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SUMMARY

This paper introduces a new stabilized finite element method based on the finite calculus (Comput. Methods
Appl. Mech. Eng. 1998; 151:233–267) and arbitrary Lagrangian–Eulerian techniques (Comput. Methods
Appl. Mech. Eng. 1998; 155:235–249) for the solution to free surface problems. The main innovation
of this method is the application of an overlapping domain decomposition concept in the statement of
the problem. The aim is to increase the accuracy in the capture of the free surface as well as in the
resolution of the governing equations in the interface between the two fluids. Free surface capturing is
based on the solution to a level set equation. The Navier–Stokes equations are solved using an iterative
monolithic predictor–corrector algorithm (Encyclopedia of Computational Mechanics. Wiley: New York,
2004), where the correction step is based on imposing the divergence-free condition in the velocity field
by means of the solution to a scalar equation for the pressure. Examples of application of the ODDLS
formulation (for overlapping domain decomposition level set) to the analysis of different free surface flow
problems are presented. Copyright q 2008 John Wiley & Sons, Ltd.
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INTRODUCTION

The prediction of the free surface motion of liquids is a topic of big relevance in many engineering
fields. Despite recent advances in computational fluid dynamics, the development of an efficient,
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Universidad Politécnica de Cataluña, Gran Capitán s/n, 08034 Barcelona, Spain.

†E-mail: onate@cimne.upc.edu

Contract/grant sponsor: Ministerio de Educación y Ciencia, Spain; contract/grant numbers: TRA2005-07536 07536/
TMAR, VEM2004-08641-C03-03

Copyright q 2008 John Wiley & Sons, Ltd.



1298 J. GARCIA-ESPINOSA, A. VALLS AND E. OÑATE

accurate and robust numerical algorithm for the analysis of problems with large free surface
deformation is still a challenging issue.

The free surface flow problem can be considered as a particular case of the more general problem
of predicting the interface between two immiscible fluids: the flowing liquid (typically water) and
air. Computing the interface between two immiscible fluids is difficult because neither the shape
nor the position of the interface between the two fluids is known a priori. There are basically
two approaches for computing free surfaces in this kind of flows: interface-tracking and interface-
capturing methods. The former computes the motion of the flow particles based on a Lagrangian
approach, where the numerical domain adapts itself to the shape and position of the free surface.
Different numerical techniques, such as the smoothed particle hydrodynamics (SPH) method [1, 2]
and the particle finite element method (PFEM), belong to this kind [3–5]. In interface-tracking
methods, the free surface is treated as a boundary of the computational domain where the kinematic
and dynamic boundary conditions are applied. The main problems of this approach are the large
computational effort required due to the need of updating the analysis domain every time step and
the difficulty in imposing mass continuity in an accurate way.

Standard interface-capturing methods consider both fluids as a single effective fluid with variable
properties [6–11]. The interface is considered as a region of sudden change in the fluid properties.
This approach requires an accurate modelling of the jump in the properties of the two fluids taking
into account that the free surface can move, bend and reconnect in arbitrary ways. Furthermore,
the imposition of the exact boundary conditions in the interface is usually simplified.

This paper shows a new stabilized FEM for solving the Navier–Stokes equations including free
surface effects, which overcomes most of the difficulties of the existing methodologies. The starting
point is the modified governing differential equations for an incompressible viscous flow and
the free surface condition, incorporating stabilization terms via a finite calculus (FIC) procedure
[12–18]. The main innovation of the new method termed overlapping domain decomposition level
set (ODDLS) is the introduction of an overlapping domain decomposition concept in the statement
of the problem for increasing the accuracy in the capture of free surface as well as in the resolution
of the governing equations in the interface between the two fluids. Free surface capturing is based
on the solution to a level set-type equation [6–8], whereas the solution to the Navier–Stokes
equations is based on an implicit monolithic second-order method originally proposed by Soto
et al. [19]. This scheme is derived by splitting the momentum equation in a similar manner as in
an implicit fractional step method [13, 14, 17, 19].

