete gradient.
The applied formulation with directors leads to an increase in unknowns. It would be, hence, of
great interest to investigate different descriptions. An interesting concept could be unit quater-
nions to describe the orientation of the cross-section [11].
To circumvent the additional constraints of the contact condition, the discrete null space method
can be applied [18].
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Figure 6: Simulation results of the rotating beam
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