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Abstract

Mesh-free methods have since their early developments been blended to the finite
element formulation in order to benefit from the advantages of both numerical
techniques. In this paper, two recently proposed formulations to couple mesh-free
and finite element methods are discussed and compared.

Key words: Mesh-free, Mesh-less, Element Free Galerkin, Finite [lement Method

1 Introduction

Seminal work on coupling finite elements and mesh-free methods can be found
in [1]. The objective is always to use the advantages of each method. They show
how to couple finite elements near the Dirichlet boundaries and element-iree
Glalerkin in the interior of the computational domain. This simplifies consid-
erably the prescription of essential boundary conditions. They do a mixed
interpolation in the transition region: area where both finite elements and
particles have an influence. This mixed interpolation requires the substitution

* Correspondence to: Antonio Huerta, Departament de Matematica Aplicada III,

E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politecnica de

Catalunya, Jordi Girona 1, E-08034 Barcelona, SPAIN.
URL: wuw-lacan.upc.es (Antonio HUERTA).

L Sponsored by Ministerio de Ciencia y Tecnologia (grants: DPI2001-2204 and
REN2001-0925-C03-01) and the Generalitat de Catalunya (grant: 2001SGR00257)
2 Sponsored by NSF

Preprint submitted to Elsevier Science 11 April 2003



of finite element nodes by particles and the definition of ramp functions. Thus
the region for transition is of the size of one finite element and the interpola-
tion in linear. With the same objectives in (2] the finite element domain and
the mesh-free region are coupled with Lagrange multipliers.

Here two recently proposed formulations to couple mesh-free and finite ele-
ment methods are discussed and compared. They generalize the ideas of [1]
for any order of interpolation, suppress the ramp functions, and do not re-
quire the substitution of nodes by particles. That is, as many particles as
needed can be added where they are needed independently of the adjacent
finite element mesh. This is done in a hierarchical manner and enforcing uni-
form consistency for the blended interpolation. In [3] a coupled hierarchical
approximation method is proposed, see also [4-6]. Liu and co-workers have
also proposed a hierarchical enrichment for bridging scales [7-10]. The ad-
vantages and disadvantages of both formulations are presented and discussed;
moreover, numerical examples illustrating this issues are presented.

2 Two consistent hierarchical formulations

2.1 The bridging scale method for hierarchical enrichment and boundary con-
ditions

Liu and coworkers, within the general developments of Reproducing Kernel
Particle Methods [11,12], present in a series of papers a formulation that fol-
lows a mesh-free approach and at the same time enriches a standard finite
element approximation |7-10]. The basic concept is the hierarchical decompo-
sition of a function u based on some projector 7T". In general 7T" is a projec-
tion operator onto any approximation space, but usually a projection onto a
finite element space is employed [7,8]. That is, the span of some finite element
shape functions characterized by an element mesh size h. The rationale is to
enrich a non-complete finite element base (viz., a finite element base whose
supports do not cover the whole domain) with a mesh-free interpolation. In
this approach particles must be added in the whole domain in order to recover
the completeness of the interpolation. That is, the distribution of particles
over the whole domain is such that the necessary conditions for solvability are
met at every point of the domain [13,3,5]. Figure 1 presents an example. It
shows a spatial domain where finite element nodes are considered only along
the Dirichlet boundary. Those are the active nodes for the functional inter-
polation. Other non-active nodes are considered to define the support of the
shape functions (thus only associated to the geometrical interpolation), see
Figure 1.

Thus, designating as B the set of indexes of the active nodes, {z;},es, the



Fig. 1. Finite element nodes (o) and support of the incomplete base of finite element
shape functions (in gray).

projection onto the incomplete finite element base is
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where a; are the coefficients, which must coincide with u(z;), and Nj(z) are
the finite element shape functions.

Consider now a complete mesh-free interpolation on the whole domain, whose
base is denoted by { N(z)}iez. The hierarchical enrichment for bridging scales
is defined as

w(z) ~ () = T u(z) + [Nf(ﬂ:) — Wf‘Nf(a:)} d;.

YA

Equivalently, the approximation can be written as

w(z) ~ d(z) = Y Nj(z)a; + ) _ Nf(z) )di — > Y N(z)Ni(z;)di, (1)

JEB €L i€l jebBB

Or as
w(z) ~4(z) = Y Niz)a; + ) Niz)d, (2)
jEB €L
where NP = N? — TT"N? are the hierarchical modified mesh-free shape func-
tions.