The outline of this paper is as follows. In the following section, the statement of the governing
equations of two incompressible and immiscible fluids is presented. Then, the treatment of the inter-
facial boundary condition is analysed and the FIC-stabilized problem is presented. The overlapping
domain decomposition methodology is then applied to the stabilized problem. The discretization
of the FIC-governing equations using equal-order linear finite element is described and finally, the
arbitrary Lagrangian–Eulerian (ALE) version of the method is introduced. The accuracy of the
new formulation for the analysis of free surface flows is verified in different validation cases.

STATEMENT OF THE PROBLEM

The velocity and pressure fields of two incompressible and immiscible fluids moving in the
domain �⊂Rd (d=2,3) during the time interval (0,T ] can be described by the incompressible
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ODDLS METHOD 1299

Navier–Stokes equations for multiphase flows, also known as the non-homogeneous incompressible
Navier–Stokes equations [20]:

�t�+∇(�u) = 0

�t (�u)+∇ ·(�u⊗u)−∇ ·r = �f

∇ ·u = 0

(1)

where � is the fluid density field, u is the velocity field and r is the Cauchy stress tensor defined as

r = −pI+s
s = �(∇u+∇uT)

(2)

where � is the dynamic viscosity and I is the identity matrix. Boldface characters are used to
denote vector and tensor variables.

As we consider problems with a moving interface inside the domain, all subdomains and
functions defined hereafter are time dependent.

For ∀t ∈[0,T ), let �1(t)={x∈�|x is Fluid1} be the part of the domain � occupied by fluid 1
and let �2(t)={x∈�|x is Fluid2} be the part of the domain � occupied by fluid 2. Therefore,
�1(t) and �2(t) are two disjoint subdomains of �. Then

�= int(�1(t)∩�2(t)) ∀t ∈(0,T ] (3)

where ‘int’ denotes the topological interior and the over-bar indicates the topological adherence
of a given set, for more details see [21]. The system of equations (1) must be completed with the
necessary initial and boundary conditions, as shown below.

It is usual in the literature to consider that the first equation of system (1) is equivalent to impose
a divergence-free velocity field (the third equation in (1)), as the density is taken as a constant.
However, for multiphase incompressible flows, the density cannot be considered to be constant in
�×(0,T ]. In fact, it is possible to define the �,� fields as follows:

�(x, t),�(x, t)=
{

�1,�1, x∈�1(t)

�2,�2, x∈�2(t)
∀(x, t)∈�×(0,T ] (4)

Let � :�×(0,T ]→R be a function named the level set function hereafter and defined as follows:

�(x, t)=

⎧⎪⎨
⎪⎩
d(x,�(t)), x∈�1(t)

0, x∈�(t)

−d(x,�(t)), x∈�2(t)

(5)

where d(x,�(t)) := inf{‖x−y‖|y∈�(t)} is the distance of point x to the interface between the two
fluids, denoted by �(t), at time t .

From definition (5), it is trivially obtained that

�(t)={x∈�|�(x, t)=0} (6)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1297–1327
DOI: 10.1002/nme
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Therefore, it is possible to re-write definition (4) as

�,�=
{

�1,�1, �>0

�2,�2, �<0
(7)

Let us express the density fields in terms of the level set function � as

�(x, t)=�(�(x, t)) ∀(x, t)∈�×(0,T ] (8)

Then, the density derivatives can then be expressed as

�t�=d��·�t�, ∇�=d��·∇� (9)

Substituting relation (9) into the first equation of system (1) gives

�t�+∇(�u) =∇·u=0
�t�+(u·∇)� = d�� ·�t�+d�� ·(u·∇)�

= d��[�t�+(u·∇)�]=0 (10)

The multiphase Navier–Stokes problem (1) is therefore equivalent to solving the following system
of equations:

�t (�u)+∇ ·(�u⊗u)−∇ ·r = �f

∇ ·u = 0
(11)

coupled with the equation

�t�+(u·∇)�=0 (12)

Equation (12) defines the transport of the level set function due to the velocity field obtained by
solving Equations (11).

As a conclusion, the free surface capturing problem can be described by Equations (11) and (12).
The interface between the two fluids is defined by the level set 0 of �.

