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a b s t r a c t

A multidimensional extension of the HRPG method (doi:10.1016/j.cma.2009.10.009) using the lowest order block finite elements is presented. First, we 
design a nondimensional element number that quan-tifies the characteristic layers which are found only in higher dimensions. This is done by matching 
the width of the characteristic layers to the width of the parabolic layers found for a fictitious 1D reaction–diffusion problem. The nondimensional element 
number is then defined using this fictitious reaction coefficient, the diffusion coefficient and an appropriate element size. Next, we introduce anisotropic 
ele-ment length vectors li and the stabilization parameters ai, bi are calculated along these li. Except for the modification to include the new dimensionless 
number that quantifies the characteristic layers, the def-initions of ai, bi are a direct extension of their counterparts in 1D. Using ai, bi and li, objective 
character-istic tensors associated with the HRPG method are defined. The numerical artifacts across the characteristic layers are manifested as the Gibbs 
phenomenon. Hence, we treat them just like the artifacts formed across the parabolic layers in the reaction-dominant case. Several 2D examples are 
presented that support the design objective—stabilization with high-resolution.

1. Introduction

It is well known that the solution to the singularly perturbed
convection–diffusion–reaction problem may develop two types of
layers—exponential and parabolic layers. The first-order deriva-
tives in the direction perpendicular to the exponential layers have
a magnitude of O(1/k). Here k is the diffusion coefficient which may
take arbitrarily small values. For the parabolic layers these deriva-
tives have a magnitude of O 1=

ffiffiffi
k
p� �

and hence they are of larger
width than the exponential layers [1]. The exponential layers are
usually found in the convection-dominant cases near the outflow
boundary or close to the regions where the source term is non reg-
ular. Parabolic layers are found in the reaction-dominant cases
near the boundary or close to the regions where the source term
is non regular and in the convection-dominated cases across the
characteristic lines of the solution.

The numerical artifacts observed in the solution of the singularly
perturbed CDR problem using the Bubnov–Galerkin FEM (BG-FEM)
can be broadly classified into three groups: (a) spurious global oscil-
lations, (b) Gibbs phenomenon and (c) numerical dispersion. The
spurious global oscillations are typically found in the solution of

the stationary problem in the presence of exponential layers. The
Gibbs phenomenon is a spurious oscillation that occurs when using
a truncated Fourier series or other eigen function series at a simple
discontinuity. It is characterized by an initial overshoot and then a
pattern of undershoot-overshoot oscillations that decrease in ampli-
tude further from the discontinuity. Unlike the global instability, the
Gibbs phenomenon does not amplify arbitrarily as k ? 0. A classical
example is the L2 projection of a given discontinuous function in any
subspace. Typical examples where we can observe the Gibbs phe-
nomenon are the BG-FEM solutions (a) of the reaction-dominant sta-
tionary CDR problem, (b) across the characteristic lines in the
convection-dominant stationary CDR problem and (c) of the tran-
sient CDR problem using very small time steps with a discontinuous
initial solution. Thus, the Gibbs phenomenon is usually observed in
the presence of parabolic layers. Numerical dispersion is an artifact
found in the solution of the transient CDR problem and is a character-
istic feature of the spatial discretization. It occurs as the wave num-
bers in the amplitude spectra of the initial solution travel with phase
and group velocities distinct from the one governed by the physical
dispersion relation.

Several stabilized methods were proposed to control this global
instability [2–14]. A thorough comparison of some of these
methods can be found in [15]. Several shock-capturing nonlinear
Petrov–Galerkin methods were proposed to control the Gibbs
oscillations observed across characteristic internal/boundary
layers for the convection–diffusion problem [16–28]. A thorough
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review, comparison and state of the art of these and several other
shock-capturing methods for the convection–diffusion equations,
therein named as spurious oscillations at layers diminishing meth-
ods, was done in [29]. Reactive terms were not considered in the
design of these methods and hence they fail to control the localized
oscillations in the presence of these terms. Exceptions to this are
the CAU method [18], the methods presented in [22,24] and those
that take the CAU method as the starting point [20,25,26]. Never-
theless the expressions for the stabilization parameters therein
were never optimized for reactive instability and often the solu-
tions are over-diffusive in these cases.

Several methods were built upon the existing frameworks of
globally stabilized methods to control the Gibbs phenomenon in
the reaction dominant cases [30–43]. Generally the homogeneous
steady CDR problem in 1D has two fundamental solutions. Like-
wise, the characteristic equation associated with linear stabilized
methods which result in compact stencils are quadratic and hence
have two solutions. Thus in principle using two stabilization
parameters (independent of the boundary conditions) linear stabi-
lized methods which result in compact stencils can be designed to
be nodally exact in 1D. Following this line several ‘two-parameter
methods’ viz. [31,33,40] were designed to be nodally exact for the
stationary problem in 1D.

Some methods were proposed in [44,45] in order to control the
Gibbs phenomenon see in the initial stages of the transient evolu-
tion of a discontinuous function using very small time steps. Con-
trol over the dispersive oscillations for the transient convection–
diffusion problem via linear Petrov–Galerkin methods were dis-
cussed in [46] and using space–time finite elements in [47]. As
for the linear methods, optimizing the expressions of the stabiliza-
tion parameters to attain monotonicity will lead to solutions that
are at most first-order accurate.

It was pointed out in [48] that in 1D the performance of the DC
[17] and CD [21] methods are similar to that of the SUPG method.
This is due to the fact that in 1D uk = u (see Table 1) and here the
notion of crosswind directions does not exist. On the other hand
the nonlinear shock-capturing term introduced by the CAU method

are retained in 1D and thus in principle are able to control the
Gibbs and dispersive oscillations. This feature does carry over to
all the methods that have the shock-capturing term similar to that
in the CAU method viz. the methods presented in [20,22,24–26].
Unfortunately as pointed out in [29] and [48, Section 5.7.1], these
methods are often over diffusive.

This paper is a continuation of [48] wherein a nonlinear high-
resolution Petrov–Galerkin (HRPG) method was presented for the
convection–diffusion–reaction (CDR) problem in 1D. The structure
of the method in 1D is identical to the consistent approximate up-
wind (CAU) Petrov–Galerkin method [18] except for the definition
of the stabilization parameters. The prefix ‘high-resolution’ is used
here in the sense popularized by Harten in the finite-difference and
finite-volume communities, i.e. second-order accuracy for smooth/
regular regimes and good shock-capturing in non regular regimes.
In this paper we develop an extension to multi dimensions of the
HRPG method for the singularly perturbed CDR problem using
the lowest order block finite elements. By blocks we mean Carte-
sian product of intervals and by lowest order we refer to multi-lin-
ear finite element (FE) interpolation on these blocks.

The outline of this paper is as follows. In Section 2 we present the
statement of the CDR problem in both the strong and the weak forms.
The statement of the HRPG method is also given here in both the
semi-discrete and fully-discrete forms. In Section 3 we explain con-
cisely the origins and the motivation behind the procedure to calcu-
late the stabilization parameters of the HRPG method as proposed
for the 1D CDR problem in [48]. In Section 4 we discuss the numerical
artifacts found across the characteristic layers which are manifested
as the Gibbs phenomenon and comment on the strategy used to treat
them. In Section 5 we design a nondimensional element number that
quantifies the characteristic internal/boundary layers. Anisotropic
element length vectors li are introduced in Section 6 and using them
objective characteristic tensors h and H associated with the HRPG
method are defined. The stabilization parameters ai, bi used in the
definition of h, H are defined in Section 7 by a direct extension of
their respective expressions in 1D. The definitions of bi are updated
to include the new dimensionless number introduced in Section 5.
In Box 2 we summarize the HRPG method in multi dimensions. Sev-
eral numerical examples are presented in Section 8 that throws light
on the performance of the proposed method for a wide range of prob-
lem data. Finally we arrive atsome conclusions and outlook inSection9.

2. Problem statement

The statement of the multidimensional CDR problem in the
strong form is,

Rð/Þ :¼ @/
@t
þ u � $/� $ � ðk$/Þ þ s/� f ðxÞ ¼ 0 in X ð1aÞ

/ðx; t ¼ 0Þ ¼ /0ðxÞ in X ð1bÞ
/ ¼ /p on CD ð1cÞ
k$/ � nþ gp ¼ 0 on CN ð1dÞ

where u is the convection velocity, k and s are the diffusion and
reaction coefficients respectively, f(x) is the source, /0(x) is the ini-
tial solution, /p and gp are the prescribed values of / and the diffu-
sive flux at the Dirichlet and Neumann boundaries respectively and
n is the normal to the boundary.

For the solution of the problem (1) we introduce the following
space of functions:

V :¼ fw : w 2 H1ðXÞ and w ¼ /p on CDg ð2aÞ
V0 :¼ fw : w 2 H1ðXÞ and w ¼ 0 on CDg ð2bÞ

where Hm(X) is the usual Sobolev space of functions with mth
derivatives square integrable. The weak form of the problem (1)

Table 1
Perturbations associated with Petrov–Galerkin methods [48, Table 1].