Remark 1 This interpolation is hierarchical because
Eﬂ(%) = Nf(z;) — [Wth](:Bj) = () for 7 € B.

This result is obvious from the last two terms on the r.h.s. of (1) and the
delta property of the finite element shape functions, N;*(ﬂ:i) = 0;; for i and
i in B. Thus the enrichment does not affect the nodal values. That 1s, the
approzimation values of U at the active nodes are not modified by the mesh-
free interpolation.



Remark 2 The approximation (2) can also be written as

ULE ) = Z Njﬁ(m) c; + Z Niz)d; wherec; =a; — z NH(z;) d;.

JEB &L i€l

Thus, the approzimation space in this hierarchical enrichment, which from
expression (2) appears to be span{N},j € B} @ span{N/,i € T}, is nothing
else but the direct sum of the finite element and the mesh-free interpolation,
namely

S = Span{N;‘}j € B} @span{Nf,i € Z}.

Note that the finite element base is not complete almost everywhere. Only along
the boundary defined by the active nodes, see Figure 1, the finite element base
imnduces the desired consistency. Thus consistency is quaranteed by the mesh-
Jree approximation both in the region where particles are alone, as usual, and
also in the region where the finite element base is incomplete, the gray area in
Figure 1.

Remark 3 The shape functions {Nj‘f”}jeg and {ﬁ?}iel' are linearly indepen-
dent as long as the finite element base is not a complete base. If active nodes
are only distributed on the boundary this is verified automatically. In fact, if
Z N;’“ # 1 the base is not complete because not every node in the element is
JEB

active.

Since this enrichment is hierarchical, in 1D all the mesh-free interpolation
f1111c£0ns cancel on the boundary where the active node, say zp, is located,
i.e. N(zp) = 0Vie Z. Thus the finite element shape function related to xp,
recall that N¥(zp) = 1, will impose exactly the Dirichlet boundary condition
as desired.

However, this property is not generalizable to higher dimensions. Although
the mesh-free shape functions vanish at the finite element nodes, they do not
vanish along the element boundaries (edges in 2D and faces in 3D). Figure 2
shows an example of such a case. The shape function of a particle positioned
in the center of a 2D element with two active nodes is hierarchical, i.e. goes to
zero at the active nodes, but it does not cancel along the edge between those
nodes. This fact induces important errors in the implementation of Dirichlet
boundary conditions as already noticed in [8, sec. 5.2.1]. Convergence of this
approach is still guarantee but at a lower rate than expected [9].

2.2  Continuous blending method

Another alternative for a hierarchical enrichment is the technique proposed in
3], which has been generalized in [14] to get a nodal interpolation property,



Fig. 2. Bridging scale mesh-free shape function over an element with two active
nodes.

and whose convergence has been analyzed in [4-6]. This approach follows
a different perspective: instead of doing a projection onto the finite element
space, the computation of the mesh-free shape functions is adapted to account
for the complete and incomplete finite element base.

In the context of the EFG method, given a set of particles {z;}iez in €2, the
mesh-free shape functions can be written as

NA(z) = P(z:) o) (= ‘;ﬁ

[

), (3)

where P(z) = {po(z), p2(z),...,m(x)}" includes a complete basis of polyno-
mials of degree less or equal m and the function ¢(x) is the weighting function.
It gives compact support to the shape function and this support is scaled by
the dilation parameter p. The unknown vector a(z) in R*! is determined
imposing the so-called reproducibility or consistency condition. In fact, it 1s
equivalent to a Moving Least Squares development [15]. This reproducibil-
ity condition imposes that the mesh-free approximation is exact for all the

polynomials in P, i.e. P(z) = > P(z;) N{(z).

Following this idea Huerta and coworkers propose a combined approximation
with finite elements and nodes,

u(z) ~ a(z) = Y Ni(z) u?‘ + Y NAz)uf =TT u+ ) NAx) v (4)

=V = A = A

where the finite element shape functions { N :f*} je are as usual, and the mesh-

free shape functions {E\Zp}iez take care of the consistency of the the approxi-
mation. In Figure 3 this is clearly shown, the mesh-free shape functions adapt
their shape to recover the linear interpolation. Note that the coefficients of
the approximation are denoted by u" and u” to clearly identify those related
to the finite element and to the mesh-free shape functions, respectively. The
mesh-free shape functions are defined as in standard EFG,



Fig. 3. Continuous blending method: the mesh-free shape functions recover the linear
consistency.