It is possible to prove, assuming the variables of the problem as sufficiently smooth, that
Equations (1), or equivalently the system given by Equations (11) and (12), have a unique global
solution [21].

Denoting by an over-bar the prescribed values and by n the normal to the boundary, the boundary
conditions of Equations (11) and (12) are

u=u on �D

n·r= t on �N

n·u=un,
n·r ·g= t1

n·r ·s= t2

}
on �M

(13)

where the boundary �� of the domain � has been split into three disjoint sets: �D,�N, where the
Dirichlet and Neumann boundary conditions are imposed, and �M where mixed conditions are
imposed. Mixed Dirichlet–Neumann boundary conditions are usually applied when wall functions
are used for modeling the behaviour of the flow close to solid walls. Vectors g,s in the above
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ODDLS METHOD 1301

equation span the space tangent to �M. Owing to the fact that (12) is an hyperbolic equation, only
boundary conditions must be imposed at the inlet boundary noted by �inlet and defined as

�inlet={x∈�|n(x) ·u(x)<0} (14)

Then the boundary condition for Equation (12) is

�= �̄ on �inlet (15)

Finally, the initial conditions for the problem are

u=u0 in �, �=�0 in � (16)

Remark 1
The initial condition for � can be directly derived from the initial position of the interface. Using
the definition of � given in Equation (5), �0 can be computed as the signed distance to the initial
interface position, �0=�(0)={x ∈�|�(x,0)=0}. An efficient algorithm to calculate the signed
distance to the interface is presented next.

HOW TO CALCULATE A SIGNED DISTANCE TO THE INTERFACE

Based on the flow properties, such as density or viscosity, we can calculate an initial guess for �
as follows:

�(x, t)=

⎧⎪⎨
⎪⎩
1 if �(x, t)=�1

0, x∈�(t)

−1 if �(x, t)=�2

(17)

Clearly, the level set function obtained from Equation (17) is not a signed distance to �. We need
to reinitiate � in order to guarantee that � fulfils definition (5). We use a technique based on the
following property to reinitiate the level set function as a signed distance to � [9]:

If � is a signed distance function to �, then

‖∇�‖=1 ∀(x, t)∈�×(0,T ] (18)

where ‖·‖ denotes the Euclidian norm in Rd .
We use Equation (18) to recalculate �. In case Equation (18) is not satisfied, then

1−‖∇�‖=r (19)

The residual r in Equation (19) can be understood as the time derivate of � with respect to a
pseudo-time �, i.e.

r :=��� (20)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1297–1327
DOI: 10.1002/nme



1302 J. GARCIA-ESPINOSA, A. VALLS AND E. OÑATE

Then, the stationary solutions to Equation (20) (i.e. when ���=0) satisfy Equation (18). In
summary, for a given time t ∈[0,T ], we calculate � as the stationary solution to the following
hyperbolic problem:

���+‖∇�‖ = 1 on �

�(�=0) = �(·, t)
�(x,�) = 0 ∀x∈�(t)

(21)

Problem (21) can be rewritten in a more convenient manner as

���+(w ·∇)�=sign(�), w=sign(�)
∇�

‖∇�‖ (22)

As the level set values identify the free surface between the two fluids, the following relations can
be obtained:

n(x, t)=∇�|(x,t), �(x, t)=∇ ·(n(x, t)) (23)

where n is the normal vector to the interface �, oriented from fluid 2 to fluid 1, and � is the local
curvature of the interface.

From Equation (22) it can be easily shown that the reinitialization process begins from the
interface and it propagates to the whole domain. This property is attractive from the computational
point of view, as we are interested only in the accurate values of � in the region close to the
interface. Then we only need to reach the steady-state solution to Equation (22) in a narrow band
close to the interface as proposed in [7]. The reinitialization algorithm used in this work has been
optimized using the concept of nodal levels described next.