Method Perturbation (ph) Remarks

SUPG [2] su � $wh

MH [16] Ce
i Ce

i 2 �1
3
;
2
3

� �
; i ¼ 1;2;3P

i Ce
i ¼ 0

DC [17] s1u � $wh þ s2uk � $wh uk :¼ u � $/h

j$/hj2
r/h

CAU [18], s1u � rwh + s2ur � rwh ur :¼ Rð/hÞ
jr/hj2

r/h

CCAU
[20]

CD [21] s1u � $wh þ a2‘rwh � ½I� bu � bu� � bur bu :¼ u
juj,

bur :¼ ur

jur jbur ¼ sgn½Rð/hÞ�
j$/hj

$/h

SAUPG
[25],

s½kuþ ð1� kÞur � � $wh k is a smoothness
measure

Mod.CAU
[21]

FIC [14] hfic � $wh
Here hfic is a characteristic
length vector which may
be defined in a linear or
nonlinear fashion

HRPG
[48]

½hþH � ûr � � $wh h, H are frame-
independent linear
characteristic length
tensors based on the
element geometry (see
Section 6)



can be expressed as follows: find / : [0,T] ´ V such that "w 2 V0 we
have,Z

X
w
@/
@t

dXþ aðw;/Þ ¼ lðwÞ ð3aÞ

aðw;/Þ :¼
Z

X
w½u � $/þ s/� þ k$w � $/ dX ð3bÞ

lðwÞ :¼
Z

X
wf ðxÞ dX�

Z
CN

wgp dCN ð3cÞ

Let Vh � V be a subspace obtained via any appropriate discreti-
zation with h being the discretization size parameter. The state-
ment of the Galerkin method applied to the weak form of the
problem (3) is: find /h : [0,T] ´ Vh such that 8wh 2 Vh

0 we have,

Z
X

wh
@/h

@t
dXþ aðwh;/hÞ ¼ lðwhÞ ð4Þ

Consider a partition of the domain X generated by a regular
family of elements K. We follow [2] to describe a certain class of
Petrov–Galerkin methods which account for weights that are dis-
continuous across element boundaries. The perturbed weighting
function is written as ewh ¼ wh þ ph, where ph is the perturbation
that account for the discontinuities. The statement of these class
of Petrov–Galerkin methods is as follows: find /h : [0,T] ´ Vh such
that 8wh 2 Vh

0 we have,Z
X

wh
@/h

@t
dXþ aðwh;/hÞ þ

X
K

Z
K

phRð/hÞ dX ¼ lðwhÞ ð5Þ

Fig. 1. A singularly perturbed convection–diffusion problem. (a) The problem domain ABCD and boundary conditions; (b) The solution about a cross-section SS0 located at a
distance x from the boundary AD.
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Fig. 2. Parabolic layers in the solution of: (a) the heat equation given by Eq. (24) using k = 0.01 and t = 0.1; (b) the diffusion–reaction problem given by Eq. (26) using k = 0.01
and s ¼ 10
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The form of Eq. (5) can also be derived using the finite calculus
(FIC) approach by expressing the balance equation in a domain of
finite size and retaining higher order terms [14,49]. The HRPG
method, whose design in 1D was presented in [48], is defined as
Eq. (5) along with the following definition of ph:

ur :¼ Rð/hÞ
j$/hj

2 $/h; ) ûr :¼ ur

jur j ¼
sgn½Rð/hÞ�
j$/hj

$/h ð6aÞ

ph :¼ ½hþH � ûr� � $wh ¼ ðh � $whÞ þ
sgn½Rð/hÞ�
j$/hj

ð$wh �H � $/hÞð6bÞ

where ‘sgn’ represents the signum function that returns the sign of
its argument, h and H are frame-independent linear characteristic
length tensors of first and second order, respectively. The role of
these tensors is to allow the treatment of the element anisotropy.
We refer to Table 1 for a comparison of the HRPG method with

the SUPG[2], FIC[14] and some of the existing shock-capturing
methods.

Remark 1. From Eq. (6) and Table 1 the HRPG method could be
understood as the combination of upwinding plus a nonlinear
discontinuity-capturing operator. The distinction is that in general
the upwinding provided by h is not streamline and the disconti-
nuity-capturing provided by H � bur is neither isotropic nor purely
crosswind. Of course defining h :¼ su and H :¼ (b‘)I or
H :¼ ðb‘Þ½I� bu � bu� one would recover (except for the definitions
of the stabilization parameters) the CAU and the CD methods
respectively. Note that one may arrive at the HRPG method via the
FIC equations wherein the characteristic length is defined as
hfic

:¼ hþH � bur . From this point of view the HRPG method can be
presented as ‘FIC-based’.

Using the generalized trapezoidal method for integrating the
semi-discrete Eq. (5) from tn to tn+1 = tn + Dt and taking ph as de-
fined in Eq. (6) we get,

Fig. 3. Matching the layers in the solution of the heat equation and the diffusion–reaction problem. (a) plot domain: [�0.2,0.2], k = 0.01, t = 0.1 and s :¼
ffiffiffi
2
p

=t
� �

¼ 10
ffiffiffi
2
p

; (b)
plot domain: [�0.2,0], the two solutions always meet at a value equal to 0.01.

Fig. 4. Anisotropic element length vectors li obtained at any arbitrary point Pðex1; ex2Þwithin a 2D bilinear block finite element. The sub-figures (a) and (b) illustrate li obtained
for two admissible global node numbering permutations.



Fig. 6. Example 1, advection skew to the mesh. The solution of the HRPG method viewed at (20�,20�) and using (a) a structured 20 � 20 mesh, (b) a structured 40 � 20 mesh,
(c) an unstructured (Type I) 20 � 20 mesh, (d) an unstructured (Type II) 20 � 20 mesh.

Fig. 5. Unstructured 20 � 20 meshes made of bilinear block finite elements. (a) Type I: all internal nodes of the mesh are perturbed using d⁄ = 0.2. (b) Type II: the perturbation
perpendicular to the boundary was set to zero for the boundary-adjacent nodes of the mesh. For the rest of the cases d⁄ = 0.2 was chosen.
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X

wh
/nþh

h � /n
h

hDt
dXþ aðwh;/

nþh
h Þ þ

X
K

Z
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ðh � $whÞRð/nþh

h Þ dX

þ
X
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Z
K

R /nþh
h

� �		 		
$/nþh

h

		 		 $wh �H � $/nþh
h

� �
dX ¼ lðwhÞ ð7aÞ

R /nþh
h

� �
:¼ /nþh

h � /n
h

hDt
þ u � $/nþh

h � $ � k$/nþh
h

� �
þ s/nþh

h � f ðxÞ ð7bÞ

/nþ1
h ¼ 1

h
/nþh

h � ð1� hÞ
h

/n
h ð7cÞ

where 0 < h 6 1 is the parameter of the generalized trapezoidal
method. Clearly, if one is interested in the choice h = 0 then the tem-
poral derivative term /nþh

h � /n
h

� �

ðhDtÞ that appears in Eqs. (7a) and

(7b) should be replaced with /nþ1
h � /n

h

� �

Dt. In practice h would not

be taken below the value of 1/2 for unconditional temporal stability.
In the transient numerical examples presented in Section 8.2 we
have used the implicit midpoint rule which corresponds to the
choice h = 1/2.

3. HRPG method in 1D

Naturally, the tensors h and H are reduced to scalar quantities
in 1D. Taking the element size as ‘, the counterparts of h and H
in 1D are defined as

h :¼ a
2
‘; H :¼ b

2
‘ ð8Þ

where a, b are stabilization parameters whose definition in 1D is
summarized in Box 1. We now explain concisely the origins and
the motivation behind this procedure to calculate the parameters
a, b and refer to [48] for further details.

Box 1 Procedure to calculate the stabilization parameters a, b
in 1D [48, Section 5.6, p. 537]. Where ‘ and Dt are the element
size and time-step, respectively. The time integration is done
by the generalized trapezoidal method.

c :¼ u‘
2k

; x :¼ s‘2

k
; r :¼ s‘

u

k :¼ 1

3 1þ
ffiffiffiffiffiffi
jrj

p� � ; a :¼ k sgnðuÞmax 1� 1
jcj

� �
;0

� �

d :¼ 1
hDt

/nþh
h � /n

h



 


1

k/nþh
h k1

eu :¼ u� a‘s
2
� a‘d

2
; ek :¼ kþ a‘u

2
; es :¼ sþ d

ec :¼
eu‘
2ek ; ex :¼

es‘2ek ; er :¼
es‘eu

b :¼max
2
3
jerj þ 3
jerj þ 2

� �
� 4ex þ 4jecj
� �� �

;0
� �

The HRPG method in 1D was designed using the divide and con-
quer strategy, i.e. the original CDR problem is further divided into
smaller model problems where the different types of numerical
artifacts that plague the original problem are singled-out and the
expressions for the stabilization parameters are derived/updated
to treat them effectively.