L — &y

Nf(z) = P(z:)" &(z) ¢ "

), (5)

but the unknown vector & is determined imposing the reproducibility condi-
tion associated to the combined approximation (4), that is

P(z) = TT"P(z) + Y _ Ni(z) P(). (6)

€L

Substitution of (5) in (6) leads to a small system of equations for &, see [3]
for details,

M(z) a(z) = P(z) — W;‘P(m). (7)

The only one difference with standard EFG is the modification of the r.h.s.
of the previous system, in order to take into account the contribution of the
finite element base in the approximation.

Remark 4 The consistency condition (6) imposes that the mesh-free shape
functions must ezactly reproduce P(z) — TT"P(z), that is particles take care
of the error due to the projection onto the finite element base.

In fact, thanks to the linearity of the system of equations defined by (7), & is
easily identified as

&(z) = a(z) — [M(2)] " T"P(z),

where a(z) = [M(z)]'P(z) are the coefficients obtained in a pure mesh-free
strategy. Likewise, the shape functions, see (5), can be identified as composed
of two parts: the standard mesh-free one and the one accounting for the finite

i =7
element contribution, namely Nf(xz) = Nf(z) — N,(z) with Nf(z) defined in
(3) and

N(z) = P(z:)T [M(z)] TP () ¢ —)
= 3 Nj(@) P(a:)" [M(2)]'P(z;) (——) = 3 Nj(z) N{(w, z;).
jied P jed
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Fig. 4. Shape functions of the continuous blending method with coupled finite ele-
ment (solid line) and mesh-free (dashed line) interpolation.

Thus after substitution in (4) another equivalent expression of the continuous
blending method can be obtained

~p
) =2 %(r) = Z N;"‘(m) u? -+ Z NAz) uf + Z N,(z) uf

1edJ el el (8)
=ZN;(£U)H?+ZNF( us +LLN*I‘ N":cm)fu,p,
=4 i€l i€l jeT

which has a similar structure as (1).

Remark 5 This interpolation is hierarchical because at any finite element
ﬂt}de Ll k = j:

TTN“ T ) \ :Lk,,:z:j.)*u ZZ@.RN’ Tk, L) U —ZN”fsk,xk)

i€l je€T el €T i€l

and the function Nz, xy) is such that NAwk, z) = N=g) for k € J; thus,
as seen in the previous section, the last two terms in equation (8) cancel each
other.

This formulation can be useful in two situations: enrichment and coupling of
finite elements and mesh-free approximation. In the first one a complete finite
element base is considered all over the domain, and only in a selected region,
particles are added increasing the consistency of the approximation, see 3] for
details.

However, in this paper only coupling with finite elements 1s considered. That
is, as it is shown in Figure 4, the domain €2 is the union of two non-disjoint

subdomains, Q = QPUQP. Here Q" denotes the subdomain where the /N; " have
an influence in the approximation,

h={zeQ|3Ije T, Ni(z)+#0},
and Q7 is the subdomain where at least one N7 is non zero,

_ {zeQ|3ieT, N(z)+#0}.



Fig. 5. Continuous blending mesh-free shape function over an element with two
active nodes.

In the region where only finite elements are present, Q" \ Q”, a standard,
and thus consistent, finite element approximation is considered. In the region
where only particles have an influence, Q7 \ Q" the standard, and thus con-
sistent, KEF'G approximation is considered. However, in the area where both
interpolations have an influence, Q= Q"n (27 the coupled interpolation is
used, see the definition of @(z) in (4).

It is important to note that continuity of the interpolation is ensured by the
following proposition under the described conditions even in multiple dimen-
sions, see [4] for a demonstration.

Proposition 1 The approximation u(z) is continuous in  if:

(1) the same order of consistency m is imposed all over Q (i.e. m coincides
with the degree of the FE base), and

(2) the domain of influence of particles, Q°, coincides exactly with the region
where finite elements do not have a complete basis.

If the consistency of the mesh-free interpolation, m, coincides with the degree
of the base of finite elements and the base is complete, then P(z) — TT"P(z) =
0, and thus, from (7), & = 0. That is, if a uniform consistency is required all
over the domain {2, in the regions where the finite element base is complete,
ie. Q\ Q2 the contribution of the particles is zero. Note that this property
holds at every point z € Q \ ©” and, in particular, along the boundaries of
the finite element mesh. As shown in Figure 5, this means that N = 0 in
the finite element edges (or faces in 3D) whose nodes are all in Z. This is
an important property for the imposition of essential boundary conditions, as
seen In section 3.2,

Obviously in the rest of the domain, €2?, the mesh-free shape functions take
care of reproducing polynomials up to degree m.