Given a level set distribution �, for every time step t one can assign a level li to the node xi
based on the following rules:

A nodal point i of coordinates xi belongs to the level li =1, if �(xi , t)�0, and it is connected
to at least one node j with �(x j , t)<0.
A nodal point i of coordinates xi belongs to the level li =−1, if �(xi , t)<0, and it is connected
to at least one node j with �(x j , t)�0.
A nodal point i of coordinates xi belongs to the level li>1, if �(xi , t)>0, and it is connected
to at least one node of level li −1.
A nodal point i of coordinates xi belongs to the level li<−1, if �(xi , t)<0, and it is connected
to at least one node of level li +1.

Once the levels have been assigned to the mesh points, the reinitialization is performed in a narrow
band of n levels around the interface. Equation (22) is solved using a forward Euler scheme until
the steady state in the n levels is achieved. k iterations with k>n are performed in such a way that
for every iteration i=1, . . . ,k. The iterations are carried out only for those nodes j of the mesh
with |l j |�i .

Owing to the evolution of the interface defined by Equation (12), the level set function does
not fulfil Equation (18) after some time. It is therefore recommended to apply the reinitialization
scheme described above at every time step.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1297–1327
DOI: 10.1002/nme
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INTERFACIAL BOUNDARY CONDITIONS

At a moving interface the jump condition applies. For immiscible fluids we can express the jump
condition at the free surface as

[n·(r·n)]=�� on �

[s·(r·n)]=0 on �

}
(24)

where � is the coefficient of surface tension (a constant of the problem), s is any unit vector tangent
to the interface and [·] defines the jump across the interface:

[A]= A1−A2 (25)

Taking into account that ri =−pI+�i (∇u+∇uT), i=1,2, and using that s·n=0, the second
equation in (24) yields

s·[(�1−�2)(∇u+∇uT) ·n]=0 (26)

From Equation (26) we can conclude that (�1−�2)(∇u+∇uT) ·n∈〈s〉⊥, where 〈v〉⊥ denotes the
orthogonal subspace to v. Then it is clear that

(�1−�2)(∇u+∇uT) ·n=�n, �∈Spec(s1−s2) (27)

Integrating over any closed surface �M containing �, in both sides of Equation (27) yields∫
�M

(�1−�2)n·(∇u+∇uT)=
∫

�M
�n (28)

Applying the Gauss theorem to the right-hand side of Equation (28), we can deduce that �=0 or
equivalently

n·(∇u+∇uT) on � (29)

Introducing Equation (29) into the first condition in Equation (24), the following equivalent condi-
tion is obtained:

p1n= p2n+��n (30)

This form of the jump condition is very useful in the development of the method presented in the
following sections.

In the classical level set formulation for multiphase flow problems [9], jump condition (24) can
be introduced into the momentum equation by adding an additional source term, i.e.

�t (�u)+∇(�u⊗u)−∇ ·r = �f̃

f̃ = f+��n�(�)
(31)

where �(�) is Dirac’s delta function on �. As the properties of the fluids change discontinuously
across the interface, the direct solution to Equation (31) has important numerical drawbacks: inac-
curate resolution of the pressure at the interface, fluid mass losses, inaccurate interface location, etc.
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1304 J. GARCIA-ESPINOSA, A. VALLS AND E. OÑATE

A common approach to overcome these difficulties is to smooth the discontinuous transition of
the flow properties and Dirac’s delta functions across the interface using of a smoothed Heaviside
function. This function is usually expressed as

H	(�)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, �<−	

1

2

[
1+ �

	
+ 1



sin

(

�

	

)]
, |�|�	

1, �>	

(32)

where 2	 is the thickness of the transition area. Then a property � is approximated as

�(�)=�1+(�1−�2)H	(�) (33)

and Dirac’s delta function is approximated as

�(�)=d�H	 (34)

This approach also presents several deficiencies: the accuracy of the results depends on the
ad hoc thickness of the transition area 2	; the jump condition is not properly captured; the interface
propagation velocity is not correctly calculated; etc.

Other schemes, such as the ghost fluid method [10] or Lagrangian methods such as the PFEM [4],
attempt to overcome the problem of smoothing of properties at the interface region. However, these
methods have several drawbacks, such as limitations of conservative and convergence properties
in some cases or an increase in the computational effort. As a conclusion, a method able to deal
with a discontinuous transition of properties across the interface, the jump interface condition and
computationally affordable for large models is required.