For the stationary CDR problem and by dropping the linear
upwinding term (i.e. choosing a = 0), the expression in 1D of the
stabilization parameter b multiplying the shock-capturing term is
found by relating it with the diffusion introduced by the

Fig. 7. Example 2, nonuniform rotational advection. The solution of the HRPG method viewed at (20�,20�) and using (a) a structured 40 � 20 mesh, (b) a structured 80 � 20
mesh, (c) an unstructured (Type I) 40 � 20 mesh, (d) an unstructured (Type II) 40 � 20 mesh.



discrete-upwinding operation [50] on the Galerkin terms. The
proposed expression for b is (see [48, Section 5.4]):

b :¼max
2
3
jrj þ 3
jrj þ 2

� �
� 4

xþ 4jcj

� �� �
;0

� �
ð9Þ

where c :¼ (u‘/2k), x :¼ (s‘2/k) and r :¼ (x/2c) = (s‘/u) are the ele-
ment Peclect number, a velocity independent dimensionless num-
ber and the Damköler number respectively.

It was pointed out earlier in [46] that the transient term can be
modeled as an instantaneous reaction term whose coefficient is in-
versely proportional to the employed time step. This observation is
also the point of departure for methods designed to treat the small
time step oscillations (essentially they are Gibbs phenomenon)
[44,45]. Assuming that the discretization in time is done using
the generalized trapezoidal method we define for each element a
nonlinear pseudo-reaction coefficient d as follows

d :¼ 1
hDt

/nþh
h � /n

h



 


1

/nþh
h



 


1

ð10Þ

Further, it was pointed out earlier in [22] that the linear
upwinding term can be interpreted as to contribute additional con-
vection (negative upwind direction) and diffusion (rank one ten-
sor) effects. Using these ideas the effective convection, diffusion
and reaction coefficients (for the transient problem and using the
linear upwinding term) are calculated as follows

eu :¼ u� a‘s
2
� a‘d

2
; ek :¼ kþ a‘u

2
; es :¼ sþ d ð11Þ

Thus, for the transient case and/or including the linear upwind-
ing term, it is these effective coefficients that are used in the
expression for b derived earlier. Thus,

ec :¼
eu‘
2ek ; ex :¼

es‘2

~k
; er :¼

es‘eu ð12aÞ

b :¼max
2
3
jerj þ 3
jerj þ 2

� �
� 4ex þ 4jecj
� �� �

; 0
� �

ð12bÞ

Remark 2. For the steady-state case, b depends only on the
problem data, whereas for the transient case a nonlinear depen-
dence exists due to Eq. (10). Such a nonlinear dependence which
vanishes at steady state is necessary for the independence of the
steady-state solution on the used time step. This additional
nonlinearity which only affects b does not seem to increase the
number of iterations required for convergence.

It remains to define the parameter a that controls the frac-
tion of linear perturbation term in the HRPG method. For the
1D CDR problem the choice of the parameters: a = 0 and b given
by Eq. (12b) was sufficient to obtain accurate solutions for a
wide range of problem data. Nevertheless for the transient prob-
lem the presence of the linear perturbation terms improved the
convergence of the nonlinear iterations. Numerical experiments
suggested a 2 [0,1/3] which means that the approximations/con-
jecture used in the design process does not hold for larger frac-
tions of the linear perturbation term. The proposed expression
for a is:

Fig. 8. Example 3, uniform advection with a constant source term. The solution of the HRPG method viewed at (�45�,20�) and using (a) a structured 20 � 20 mesh, (b) a
structured 40 � 20 mesh, (c) an unstructured (Type I) 20 � 20 mesh, (d) an unstructured (Type II) 20 � 20 mesh.



a :¼ k sgnðuÞmax 1� 1
jcj

� �
; 0

� �
; k :¼ 1

3ð1þ
ffiffiffiffiffiffi
jrj

p
Þ

ð13Þ

Finally, we discuss the limit behavior of the stabilization param-
eters a and b in 1D. In the advective limit we have c�x i.e. r ? 0
and in the reactive limit we have x� c i.e. r ?1. In these respec-
tive limit cases we get from Eq. (13),

lim
r!0

a ¼ sgnðuÞ
3

max 1� 1
jcj

� �
;0

� �
; lim

r!1
a ¼ 0 ð14Þ

In the diffusive limit we have both c, x ? 0. In this case, as is
required, from Eq. (13) we get a = 0. In the presence of the linear
upwinding term (i.e. a – 0) it is more appropriate to discuss the
effective limit behavior (convective, diffusive and reactive) of b.
When the effective convection term dominates, we have ec � ex
i.e. er ! 0. On the contrary, when the effective reaction term dom-
inates we have ex � ec i.e. er !1. In these respective limit cases
we get from Eq. (12b),

limer!0
b ¼max 1� 1

jecj
� �

;0
� �

; limer!1b ¼max
2
3
� 4ex

� �
;0

� �
ð15Þ

When the effective diffusion term is dominant, we haveec; ex ! 0. In this case, as is required, from Eq. (12b) we get b = 0.
Recall that the small time step limit falls within the case of the

dominant effective reaction term. Thus, even for a pure diffusion
problem, b ? 2/3 (as is required for the L2 projection problem
[48]), should the small time step limit be reached. The motivation
to include this value for b in the small time step limit is based on
the observation that the numerical artifacts found in this case are
similar to the Gibbs phenomenon observed in L2 projections. It
was shown in [48], that these respective limit behaviors for b are
required to attain high-resolution results.

4. Gibbs phenomenon across characteristic layers

The characteristic internal/boundary layers are usually found
only in higher dimensions and hence have no instances in 1D [1].
In other words we do not have a straight-forward quantification
of the characteristic layers in 1D. For this reason a direct extension
of the definition of the stabilization parameters a, b derived for 1D
will not be efficient to resolve these layers.

The numerical artifacts that are formed across the parabolic lay-
ers are usually manifested as the Gibbs phenomenon. Nevertheless
there exists a subtle difference1 between the numerical artifacts

Fig. 9. Example 4, non-uniform advection with a constant source term. The solution of the HRPG method viewed at (�200�,20�) and using (a) a structured 64 � 64 mesh, (b) a
structured 128 � 64 mesh, (c) an unstructured (Type I) 64 � 64 mesh, (d) an unstructured (Type II) 64 � 64 mesh.

1 Related to the cause and size of these numerical artifacts.



Fig. 11. Example 6, a reaction–diffusion problem The solution of the HRPG method viewed at (�45�,20�) and using (a) a structured 20 � 20 mesh, (b) a structured 40 � 20
mesh, (c) an unstructured (Type I) 20 � 20 mesh, (d) an unstructured (Type II) 20 � 20 mesh.

Fig. 10. Example 5, uniform advection with a discontinuous source term. The solution of the HRPG method viewed at (�10�,20�) and using (a) a structured 30 � 30 mesh, (b)
a structured 60 � 30 mesh, (c) an unstructured (Type I) 30 � 30 mesh, (d) an unstructured (Type II) 30 � 30 mesh.



formed across the characteristic layers and those formed across the
layers in the reaction-dominant cases. Consider a rectangular do-
main discretized by structured bilinear block finite elements. Let A
represent the matrix of the stencil coefficients of a generic compact
stencil corresponding to any interior node (i, j) of the considered
structured mesh. For instance, if the standard mass matrix obtained
in the Galerkin FEM be assembled for a structured rectangular mesh
then we may express the corresponding stencil as follows:

Am :¼ ‘2

6
f1;4;1gTf1;4;1g ‘1

6
¼ ‘1‘2

36

1 4 1
4 16 4
1 4 1

264
375 ð16Þ

where the superscript ‘T’ in the above equation denotes the trans-
pose operator. The matrix Am yields a stencil as shown below.

Am
#

‘1‘2

36

Ui�1;jþ1 þ 4Ui;jþ1 þUiþ1;jþ1þ
4Ui�1;j þ 16Ui;j þ 4Uiþ1;jþ
Ui�1;j�1 þ 4Ui;j�1 þUiþ1;j�1

8><>:
9>=>; ð17Þ

The stencil coefficient matrix associated with the convective
term in the Galerkin FEM can be expressed as follows:

Ac :¼ ‘2

6
f1;4;1gTf�1; 0;1gu1

2
þ u2

2
f1;0;�1gTf1;4;1g ‘1

6
ð18Þ

Note that one may arrive at the terms in Eqs. (16) and (18) via a
1D mass type averaging of their respective counterparts in 1D, i.e.
replacing {1,4,1}(‘1/6) with (‘2/6) {1,4,1}T {1,4,1}(‘1/6) and

{�1,0,1}(u1/2) with (‘2/6){1,4,1}T{�1,0,1}(u1/2), etc. Although this
1D mass type averaging leads to a higher-order approximation for
smooth solution profiles, it unfortunately leads to the Gibbs phe-
nomenon across layers. Unlike in the reaction-dominant case
where it is the numerical solution that undergoes the 1D mass type
averaging, in the convection-dominant case it is the derivatives of
the numerical solution that undergoes the same. Thus, the Gibbs
phenomenon across the characteristic layers in the later case is
proportional to the variation in the derivatives of the solution
across the characteristic layers. Despite this subtle difference in
the Gibbs phenomenon associated with the characteristic layers
in the convection-dominated case, we choose to treat them by
the same strategy that we use to treat the numerical artifacts about
the parabolic layers in the reaction-dominant case. The pros and
cons of employing this strategy will be discussed later in
Section 8.3.