Remark 6 From the definition of the approximation u(x) in (4) it is easy to



verify that now the approximation space s
S = Span{N;”}j cJ} Span{j\zf’,i €1}

Note that the shape functions {N.'};ep and {N};ez are linearly independent.
That 1s, the only possible combination of parameters a;, © € L, and B;, j € J,
such that

Z&jN:;L _|_Zﬁiﬁ;:” = {J

=N €T
is the trivial one. Note that, on one hand, in 2\ Q° every EF is zero and the
finite element shape functions are linearly independents, i.e. the only possible
combination of parameters a; such that ) ;e 7 «; N;"ig\gp = () 18 the trivial one.
And, on the other hand, in (2 the moving least square procedure to determine
N? from (5) and (7) ensures linear independency.

3 Comparing both formulations

3.1 General remarks

As seen in Remarks 2 and 6 the interpolation spaces corresponding to the
bridging scale method and the continuous blending method are not equivalent

o

S = span{Nj", j € B} ®span{Nf, i €1}
+ S = span{N}, j € B} @ span{N’, i € J}.

In fact, equations (1) and (8) also illustrate the differences. The last term in the
r.h.s. of both equations is clearly different; note that the constant value Nf(z;),
which appears in (1), is replaced by the function N{{z,x;) in (8). As noticed
in Remark 5, there is a coincidence at z = x; j € B because both approaches
are hierarchical, but elsewhere the differences have important consequences:

(1) Lower computational cost of continuous blending method. Both formu-
lations require the determination of mesh-free shape functions. Thus at
cach integration point a system of equations must be solved. In the con-
tinuous blending method the system is defined in (7), for the bridging
scale method the same system is solved but without the second term
on the r.h.s. Apart from this, on one hand, the bridging scale method
requires the computation of the projection of the standard mesh-iree
shape functions onto de finite element space, TTRNP. That is, the stan-
dard mesh-free shape functions, N/, must be computed at every active
finite element node, {z;};e5. On the other hand, the continuous blending
coupled interpolation requires only the computation of the projection of
the polynomial base P at some finite element nodes. That is, it requires



the computation of P(z;) only at the nodes z; in the transition region
ﬁ, which is easily implemented.

(2) The continuous blending method requires particles only where needed. As
observed in Section 2.2 in the continuous blending method the mesh-free
contribution is cancelled in the region where the finite element base is
complete. Thus, there is no need to have any particles in this region.
This is not the case for the bridging scale method. For this approach a
complete mesh-free approximation is needed in the whole domain in order
to ensure the continuity of the approximation. Obviously, this increases
the total number of degrees of freedom. If finite elements are only used
along the Dirichlet boundary to introduce essential boundary conditions,
the number of degrees of freedom may not increase because the region
where the finite element base is complete is reduced to the Dirichlet
boundary. But in this last case the next comparison is crucial.

(3) Dirichlet boundary conditions are properly imposed by finite elements only
in the continuous blending method. As noted in Section 2.1, and in par-
ticular in Figure 2, the bridging scale mesh-free shape functions, E’? do
not vanish at the element edges (or faces in 3D) where a complete finite
element base is present; for instance, along the essential boundary. Thus,
prescribing the essential boundary at the active finite element nodes, i.e.
imposing the coeflicients a; in (2), does not, imply that the Dirichlet con-
dition is “exactly” (in the sense of the consistency required) imposed
along this boundary. Moreover, and in fact more importantly, the test
functions do not cancel along the Dirichlet boundary decreasing the op-
timal rate of convergence. As noted in [8,10] this fact forces the use of a
modified weak form in order to impose the essential boundary condition
in a correct manner. Note that this problem is not present in the continu-
ous blending method because the mesh-free shape functions cancel when
the finite element base is complete, see Figure 5.

To better illustrate this last issue a particular example is presented. A square
domain is discretized by means of finite element nodes and particles. A regular
net of particles is used all over the square domain, and active nodes are added
along the boundary as shown in Figure 6 (top pictures). Thus, nodes and
particles coincide along the boundary.

Figure 6 also shows the shape function associated to a mesh-free particle
(depicted in gray) for both formulations. On the left, the particle is chosen
along the boundary. This represents the limit case when particles get close to
the boundary, because the same behavior is also present when the particle is
not located exactly on the boundary as shown on the right of the same figure.
The results are clear, for the bridging scale method (middle picture) the shape
function clearly does not cancel along the boundary. Thus as noted previously,
imposing the Dirichlet conditions only at the finite element nodes does not
suffice. For the continuous blending method, this is not the case, the shape

10



Fig. 6. Discretization with finite element nodes (o) and particles (x) (top), and shape
function associated to the particle located at the gray circle for the bridging scale
method (middle) and for the continuous blending method (bottom).

function cancels along the boundary. On the right, the particle is chosen one
layer inside the domain, and although less evident, the same conclusions are
drawn.