The overlapping domain decomposition method described in the following sections has been
developed to overcome these difficulties.

STABILIZED FIC-FEM FORMULATION

It is well known that the standard Galerkin approximation of the incompressible Navier–Stokes
equations may suffer from numerical instabilities from two main sources. The first is due to the
advective character of the equations, which induces oscillations for high values of the velocity.
The second source has to do with the mixed character of the equations, which limits the stability
of the solution to the satisfaction of the well-known inf–sup condition. The stabilization technique
chosen in this work to overcome both problems is based on the FIC method presented in [12].

The stabilized FIC form of the governing differential equations (11) and (12) is expressed as

rm− 1
2 (hm ·∇)rm =0, rd− 1

2 (hd ·∇)rd =0, r�− 1
2 (h� ·∇)r� =0 (35)
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The boundary conditions for the stabilized FIC problem are expressed as

u = u on �D

n·r− 1
2n·hm ·rm = t on �N

n·u=un, n·r ·g− 1
2n·hm ·rm ·g = t1 on �M

n·r ·s− 1
2n·hm ·rm ·s= t2, � = �̄ on �inlet

(36)

The underlined terms in Equations (35) and (36) introduce the necessary stabilization for the
numerical solution to the Navier–Stokes problem [13, 15, 17].

Note that the terms rm,rd and r� denote the residuals of Equations (11) and (12), i.e.

rm := �t (�u)+∇ ·(�u⊗u)+∇ p−∇ ·r−�f

rd = ∇ ·u
r� := �t�+(u·∇)�

(37)

The characteristic length vectors hm,hd and h� contain the dimensions of the finite space domain
where the balance laws of mechanics are enforced. At the discrete level these dimensions are of
the order of the element or grid dimension used for the computation. Details on obtaining the
FIC-stabilized equations and the recommendation for computing the characteristic length vectors
can be found in [15–17].

OVERLAPPING DOMAIN DECOMPOSITION METHOD

To overcome the drawbacks related to the discontinuity of fluid properties across the interface
and to impose the interfacial boundary condition we split the domain � into two overlapping
subdomains. Based on this subdivision of the domain, we apply a Dirichlet–Neumann overlapping
domain decomposition technique with appropriate boundary conditions in order to satisfy the
interfacial condition.

Let K =⋃#K
e=1 (Ne,Ke,�e) be a finite element partition of domain �, where Ne are the element

nodes, Ke is the element spatial domain, �e are the element shape functions and K is the total
number of elements in the partition.

We assume that K satisfies the following approximation property:

dist

(
��,�

(
#K⋃
e=1

Ke
))

� max
1�e�#K

{diam(Ke)} (38)

for a fixed instant t, t ∈(0,T ]. Let us consider a domain decomposition of domain � into three
disjoint subdomains �3(t), �4(t) and �5(t) in such a way that �3(t)=⋃

e K
e
3 and �5=⋃

e K
e
5 ,

where K 3
e are the elements of the finite element partition K , such as ∀x∈Ke

3 |�(x, t)>0, and K 5
e are

the elements of the finite element partition, such as ∀x∈Ke
5 |�(x, t)<0. The geometrical domain

decomposition is completed with

�4(t)=�\(�3(t)∪�5(t)) (39)
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From this partition, we define the following two overlapping domains:

�̃1(t) := int(�3(t)∪�4(t)), �̃2(t) := int(�4(t)∪�5(t)) (40)

Some comments about the �̃1−�̃2 partition are given next.
In order to simplify the notation, we will omit the time dependency of domains in the remainder

of this section.
Let ��̃i , i=1,2, be the boundary of �̃i , then

��̃i ∩��=(��̃i ∩�D)︸ ︷︷ ︸
�i D

∪(��̃i ∩�N)︸ ︷︷ ︸
�i N

∪(��̃i ∩�M)︸ ︷︷ ︸
�iM

(41)