5. Quantifying characteristic layers

In this section we design a nondimensional element number
that quantifies the characteristic internal/boundary layers. By
quantification we mean that its should serve a similar purpose as
the element Peclet number c for the exponential layers in convec-
tion dominant cases and the dimensionless number x :¼ 2cr for
the parabolic layers in the reaction dominant cases.

Consider the following singularly perturbed (k	 u) convec-
tion–diffusion problem in 2D:

Fig. 12. Example 7, a CDR problem with a dominant reaction term. The solution of the HRPG method viewed at (120�,20�) and using (a) a structured 20 � 20 mesh, (b) a
structured 40 � 20 mesh, (c) an unstructured (Type I) 20 � 20 mesh, (d) an unstructured (Type II) 20 � 20 mesh.



u
@/
@x
� k

@2/
@x2 þ

@2/
@y2

!
¼ 0 in X ð19aÞ

/ ¼ /p on C ð19bÞ

where X is a rectangular domain ABCD as shown in Fig. 1(a), C is
the domain boundary and /p is the prescribed value of / on C.
The origin of the 2D axes is taken as the midpoint of AD. Consider
/p = 0 everywhere except on AD where it is defined as follows:

/pð0; yÞ ¼ f ðyÞ :¼ Hðyþ aÞ �Hðy� aÞ; a > 0 ð20aÞ

HðyÞ :¼ 1þ sgnðyÞ
2

¼
0 y < 0
0:5 y ¼ 0
1 y > 0

8><>: ð20bÞ

The function f(y) is discontinuous at y = ±a and its shape can be
described as a rectangular pulse. A well known virtue of the solu-
tion /(x,y) is that these discontinuities are immediately smoothed
out in the interior of the domain, thus leading to parabolic layers
along the characteristic lines of the problem [1]. In accordance
with singular perturbation theory and by the method of matched
asymptotic expansions [51], the leading term describing the char-
acteristic layer is given by,

/ðx; yÞ 
 1
2

erf
ffiffiffiffiffiffiffiffi

u
4kx

r
ðyþ aÞ

� �
� erf

ffiffiffiffiffiffiffiffi
u

4kx

r
ðy� aÞ

� �� �
ð21Þ

where ‘erf’ represents the error function and is defined as follows:

erfðxÞ :¼ 2ffiffiffiffi
p
p

Z x

0
e�z2

dz ð22Þ

The approximation given in Eq. (21) is uniformly valid to O(1) in
a region away from the exponential layers formed near the bound-
ary BC [51]. Fig. 1(b) illustrates the solution given by Eq. (21) about
a cross-section SS0 (cf. Fig. 1(b)) located at a distance x from the
boundary AD.

Consider now the heat equation posed on an infinite domain:

@/
@t
� k

@2/
@y2 ¼ 0; in X :¼ fðy; tÞjy 2 ð�1;1Þ; t 2 ½0;1Þg ð23aÞ

/ðy; t ¼ 0Þ ¼ f ðyÞ f ðyÞ :¼ ½Hðyþ aÞ �Hðy� aÞ�; a > 0 ð23bÞ

Note that we have initialized the solution with a function f(y)
that was used earlier in Eq. (20a) to prescribe the Dirichlet bound-
ary condition. The exact solution for the problem (23) can be ex-
pressed as follows:

/ðy; tÞ ¼ 1
2

erf
yþ affiffiffiffiffiffiffiffi

4kt
p
� �

� erf
y� affiffiffiffiffiffiffiffi

4kt
p
� �� �

ð24Þ

Clearly, replacing t with (x/u) in Eq. (24) we recover the leading
term describing the characteristic layers given by Eq. (21). Note
that (x/u) is the time required to travel a distance x along the char-
acteristic lines. This resemblance is due to the fact that in regions
far-away from the domain boundaries the convective and diffusive
effects do not interact, i.e. convection just carries the diffusing
solution along the characteristic lines [52].

Next, we try to relate the solution of the heat equation with the
solution of the diffusion–reaction problem. The statement of the
diffusion–reaction problem posed on an infinite domain is:

� k
d2/

dy2 þ s/ ¼ sf ðyÞ in X :¼ fyjy 2 ð�1;1Þg ð25aÞ

/ðyÞ ¼ 0 at y ¼ �1 ð25bÞ

The exact solution for the above problem can be expressed as
follows:

/ðyÞ ¼ sgnðyþ aÞ
2

½1� e�njyþaj� � sgnðy� aÞ
2

½1� e�njy�aj� ð26Þ

where, n :¼
ffiffiffiffiffiffiffi
s=k

p
. Fig. 2(a) and (b) illustrate the solution of the heat

equation given by Eq. (24) and the solution of the diffusion–reaction
problem given by Eq. (26) respectively. Clearly these two solutions

Table 2
A comparison of the maximum and minimum values of the HRPG and the exact (shown in square brackets) solutions in the examples presented in Section 8.1. The number of
nonlinear iterations required for convergence using a tolerance of 1e�2, 1e�3 and 1e�4 are also shown side by side.

Example max(/h)[max(/)] min(/h)[min(/)] Iterations

1e�2 1e�3 1e�4

1, Fig. 6(a) 1.0029 [1.0] �3.4857e�005 [0.0] 3 6 10
1, Fig. 6(b) 1.005 [1.0] �3.5839e�007 [0.0] 3 6 9
1, Fig. 6(c) 1.0499 [1.0] �1.9485e�006 [0.0] 3 6 9
1, Fig. 6(d) 1.0166 [1.0] �2.8334e�005 [0.0] 3 5 9
2, Fig. 7(a) 1.0034 [1.0] �0.004592 [0.0] 3 7 13
2, Fig. 7(b) 1.0041 [1.0] �0.0024418 [0.0] 3 7 13
2, Fig. 7(c) 1.0303 [1.0] �0.0060189 [0.0] 3 7 11
2, Fig. 7(d) 1.0524 [1.0] �0.012783 [0.0] 3 8 14
3, Fig. 8(a) 0.95031 [0.95] 0.0 [0.0] 3 5 9
3, Fig. 8(b) 0.97665 [0.975] 0.0 [0.0] 3 5 8
3, Fig. 8(c) 1.1076 [<1.0] 0.0[0.0] 3 7 14
3, Fig. 8(d) 0.96857 [0.95] 0.0 [0.0] 3 6 16
4, Fig. 9(a) 1.5517 [<1.5708] 0.0 [0.0] 1 5 >20
4, Fig. 9(b) 1.5529 [<1.5708] 0.0 [0.0] 1 5 >20
4, Fig. 9(c) 1.8138 [<1.5708] 0.0 [0.0] 5 9 >20
4, Fig. 9(d) 1.6191 [<1.5708] 0.0 [0.0] 4 8 >20
5, Fig. 10(a) 0.5 [0.5] �0.068137 [0.0] 3 7 13
5, Fig. 10(b) 0.50002 [0.5] �0.10108 [0.0] 3 7 12
5, Fig. 10(c) 0.50182 [0.5] �0.12577 [0.0] 3 7 18
5, Fig. 10(d) 0.50689 [0.5] �0.057931 [0.0] 3 7 13
6, Fig. 11(a) 1.0053 [1.0] 0.0 [0.0] 3 7 10
6, Fig. 11(b) 1.0096 [1.0] 0.0 [0.0] 3 6 9
6, Fig. 11(c) 1.03 [1.0] 0.0 [0.0] 3 7 10
6, Fig. 11(d) 1.0148 [1.0] 0.0 [0.0] 3 7 10
7, Fig. 12(a) 1.0 [1.0] �0.0041651 [0.0] 4 7 10
7, Fig. 12(b) 1.0 [1.0] �0.0030349 [0.0] 4 6 9
7, Fig. 12(c) 1.0 [1.0] �0.02101 [0.0] 4 7 10
7, Fig. 12(d) 1.0 [1.0] �0.0080537 [0.0] 4 7 10



have distinct profiles. Nevertheless, they share a common trait of
possessing parabolic layers, i.e. the first-order derivatives in the
direction perpendicular to the layers have magnitude O 1=

ffiffiffi
k
p� �

.
We refer to [1] for further details about parabolic and exponential
layers.

Now we pose the following design problem: Relate s and t such
that the parabolic layers in the solution of the heat equation i.e. Eq.
(24) and the solution of the diffusion–reaction problem i.e. Eq. (26)
have the same width.