11



3.2 Numerical example

The same example presented in [8] is repeated here to compare both ap-
proaches. The 2-D Laplace equation is solved on the unit square with Dirichlet
boundary conditions,

Au=10 for (z,y) € 2:=]0,1[x]0,1[,  (9a)
u(z,1) =0 and u(z,0) = sin(rz)  for z €]0, 1], (9b)
u(0,y) = u(l,y) =0 for y €]0, 1]

U‘

—_
O
g

Sl

The analytical solution is simply,
W) = (cosh(:rry) — coth(my) sinh(:vry)) sin(7ax).

The Galerkin weak problem associated to (9) becomes: find u € S such that,
for all v € V,

/ﬂ‘?u Vv dQ = 0, (10)

where the functional spaces are, as usual, the solution space,
S :={u € H'(Q) | u verifies (9b) and (9¢c)},

and the test space, V := H;(£2), such that the test functions v vanish at the
essential boundary (recall, this is not exactly verified by the bridging scale
method). The finite dimensional subspaces have similar properties, the test
functions vanish along the Dirichlet boundary and the approximations ver-
ify (up to the interpolation error) the essential boundary conditions. Recall
that these conditions are easily imposed in the continuous blending method
by prescribing only the values at the finite element nodes. Thus the standard
theoretical convergence rates are easily obtained with this formulation. How-
ever, with the bridging scale method this is not the case, and a reduction in
the convergence rates is expected as shown in [9)].

Figure 7 shows the results obtained with the continuous blending method and
the discretization shown in the same figure. Finite elements are considered in
a neighborhood of the boundary and only the nodes at the boundary are used
in the interpolation (marked with circles). The finite element shape functions
are coupled with the mesh-free shape functions (see the particles marked with
crosses) as commented in section 2.2. The solution is correctly interpolated at
the boundaries and vanishes at {x = 0}, {x = 1} and {y = 1}. The reason
being that a complete finite element base is available at the boundary and,
therefore, the interpolation is made exclusively with finite element shape func-
tions. Thus, 1t is piecewise linear. The interpolation of the essential boundary
condition is easily improved with the discretization shown in Figure 8, where
more finite element nodes are used at {y = 1}.

12
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Fig. 8. Continuous blending method: refined finite element discretization along the
boundary.

Figure 9 shows the solution obtained with the bridging scale method presented
in section 2.1. The numerical solution presents an important error at the es-
sential boundary, even when a finer mesh is used, see Figure 10. Although
the mesh-free shape functions vanish at the finite element nodes, they do not
vanish along the essential boundary.

Finally, convergence results are presented in Figure 11 where the rates of both
methods and standard finite elements are compared. On the left convergence
in the £5(Q) norm is presented. It is difficult to appreciate from this figure
the difference in convergence rates between both techniques blending finite
elements and mesh-free methods because the error is measured over the whole
computational domain. Thus, on the right, convergence 1s plotted using the
L5(92) norm. In this case it is clear that both finite elements and the con-
tinuous blending method technique presents identical results and the optimal
rate of convergence. This is not the case for the hierarchical coupling, which,

13
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Fig. 10. Bridging scale method: refined discretization.

as expected, shows a reduced convergence rate.

4 Conclusions

The bridging scale method proposed in |7,8| is compared with the continuous
blending method proposed in [3]. Both formulations are hierarchical and pre-
serve the desired consistency on the computational domain. Thus, for a large
number of situations they are equivalent. However, apart from computational
efficiency (the continuous blending method presents advantages from a compu-
tational point of view) the major difference is apparent when finite elements
are employed to impose the essential boundary conditions. The continuous
blending method is such that the mesh-free shape functions cancel when a
complete finite element base is present. This also happens along boundaries

14
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(edges or faces of the finite element mesh). This property, which allows to put
mesh-free methods only where they are needed, is crucial to impose in a simple
manner essential boundary conditions and, more importantly, to ensure that
the test functions cancel along the Dirichlet boundary. In fact, the continuous
blending method preserves the optimal order of convergence of mesh-free and
finite elements. This is not the case of the bridging scale method.
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