It has to be noted that ��̃i contains an additional term �̃i that is not included into ��. This term
comes from the presence of an interface inside �. As we are using a capturing technique, the
position of the interface will not lie on mesh nodes, as usually happens in a tracking technique.
Therefore, some elements can be intersected by the interface. Then �̃i is defined as follows:

�̃i =��4∩�̃i+(−1)i−1 (42)

Note that �̃i is not coincident with �, but the following condition is satisfied:

dist(�, �̃i )�max{diam(Ke)|Ke⊂�4} (43)

Summarizing, we have

��̃i =�i D∪�i N ∪�iM ∪�̃i (44)

Figure 1 is a sketch of the domain partition described above.
We have two restrictions for the definition of the boundary condition on �̃i : fluid velocities

must be compatible at the interface and the jump boundary condition (24) must be satisfied on �.
The domain decomposition technique chosen is of Dirichlet–Neumann type and it allows us to
fulfil both restrictions.

Figure 1. Geometrical domain decomposition.
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ODDLS METHOD 1307

Let us introduce a standard notation. We denote by xi a variable related to �̃i . For example, u1
is the velocity field solution to problem (36), where the domain � has been replaced by �̃1.

We apply the Dirichlet conditions on �̃1 and the Neumann conditions on �̃2. For the boundary
�̃1, we use the compatibility of velocities at the interface:

u1=u2 on �̃1 (45)

For the boundary �̃2, we use the jump boundary condition. We are looking for a traction vector t̃
such that

n2 ·r2= t̃ on �̃2 (46)

and t̃ must guarantee that the jump boundary condition (31) holds, that is to say

p1n= p2n+��n on � (47)

Let us write the variational problem considering the domain decomposition above described.

Domain 1

(�1�tu1,v)�̃1
+〈�1(u1 ·∇)u1,v〉�̃1

+(r1,∇v)�̃1
+ 1

2 (r1m, (h1m ·∇)v)�̃1

+(t̄,v)�1N +(t̄1g+ t̄2s,v)�1M =〈�1f,v〉�̃1
(48)

(q,∇ ·u1)�̃1
+ 1

2 (r1d , (h1d ·∇)q)�̃1
=0

u1=u2 on �̃1

Domain 2

(�2�tu2,v)�̃2
+〈�2(u2 ·∇)u2,v〉�̃2

+(r2,∇v)�̃2
+ 1

2 (r2m, (h2m ·∇)v)�̃2

+(t̄,v)�2N +(t̄1g+ t̄2s,v)�2M +(t̃,v)�̃2
=〈�2f,v〉�̃2

(49)

(q,∇ ·u2)�̃2
+ 1

2 (r2d , (h2d ·∇)q)�̃2
=0

An iterative strategy between the two domains is used to reach a converged global solution in
the whole domain �. It is expected that this global solution will satisfy both restrictions presented
above. For this reason we define the following stop criteria:

‖u1−u2‖ � tolu on �

|n·(r1−r2) ·n−��| � tolr on �
(50)

The global velocity solution obtained from Equation (49) is used as the convective velocity for
the transport of the level set function, i.e.

(�t�,)�+〈(u·∇)�,〉�+ 1
2 (r�, (h� ·∇))� =0 (51)

Unfortunately there is not a theoretical result that can ensure the convergence of this method.
However, our experience in applying this method to a wide range of problems involving moving
interfaces has showed that the method is stable and robust.
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An expected property of the method is its dependency with the mesh size around the interface.
This issue is directly related with how good is � approximated by �̃i , as has been pointed out
in property (43). A fine mesh close to the interface significantly reduces the amount of iterations
needed to reach a converged global solution, as well as the accuracy of the velocities and the
pressure at the interface.

This methodology can be viewed as a combination of domain decomposition and level set
techniques. This justifies the name given to the new method: ODDLS.