In the following developments the width of the layer is taken as
the distance within which the value of / varies from 1% to 99% of
[max(f(y)) �min(f(y))]. We choose f(y) = H(y) to simplify the alge-
bra. For this choice of f(y) the solution of the heat equation and the
diffusion–reaction problem can be expressed as in Eqs. (27) and
(28) respectively.

/ðy; tÞ ¼ 1
2

1þ erf
yffiffiffiffiffiffiffiffi
4kt
p
� �� �

ð27Þ

/ðyÞ ¼ 1
2
½1þ sgnðyÞð1þ enjyjÞ� ð28Þ

Let y = �y⁄ be the distance at which the solutions given by Eqs.
(27) and (28) have a value equal to 1% of [max(H(y)) �min(H(y))],
i.e. 0.01. Due to the inherent symmetry of the problem, these
solutions at y = y⁄ will attain a value equal to 99% of
[max(H(y)) �min(H(y))], i.e. 0.99. Thus we have,

1
2

1þ erf
�y�ffiffiffiffiffiffiffiffi

4kt
p
� �� �

¼ 1
100

¼ e�ny�

2
ð29Þ

Solving Eq. (29) we get the following equation relating s and t,

ð30Þ

The above relation between s and t guarantees that the para-
bolic layers that appear in the solutions of the heat equation and
the diffusion–production problem will have the same width. In
Fig. 3 using Eq. (30) these solutions having the same layer width
are compared.

Fig. 13. Initial data for the transient 2D advection examples. (a) Example 8, elevation plot viewed at (40�,20�), (b) Example 9, elevation plot viewed at (�20�,20�), (c) Example
8, contour plot, (d) Example 9, contour plot.



Remark 3. Using Eq. (30) an alternate linear model for the pseudo-
reaction coefficient could be d :¼

ffiffiffi
2
p

=tnþh ¼
ffiffiffi
2
p

=ðnþ 1� hÞDt.
Recall that the earlier expression for d given in Eq. (10) is nonlinear.
The motivation for this nonlinear dependence is to guarantee the
independence of the steady-state solution on the used time step.
Using d :¼

ffiffiffi
2
p

=ðnþ 1� hÞDt will make the parameter b indepen-
dent of the solution even for the transient case. Further, the steady-
state case has to be understood as n� 1 i.e. tn+h ?1 and here, as
required, d! 0. The pros and cons of using this d instead of the one
given earlier in Eq. (10) will be explored in future works.

We now address the initial objective of quantifying the charac-
teristic layers found in the singularly perturbed convection–diffu-
sion problem (19). Consider a fictitious reaction coefficient sc and
an associated dimensionless element number xc defined as below.

sc :¼
ffiffiffi
2
p

u
x

; xc ¼
sc‘

2

k
ð31Þ

where ‘ is an appropriate element length measure. We have used
the substitution t = (x/u) in Eq. (30) to arrive at the expression for
sc in Eq. (31). Recall that we have used earlier the same substitution
in the solution of the heat equation to recover the leading
term describing the characteristic layers in the solution of the
convection–diffusion problem. We may use this fictitious reaction
coefficient sc to relate the characteristic layers of the convection–
diffusion problem to similar2 parabolic layers of the 1D diffusion–
production problem. In this sense, the nondimensional element

number xc quantifies the characteristic layers and could be used
in the design of stabilization parameters to control the numerical
artifacts about these layers.

Note that the value of sc is a function of x, i.e. sc is inversely pro-
portional to the distance from the source of the discontinuity along
the characteristic lines. In fact this is how the characteristic layers
in the solution of the convection–diffusion problem behave, i.e.
their width widens as we move away from the source of the dis-
continuity along the characteristic lines. However from the design
point-of-view, a variable definition of sc and hence of xc is incon-
venient. This is due to the fact that the characteristic lines could be
arbitrary curves governed by the velocity field and hence finding
the distance x along these lines need not be straight-forward.
Hence we redefine sc and xc using an appropriate element charac-
teristic length ‘c which effectively models the sharpest characteris-
tic layer close to the inflow boundary

sc :¼
ffiffiffi
2
p

u
‘c

; xc ¼
sc‘

2

k
ð32Þ

6. Objective characteristic tensors

In this section we present the objective characteristic tensors h
and H used in the extension of the HRPG method to higher dimen-
sions. In the developments to follow, only the lowest order block
finite elements are considered. Here objectivity is to be understood
as the independence of the method on the description of the refer-
ence frame and admissible node numbering permutations of the
mesh.

Fig. 14. Example 8, transient pure convection skew to the mesh. The solution of the HRPG method viewed at (40�,20�) and at time (a) t = 1 s, (b) t = 2 s, (c) t = 3 s, (d) t = 4 s.

2 In the sense of matched layer widths.



Consider the following definition for the element length vectors
li:

li
:¼ 2J � eei; Jij :¼ @xi

@exj
; eei

j :¼ di
j ð33Þ

where J represents the Jacobian matrix of bijective mappings from
the local to global coordinate systems, xi and exi represent the global
and local coordinates respectively, eei are fixed vectors along the
axes of the local frame and di

j is the Kronecker delta. Fig. 4 illustrates
the element length vectors li obtained at any arbitrary point
Pðex1; ex2Þ within a 2D bilinear block finite element. The expression
for the vectors li in 2D and at this point P can be simplified to the
following:

l1 ¼ 1� ex2

2
E12 þ 1þ ex2

2
E43; l2 ¼ 1� ex1

2
E14 þ 1þ ex1

2
E23 ð34Þ

where Eab is the edge vector pointing from node a to node b.

Let ai, bi be stabilization parameters calculated along the ele-
ment length vectors li and with the following properties: (a)
(u � li)ai P 0 " i, (b) bi P 0 " i and (c) only scalars and free vectors3

are used in their respective definitions. The definition of these
parameters is delayed until Section 7. The characteristic tensors h
and H are calculated as: h :¼ 0.5aili, H :¼ 0.5(bi/jlij)[li � li]. Thus in
2D the characteristic tensors could be expressed as follows:

h :¼ a1l1 þ a2l2
; H :¼ b1

jl1j
½l1 � l1� þ b2

jl2j
½l2 � l2� ð35Þ

Using h, H as defined above we calculate the perturbation ph

associated with the HRPG method as described earlier in Eq. (6).
The definition of h and H given by Eq. (35) guarantees the

Fig. 15. Example 8, transient pure convection skew to the mesh. The contour plots of the solution of the HRPG method at time (a) t = 1 s, (b) t = 2 s, (c) t = 3 s, (d) t = 4 s.

3 If one is interested only in the magnitude and direction of the vector and does not
think of it as situated at any particular location, then it is called a free vector.



objectivity of the HRPG method. Reference frame independence
can be verified by the fact that the tensors h and H obey the
same tensor transformation rules as any other free tensor associ-
ated with the problem, e.g. the velocity vector u. Admissible node
numbering permutations only swap one element length vector
with the other (possibly with a change of sign) as shown in
Fig. 4(b). Due to the properties of ai, bi and by their definition,
the characteristic tensors h and H are invariant with respect to
these swaps in li.

Remark 4. Figures similar to Fig. 4(a) were presented earlier in [2]
(cf. Fig. 3.2, p. 55), [3] (cf. Fig. 3.4, p. 215) and [53] (cf. Fig. 2, p.
2205). Therein the element length vectors li evaluated at the
centroid of the element were used to define a scalar element size
measure. The distinction here is to use these li to arrive at objective
characteristic tensors h and H that treat effectively the anisotropy of
the finite element.

Remark 5. Consider a rectangular domain partitioned by struc-
tured bilinear block finite elements with dimensions ‘1, ‘2,
respectively. It was observed for the FIC method that the expo-
nential layers are better resolved choosing hfic = {a1‘1,a2‘2}
instead of hfic = su. Making the latter choice we recover the

SUPG method and here one often finds partially resolved global
oscillations when the velocity is skewed to the mesh or using
high aspect ratio FEs. Following this line, a more elaborate
approach was presented in [54] within the framework of subgrid
scale methods, to define a scalar expression for the stabilization
parameter s that render the method robust with respect to the
mesh distortion. In the FIC method this robustness is achieved
by the inclusion of additional, albeit simple (a straight-forward
extension of their 1D counterparts), parameters (here a1 and
a2). However special care has to be taken such that the charac-
teristic length hfic be objective. This is the motivation behind the
way the characteristic tensors h and H are designed in the HRPG
method.

7. Stabilization parameters

Except for the modification to include the new dimensionless
number introduced in Section 5 that quantifies the characteristic
layers, the definition of the stabilization parameters ai, bi calcu-
lated along the element length vectors li are a direct extension of
their counterparts in 1D summarized in Box 1. Following this line,
in multi dimensions and along li we define the following nondi-
mensional element numbers:

Fig. 16. Example 9, rotation of solid bodies. The solution of the HRPG method viewed at (�20�,20�) and at time (a) t = (p/2) s i.e. after a quarter-revolution, (b) t = p s i.e. after
a half-revolution, (c) t = (3p/2) s, i.e. after three quarters of a revolution (d) t = 2p s i.e. after a full-revolution.



ci :¼ u � li

2k
; xi :¼ sjlij2

k
; ri :¼ sjlij2

u � li
ð36Þ

Following Eq. (32), the fictitious reaction coefficient bs i and the
associated dimensionless number bxi along li are calculated as
follows.

bs i :¼max
j–i

ffiffiffi
2
p ju � ljj

jljj2
; bxi :¼

bs ijlij2

k
ð37Þ

Following Eq. (13) the stabilization parameters ai along li are
calculated as follows.

ai :¼ ki sgnðu � liÞmax 1� 1
jcij

� �
;0

� �
; ki :¼ 1

3 1þ
ffiffiffiffiffiffiffiffi
jrij

p� � ð38Þ

Assuming that the discretization in time is done using the im-
plicit trapezoidal rule and following Eq. (10) we calculate the non-
linear pseudo-reaction coefficient d as follows

d :¼ 1
hDt
ke/h � /n

hk1
ke/hk1

ð39Þ

Following Eq. (11) we define the effective convection, diffusion
and reaction coefficients along li as follows

eui :¼ u � li

jljj
� aijlijs

2
� ajlijd

2
; eki :¼ kþ aiu � li

2
; es :¼ sþ d ð40Þ

Likewise following Eq. (12a), the effective element dimension-
less numbers along li can be calculated as,

eci :¼ j
euiklij
2eki

; eri :¼
esjlij
jeuij

; exi :¼
esjlij2eki

ð41Þ

Finally, following Eq. (12b) the stabilization parameters bi along
li are calculated using the dimensionless numbers eci; eri; exi and bxi

as follows:

bi :¼max
2
3

eri þ 3eri þ 2

� �
� 4exi þ 4eci

� �� �
;

2
3
� 4bxi

� �
;0

� �
ð42Þ

Fig. 17. Example 9, rotation of solid bodies. The contour plots of the solution of the HRPG method at time (a) t = (p/2) s i.e. after a quarter-revolution, (b) t = p s i.e. after a half-
revolution, (c) t = (3p/2) s, i.e. after three quarters of a revolution, (d) t = 2p s i.e. after a full-revolution.



The inclusion of the term ð2=3Þ � ð4= bxiÞ in the definition of bi is
the only modification from a straight-forward extension to multi
dimensions of the definition of its counterpart in 1D. This expres-
sion follows from the reaction-limit value of b given in Eq. (15)
and the justification is based on the strategy we employ to treat
the numerical artifacts about the characteristic layers—to treat
them just like the numerical artifacts about the parabolic layers
in the reaction-dominant case.

8. Examples

In this section we present some examples in 2D for the CDR
problem defined by Eq. (1). The domain X is discretized by consid-
ering both structured and unstructured meshes made up of just the

bilinear block finite elements. The unstructured meshes are
obtained by randomly perturbing the interior nodes of structured
meshes with coordinates (xi,yi) as follows [55,56]:

x0i ¼ xi þ ‘1d
�
randðÞ; y0i ¼ yi þ ‘2d

�
randðÞ ð43Þ

where, x0i; y
0
i

� �
represent the corresponding coordinates of the

unstructured mesh, ‘1, ‘2 represent the mesh sizes of the structured
mesh, d⁄ is a mesh distortion parameter and rand() is a function
that returns random numbers uniformly distributed in the interval
[�1,1]. Fig. 5 illustrates two types of unstructured meshes obtained
by this procedure using a 20 � 20 square mesh and the parameter
d⁄ = 0.2. In Fig. 5(a), d⁄ = 0.2 was chosen for all the internal nodes
of the mesh. Whereas for the nodes adjacent to the boundary in
the mesh shown in Fig. 5(b), the perturbation perpendicular to

Fig. 18. Example 9, rotation of solid bodies. Three different cross sections (cut 1, cut 2 and cut 3) of the HRPG solution are shown at time (a) t = (p/2) s i.e. after a quarter-
revolution, (b) t = p s i.e. after a half-revolution, (c) t = (3p/2) s, i.e. after three quarters of a revolution, (d) t = 2p s i.e. after a full-revolution. The solid lines without markers
are the true solution.



the boundary was set to zero. The unstructured meshes obtained
using the former and later techniques are denoted as ‘Type I’ and
‘Type II’ respectively.

The linearization of the HRPG method summarized in Box 2 was
done by the Picard method. The error in the nonlinear iterations
was measured in the following norm:

kUiþ1 �Uike

kUiþ1ke

ð44Þ

where k � ke is the standard Euclidean vector norm, U represents the
FE nodal unknowns and i represents the iteration counter. A toler-
ance of 1e�5 was chosen as the termination criteria and a maxi-
mum of 20 iterations were allowed for the steady-state examples.
For the transient examples the corresponding choices were 1e�3
(tolerance) and 5 (maximum iterations), respectively. The nonlinear
iterations were initialized by the solution obtained by the SUPG
method.

8.1. Steady-state examples

In this section we illustrate the performance of the HRPG meth-
od for the stationary CDR problem. Unless otherwise specified, in
all the examples the following data is considered. The domain X
is [0,1] � [0,1]. Each example is solved using four meshes, two of
which are structured and the remaining two are unstructured.
The structured meshes consists of 20 � 20 (uniform/square) and
40 � 20 (rectangular) bilinear elements respectively. The unstruc-
tured meshes are obtained from the considered uniform mesh
via the two perturbation techniques described earlier and illus-
trated in Fig. 5. The obtained solutions are illustrated as surface
plots whose view is described as (h�,w�), where h� is the azimuthal
angle with respect to the negative y-axis and w� is the elevation
angle from the x–y plane.

Example 1. This is a classical steady-state problem introduced in
[3] where the advection is skew to the mesh with downwind
essential boundary conditions. The problem data is: u = (5,�9),
k = 10�8, s = 0 and f = 0. The boundary conditions are: / = 1 on
(x = 0,y > 0.7) [ (x < 1,y = 1), / = 0.5 at (x = 0,y = 0.7) and / = 0 on
the rest of the boundary. This problem has exponential boundary
layers at the outflow boundary and an internal characteristic
layer. Fig. 6 illustrates the solutions obtained by the HRPG
method viewed at (20�,20�).

Example 2. This problem was studied in [41] wherein a nonuni-
form rotational velocity field is employed in a rectangular domain
X :¼ [�1,1] � [0,1]. Structured meshes of 40 � 20 (uniform/
square) and 80 � 20 (rectangular) bilinear elements are used. The
unstructured meshes are obtained from the uniform mesh via
the two perturbation techniques described earlier. The problem
data is: u = 104(y[1 � x2], �x[1 � y2]), k = 10�4, f = 0, s = 0. The
boundary conditions are: / = 1 on (x < �0.5,y = 0), / = 0.5 at
(x = �0.5,y = 0), / = 0 on (�0.5 < x 6 0,y = 0) [ (x = 1,y) and on the
rest of the boundary the Neumann condition n � r/ = 0 is imposed.
The numerical solution of the HRPG method viewed at (20�,20�) is
shown in Fig. 7.

Example 3. This is a uniform advection problem with a constant
source term introduced in [57]. The problem data is: u = (1,0),
k = 10�8, f = 1, s = 0. The homogeneous boundary condition / = 0
is imposed everywhere. The exact solution develops exponential
layers at the outlet boundary (x = 1,y) and characteristic bound-
ary layers at (x,y = 0) and (x,y = 1). The numerical solution of the
HRPG method viewed at (�45�,20�) is shown in Fig. 8.

Example 4. This is a non-uniform advection problem with a con-
stant source term introduced in [58]. The advection is caused by
a unit angular velocity field. Structured meshes of 64 � 64 (uni-
form/square) and 128 � 64 (rectangular) bilinear elements are
used. The unstructured meshes are obtained from the uniform
mesh via the two perturbation techniques described earlier. The
problem data is: u = (y,�x), k = 10�6, f = 1, s = 0. The homogeneous
boundary condition / = 0 is imposed everywhere. This problem has

Box 2 Summary of the HRPG method in multi dimensions using
the lowest order block finite elements and considering the gen-
eralized trapezoidal method for time integration. In the numer-
ical examples the choice h = 1/2 is made which represents the
implicit midpoint rule. di

j represents the Kronecker delta.
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a complicated boundary layer. For instance close to the boundary
(x,y = 0) and with an increase in x, these layers gradually vary from
being parabolic to exponential while maintaining a constant profile
height /(x,y = 0) 
 (p/2) (away from the corners). Close to the
boundary (x = 1,y) the solution profile is approximately /
(x = 1,y) 
 (p/2) � 2tan�1(y). The numerical solution of the HRPG
method viewed at (�200�,20�) is shown in Fig. 9.