DISCRETIZATION BY THE FEM

In this section we present the final discrete system of equations associated with problem (48) and
(49) using the FEM. Let us consider a uniform partition of the time interval of analysis [0,T ],
with time step size �t . We will denote by a superscript the time step at which the algorithmic
solution is computed. We assume that un1, p

n
1 ,u

n
2 and pn2 are known. If �∈[0,1], the trapezoidal

rule applied to Equations (48) and (49) consists in finding un+1
1 , pn+1

1 ,un+1
2 , pn+1

2 as the solution
to the problem

(�ni �tu
n
i ,v)�̃i

+〈�ni (un+�
i

·∇)un+�
i

,v〉�̃i
+(rn+�

i
,∇v)�̃i

+ 1
2 (r

n+�
im , (hn+�

im ·∇)v)�̃i

+(t̄,v)�i N +(t̄1g+ t̄2s,v)�iM +(i−1)(t̃,v)�̃i
=〈�ni f,v〉�̃i

(52)

(q,∇ ·un+�
i

)�̃i
+ 1

2 (r
n+�
id , (hn+�

im ·∇)q)�̃i
=0, i=1,2

where xn+� :=�xn+1+(1−�)xn and �t xn :=1/�t(xn+1−xn).
This problem is non-linear due to the convective term and the evolution of the free surface.

Prior to the finite element discretization, we linearize it using a Picard method, which leads to
an Oseen problem for each iteration step. Several strategies can be adopted to deal with the
two iterative algorithms involved in the ODDLS method: the overlapping domain decomposition
iterative scheme and the linearization scheme (Picard). In our case, for each iteration step of
the linearization scheme, the domain decomposition scheme is also updated. This simultaneous
iterative strategy requires to complete Equation (50) with a stop criterion for the Picard iteration.
The same iteration index is used for both schemes.

It is noteworthy that the adopted strategy reduces the computational effort compared with that of
other nested iterative schemes. We denote by a superscript n the time step at which the algorithmic
solution is computed and by a superscript j the iteration step of the domain decomposition scheme
(which for a simultaneous iterative strategy will be the same as for the Picard iteration step). The
form of the iterative scheme is as follows:

(�n, j−1
i �tu

n, j
i ,v)�̃i

+〈�ni (un+�, j−1
i ·∇)un+�, j

i ,v〉�̃i
+(rn+�, j

i ,∇v)�̃i
+ 1

2 (r
n+�, j
im , (hn+�, j

im ·∇)v)�̃i

+(t̄,v)�i N +(t̄1g+t̄2s,v)�iM+(i−1)(t̃ j ,v)�̃i
=〈�n, j−1

i f,v〉�̃i
(53)

(q,∇ ·un+�, j
i )�̃i

+ 1
2 (r

n+�, j
id , (hn+�, j

im ·∇)q)�̃i
=0, i=1,2

The Galerkin approximation of Equation (53) is straightforward and stable, thanks to the FIC-
stabilized formulation [13–18]. Equal polynomial order can be used for the approximation of the
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velocities and the pressure. Based on the finite element partition introduced in Equation (38),
let Vh ⊂V and Qh ⊂Q be two finite dimensional conforming finite element spaces, h being the
maximum of the elements’ partition diameters.

Let Ṽ 0
h,i :={v∈Vh |v|��̃i

=0},Q0
h,i :={q∈Qh |q|��̃i

=0} be the finite element spaces for the test
functions. The discretized form of Equations (55) is

(�n, j−1
h,i �tu

n, j
h,i ,vh)�̃i

+〈�nh,i (u
n+�, j−1
h,i ·∇)un+�, j

h,i ,vh〉�̃i
+(rn+�, j

h,i ,∇vh)�̃i

+ 1
2 (r

n+�, j
h,im , (hn+�, j

h,im ·∇)vh)�̃i
+(t̄,vh)�i N +(t̄1g+ t̄2s,vh)�iM

+(i−1)(t̃ j ,vh)�̃i
=〈�n, j−1

h,i f,vh〉�̃i

(qh,∇ ·un+�, j
h,i )�̃i

+ 1
2 (r

n+�, j
h,id , (hn+�, j

h,im ·∇)qh)�̃i
=0,

i=1,2 ∀(vh,qh)∈Vh×Qh

(54)

Remark
Updating the level set equation is done once the convergence of the Navier–Stokes equations is
obtained. Therefore, the complete iteration loop is as follows:

Step 1: Solve Equations (54) in �̃1.
Step 2: Solve Equations (54) in �̃2.
Step 3: Check convergence on pressure and velocity fields. If it is satisfied, go to Step 4,

otherwise go to Step 1.
Step 4: Solve Equation (51).
Step 5: Check convergence on level set equation. If it is satisfied, advance to the next time step,

otherwise go to Step 1.