Example 5. This is a uniform advection problem with a discontin-
uous source term introduced in [16]. The problem data is: u = (1,0),
k = 10�8, f(x 6 0.5,y) = 1, f(x > 0.5,y) = �1, s = 0. The homogeneous
boundary condition / = 0 is imposed everywhere. Structured
meshes of 30 � 30 (uniform/square) and 60 � 30 (rectangular)
bilinear elements are used. The unstructured meshes are obtained
from the uniform mesh via the two perturbation techniques
described earlier. The numerical solution of the HRPG method
viewed at (�10�,20�) is shown in Fig. 10.

Example 6. This is a plain diffusion–reaction problem. The problem
data is: u = (0,0), k = 10�8, f = 1, s = 1. The homogeneous boundary
condition / = 0 is imposed everywhere. The numerical solution of
the HRPG method viewed at (�45�,20�) is shown in Fig. 11.

Example 7. This is a multidimensional modification of the CDR
problem studied earlier in [41,48]. The problem data is:
u = (0.01,0), k = 10�4, s = 4.8 and f = 0. The boundary conditions
are: / = 1.0 on (x = 0,y) [ (x,y = 0), / = (3/8) on the rest of the
boundary. The value of the element dimensionless numbers c1,
x1 are 2.5 and 120 respectively. Recall that for similar problem
data in 1D (cf. [48, Section 5.7.1]) the upwind numerical artifacts
in the solution of Galerkin method were found to be enhanced in
the solution of the SUPG method. The numerical solution of the
HRPG method viewed at (120�,20�) is shown in Fig. 12.

For the considered steady-state examples Table 2 lists the max-
imum and minimum values of the obtained HRPG solutions and

Fig. 19. Example 10, uniform advection with a negative source term. The solution obtained on a uniform 20 � 20 mesh viewed at (45�,0�) and using (a) the SUPG method, (b)
the HRPG method, (c) comparison of the nodally exact interpolant at three different cross sections with the numerical solution obtained by the SUPG and the HRPG method.



provides a comparison of the same with the corresponding values
of the exact solutions. The number of nonlinear iterations required
for convergence using a tolerance of 1e�2, 1e�3 and 1e�4 are also
shown side by side. Just three iterations are sufficient for most of
the examples should the tolerance be chosen as 1e�2.

8.2. Transient examples

Here we illustrate the performance of the HRPG method for the
transient 2D pure convection problem. Only uniform bilinear finite

elements are used here. Both of the examples presented here deal
with the advection of solid bodies modeled with appropriate den-
sity functions. These problems are frequently used as test cases for
advection algorithms demonstrating their treatment of dispersive
oscillations and the overall solution accuracy.

Example 8. This is a test case introduced in the ERCOFTAC
document [59]. A circular scalar bubble is initially positioned at
the bottom of a square domain in a fixed constant velocity field
directed at 45� toward the top right of the domain. The problem

Fig. 20. Solutions to Example 1 using the ASGS [54], SGS-GSGS [40] and CAU [18] methods viewed at (20�,20�).



data is: u = (0.5,0.5), k = 10�30, s = 0 and f = 0. The domain
X :¼ [0,3] � [0,3] is discretized by a uniform mesh of 300 � 300
bilinear elements. The time integration is done using the implicit
midpoint rule (h = 1/2) and is advanced at a time step of 0.005 s.
This corresponds to an element CFL number of 0.25. Define a radius

R = 0.25, an arbitrary position vector r :¼ (x,y) 2X and a specific
position vector rc :¼ (0.5,0.5) 2X. The initial solution can then be
expressed as follows:

/ðr; t ¼ 0Þ ¼ HðR� jr� rcjÞ ð45Þ

Fig. 21. Solutions to Example 3 using the ASGS [54], SGS-GSGS [40] and CAU [18] methods viewed at (�45�,20�).



where H() is the Heaviside function defined earlier in Eq. (20b)
and rc is the center of the circular scalar bubble. The initial
solution viewed at (40�,20�) is shown in Fig. 13(a) (elevation plot)
and Fig. 13(c) (contour plot). The Dirichlet boundary condition /
= 0 is imposed at the inlet boundaries. The numerical solution of
the HRPG method at time t 2 {1,2,3,4} seconds and viewed at
(40�,20�) is shown in Fig. 14 (elevation plots) and Fig. 15
(contour plots). The maximum values of the HRPG solution at the
considered instances are 1.0, 1.0, 0.99999 and 0.99996,

respectively. Likewise at these instances the minimum values are
�9.7579e�8, �2.8204e�14, �1.7445e�20 and �5.1675e�23,
respectively.

Example 9. This is a standard benchmark problem introduced in
[60] that simulates the advection of a solid body subjected to a
constant angular velocity field. The solid body is modeled with a
scalar density function that has three shapes, viz. a slotted cylinder,
a cone and a sinusoidal hump. The classical problem with just the

Fig. 22. Solutions to Example 7 using the ASGS [54], SGS-GSGS [40] and CAU [18] methods viewed at (120�,20�).



slotted cylinder revolving about the center of the domain was
proposed by Zalesak in the seminal paper [61] that extended the
FCT method to multi dimensions. The problem data is: u = (0.5 � y,
x � 0.5), k = 10�30, s = 0 and f = 0. The domain X :¼ [0,1] � [0,1] is
discretized using 200 � 200 uniform bilinear elements. The time
integration is done using the implicit midpoint rule (h = 1/2) and is
advanced at a time step of 0.001 s. This corresponds to a maximum
element CFL number of 0.1. Define a radius R = 0.15, an arbitrary
position vector r :¼ (x,y) 2X and a specific position vector
ra :¼ (xa,ya) 2X for some chosen point a. The initial solution can
then be expressed as follows:

/ðr; t ¼ 0Þ
¼ HðR� jr� r1jÞ 1�Hð0:025� jx� x1jÞHð0:85� yÞ

� �
þ 1�min

jr� r2j
R

;1
� �

þ 1
4

1þ cos pmin
jr� r2j

R
;1

� �� �� �
ð46Þ

where H() is the Heaviside function defined earlier in Eq. (20b),
r1 = (0.5,0.75), r2 = (0.5,0.25) and r3 = (0.25,0.5) are the position vec-
tors corresponding to the center of the slotted cylinder, the cone and
the sinusoidal hump respectively. The initial solution viewed at
(�20�,20�) is shown in Fig. 13(b) (elevation plot) and Fig. 13(d) (con-
tour plot). The Dirichlet boundary condition / = 0 is imposed at the
inlet boundaries. Under the considered velocity field the initial solu-
tion completes a full revolution in 2p seconds. The numerical solu-
tion of the HRPG method at time t = {(p/2),p, (3p/2),2p} seconds
and viewed at (�20�,20�) is shown in Fig. 16 (elevation plots) and
Fig. 17 (contour plots). For the considered instances in time, three dif-
ferent cross sections of the HRPG solution are shown in Fig. 18. With
respect to Fig. 13(d), ‘cut 1’ represents the cross section made along
the plane given by the equation x = 0.5. Likewise, ‘cut 2’ and ‘cut 3’
represent the cross sections given by y = 0.5 and y = 0.75. Details such
as the accuracy with respect to the exact solution, the control of dis-
persive oscillations and the smearing of the edges in the initial solu-
tion profile can be appreciated better in these cross section plots.

8.3. Discussion

The HRPG method proposed here can be understood as the
combination of upwinding plus a discontinuity-capturing operator.
Also the discontinuity-capturing term has the canonical form of
the shock-capturing diffusion, i.e. it is proportional to
ðj Rð/hÞ j = j $/h jÞ. Nevertheless the finer structure of the HRPG
method is distinct from the existing shock-capturing Petrov–Galer-
kin methods in the literature (cf. Table 1). The distinction is that
the upwinding provided by the characteristic tensor h is not
streamline and the discontinuity capturing provided by the charac-
teristic tensor H is neither isotropic nor purely crosswind.

It is clearly seen from the steady-state examples presented in
the previous section that for structured meshes (both square and
rectangular bilinear elements) the HRPG method reproduces a
crisp resolution of the layers in the numerical solution. The good
performance on rectangular elements (here considered with an as-
pect ratio of 2:1) is due to the anisotropic treatment of the stabil-
ization terms involving the characteristic tensors h and H. The
solutions obtained by the HRPG method for the transient 2D advec-
tion examples advocate its good treatment of dispersive oscilla-
tions without compromising the solution-accuracy (cf. Figs. 14
and 16). Also the symmetry of the initial data is well maintained
(cf. Figs. 15 and 17). Recall that the time integration was performed
by the implicit midpoint rule which is a symplectic time integrator
[62]. This choice was made to single-out the treatment of the geo-
metrical symmetry in the initial data by the HRPG method.

Clearly on unstructured meshes we do not attain the same layer
resolution quality as is obtained on the corresponding structured
meshes. However the parabolic layers (characteristic and reactive
layers) are captured satisfactorily. About the exponential layers
some overshoots and undershoots are observed using Type I
unstructured meshes. These unwanted localized artifacts are con-
spicuous in the solutions of Example 3 (Fig. 8(c)) and Example 4
(Fig. 9(c)) suggesting that there is room for further improvement
of the method. Nevertheless using Type II unstructured meshes
where in the random perturbation of the mesh nodes perpendicu-
lar to the domain boundary is set to zero, these unwanted artifacts
about the exponential layers are greatly reduced.

Fig. 10 illustrates another shortcoming of the HRPG method that
is conspicuous even when structured meshes are used. On one half
of the domain (here the source term is positive) the obtained solu-
tions have crisp layer resolutions, whereas in the remaining half
(here the source term is negative) the numerical solution appears
to be over-damped and even negative near the corners of the outlet
boundary. This is a shortcoming suffered by all the shock-capturing
techniques designed within the Petrov–Galerkin framework (see
Codina’s monograph [63]) that rely on the canonical strategy of
adding a positive shock-capturing diffusion. The following example
illustrates why the aforesaid strategy fails to address this short-
coming.

Example 10. Consider a unit domain X :¼ [0,1] � [0,1] and the
following problem data: u = (1,0), k = 10�8, s = 0 and f = �1. The
Dirichlet boundary conditions are: / = 1 on (x = 0,y > 0) [ (x,y = 1)
and / = 0 on the rest of the boundary. The domain X is discretized
using a structured mesh of 20 � 20 (uniform/square) bilinear
elements. In the interior of the domain the exact solution has the
profile of a flat surface with a slope of �1. Along the boundaries
(x,y = 0) and (x,y = 1) the exact solution develops characteristic
boundary layers and as a consequence within the width of these
characteristic layers and near the corners of the outlet boundary
(x = 1,y), exponential layers are formed. Hence the solution of the
plain Galerkin FEM will be corrupted with global oscillations. The
solutions obtained by the SUPG and the HRPG method are shown
in Fig. 19.

Note that the undershoots and overshoots in the solution of the
SUPG method are identical across both characteristic layers (cf.
Fig. 19(a) and (c)). This is in agreement with the reasoning made
in Section 4 related to the numerical artifacts across characteristic
layers, i.e. unlike in the reaction-dominant case where it is the
numerical solution that undergoes the 1D mass type averaging,
in the convection-dominant case it is the derivatives of the numer-
ical solution that undergo the same. Thus, the Gibbs phenomenon
across the characteristic layers in the later case is proportional to
the variations in the derivatives of the solution across these layers.
In other words for the current problem it is the slope of /h and not
the actual value of /h on the boundary that determines the ob-
served artifacts. It can be clearly seen in Fig. 19(c) that any method,
that relies on the canonical strategy of adding a positive shock-cap-
turing diffusion, will not be able to recover (near the boundary
(x,y = 0)) the nodally exact interpolant from the initial SUPG solu-
tion. On the other hand, note that the artifacts near the boundary
(x,y = 1) have a profile similar to the one that would have been ob-
served for the L2 projection of the exact solution onto the finite ele-
ment space. It is for this reason that the aforesaid strategy succeeds
in capturing these layers.

Obviously tailor-made solutions exist to treat this shortcoming.
For instance, one such trick that recovers crisp resolution of these
layers for the HRPG method and for the current problem (Example
10) is to reverse the sign of the stabilization parameter b (along the
y-axis) for all elements containing the boundary section (x,y = 0),
thus enforcing a negative shock-capturing diffusion for these



elements. Unfortunately it is difficult to generalize these tailor-
made tricks to an arbitrary situation. An alternative would be to
change the strategy to the one which directly treats the cause of
the Gibbs phenomenon for both the reactive and characteristic lay-
ers4—Design the weights of a Petrov–Galerkin FEM such that the
typical 1D mass type averaging in the Galerkin FEM (cf. Eq. (18))
be lumped in the regions across the layers. Research in this line is
still under development and we delay its introduction to future
works.

Remark 6. Fortunately, this idea which was born to treat this
shortcoming in the CDR problem, has opened door to a class of
higher-order compact Petrov–Galerkin FEM effective for the
Helmholtz problem. The design of such a Petrov–Galerkin FEM
and its applications to the Helmholtz equation is the subject
matter of the paper [64].

8.4. Comparison with other methods

Here we make a comparison of the solutions obtained using the
HRPG method with those obtained using the ASGS [54], SGS-GSGS
[40] and CAU [18] methods. To be precise, we compare three stea-
dy state examples, viz. Examples 1, 3 and 7. These examples are
solved on structured meshes only and are illustrated in Figs. 20–
22, respectively.

Note that the ASGS and SGS-GSGS methods are linear methods
proposed for the CDR problem. The ASGS method is a single-
parameter method wherein this scalar stabilization parameter
was designed to attain a robust method (with respect to global sta-
bility) even on anisotropic meshes. In the advective limit the SGS-
GSGS method recovers the SGS method [11]. Thus, in this case the
solutions of the ASGS and SGS-GSGS methods will be similar. As
shock-capturing is not a design objective, these methods will yield
local instabilities in the presence of sharp layers (cf. Fig. 20(a)–(d),
Fig. 21(a)–(d), Fig. 22(a)–(d)).

When high element advection (large c) is combined with strong
element reaction (large x), the local instabilities that appear in the
Galerkin method are occasionally enhanced in several linear single-
parameter stabilized methods [39–41,48]. The SGS-GSGS method is
a two-parameter method designed to treat these local instabilities
in the presence of strong element reaction. This improvement over
the ASGS method (cf. Fig. 22(a)) can be seen in Fig. 22(c). As the
maximum element size is used to calculate the stabilization param-
eters in the SGS-GSGS method, we get a smeared solution on a rect-
angular mesh (cf. Fig. 21(d) and Fig. 22(d)).

On the other hand, shock-capturing is a design objective for
the CAU method which is nonlinear. Fig. 20(e) and (f),
Fig. 21(e) and (f) illustrate that the local instabilities found in
the ASGS and SGS-GSGS methods are greatly controlled by the
CAU method in Examples 1 and 3. Recall that, unlike some other
shock-capturing methods (e.g. [17,21]), the CAU method retains
the shock-capturing terms even in 1D and in several limit cases
of the CDR problem [48]. However, the expressions of the stabil-
ization parameters were never optimized for these limit cases.
Thus, there are instances when the CAU method is either over-
diffusive (cf. Fig. 21(e) and (f)) or fails to improve upon the ini-
tial solution obtained by the SUPG method (cf. Fig. 22(e) and (f)).
Such lack of improvement upon the initial SUPG solution has
been observed even in 1D [48]. The improvement in the accu-
racy and layer resolution obtained by the HRPG method for
the considered examples are evident in Figs. 6(a) and (b),
Fig. 8(a) and (b), Fig. 12(a) and (b). However, for the considered

examples, the HRPG method needed one or two iterations more
than the CAU method.

9. Conclusions

We have developed a multi dimensional extension of the HRPG
method presented earlier in [48] for the 1D CDR problem. As the
characteristic internal/boundary layers found in the convection-
dominant case are a unique feature of the solution in higher
dimensions, they do not have any counterparts in 1D. Hence, a
straight-forward extension of the stabilization parameters of the
HRPG method derived for the 1D case will not be efficient to re-
solve these parabolic layers.

The numerical artifacts that are formed across the parabolic lay-
ers are usually manifested as the Gibbs phenomenon. The strategy
we employ to treat the artifacts about the characteristic layers is to
treat them just like the artifacts found across the parabolic layers
in the reaction-dominant case. This is done by relating the charac-
teristic layers in the convection–diffusion problem to the parabolic
layers formed in a fictitious diffusion–reaction problem. The ficti-
tious reaction coefficient in the later problem is designed such that
the parabolic layers in both the problems have the same width.
Using this fictitious reaction coefficient, we present a nondimen-
sional element number that quantifies these characteristic layers.
By quantification we mean that it should serve a similar purpose
in the definition of the stabilization parameters as the element Pec-
let number does for the exponential layers.

Although the structure of HRPG method in 1D is identical to the
consistent approximate upwind Petrov–Galerkin method [18], in
multi dimensions the former method has a unique structure. The
distinction is that in general the upwinding is not streamline and
the discontinuity-capturing is neither isotropic nor purely cross-
wind. In this line, we present anisotropic element length vectors
li and using them objective characteristic tensors associated with
the HRPG method are defined. Only the multilinear block finite ele-
ments are considered in this study. Except for the modification to
include the new dimensionless number that quantifies the charac-
teristic layers, the definition of the stabilization parameters ai,bi

calculated along the element length vectors li are a direct extension
of their counterparts in 1D summarized earlier in [48, Section 5.6].

Finally, several steady-state and transient examples are pre-
sented that throw light on the good performance of the proposed
method.

An extension of the HRPG formulation within the finite calculus
(FIC) framework to the study of convection–diffusion–absorption
problems using linear triangles can be found in [65].
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