ALE FORMULATION

It is of interest in many applications to consider the movement of some parts of the analysis
domain. In the mobile parts of the domain it is more convenient to use a Lagrangian formulation
of the equations and update the spatial discretization every time step. Conversely, in the fixed areas
of the analysis domain, it is more efficient to use the standard Eulerian formulation.

The ALE formulation of the residuals in (35) can be expressed as follows:

rm = �t (�u)+∇ ·(�(u−um)⊗u)+∇ p−∇ ·r−�f

rd = ∇ ·u
r� = �t�+((u−um) ·∇)�

(55)

where um is the relative velocity between the local axes fixed to the fluid particle and the global
reference axes of the problem [22, 23].

ADAPTATION OF THE ODDLS METHOD FOR MONOPHASE FLOWS

It is usual in many practical applications to have only one fluid of interest. These applications
involve biphase flows with density and viscosity ratios about 1000 and 100, respectively. It is
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important for these cases to adapt the ODDLS technique to solve monophase problems in order
to reduce the computational cost for capturing the free surface with the necessary accuracy, while
maintaining the advantages of the proposed method. In these cases, the computational domain is
reduced to the nodes in the fluid of interest in addition to those in the second fluid being connected
to the interface. The later nodes are used to impose the pressure and velocity boundary conditions
on the interface.

The proposed monophase adaptation of the ODDLS method has been used in some of the
application examples shown in the following section.

APPLICATION EXAMPLES

Different validation studies of numerical results obtained with the methodology described here are
presented. In order to perform these analyses, the ODDLS methodology has been integrated into
the commercial pre- and postprocessing system GiD [24] and the fluid-dynamics analysis package
Tdyn [25].

The geometry and results of the analyses presented in this section as well as a free limited
version of the software Tdyn can be downloaded from ftp://ftp2.compassis.com/papermodels.

Wave generator

The first example shows a comparison of the results obtained with a numerical wave generator
with those predicted by linear wave theory.

The geometry used for the analysis consists of a 2D wave tank of 36m long filled up to a depth
of 1.25m (see Figure 2). The waves are generated by defining an oscillating velocity boundary
condition on the left lateral wall of the channel. The velocity is obtained from the equivalent
movement of a wall given by x=d ·sin(�t), where � is the wave generator frequency and d is
the amplitude of the movement (stroke). The waves are dumped at the right-hand side of the tank
by disposing a beach.

The mesh chosen has 34 424 three-noded linear triangles with a homogeneous size distribution
on the whole domain.

For this problem linear wave theory states that the relationship between wave number, channel
depth and wave-maker frequency is as follows:

�2=gk tanh(kh) (56)

where k is the wave number, h is the depth of the channel and g is the gravity acceleration.
Several analyses were carried out with a wave generator period ranging from T =1.8 to 3.0s.

Figure 2. Geometry of the wave generator problem.
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Figure 3 shows a sequence of snapshots of the wave maps obtained for T =2.0s with a stroke
of 0.3.

Figure 4 shows the distribution of the dynamic pressure for this problem. The wave length
computed is approximately 5.3m, whereas the linear wave theory predicts a value of 5.5m.

Figure 5 shows a sequence of four snapshots of the resulting wave maps for a wave-maker
period of T =2.1s and a stroke of 0.4m. Linear wave theory predicts a wavelength of 5.9m, which
closely matches the simulation value (5.7m).

Figure 6 shows a comparison between the different wavelength values (�=1/k) obtained in
the numerical analyses and those predicted by the linear wave theory. The wave generator period
analysed ranges from T =1.8 to 3.0s and all the cases were run with a stroke of 0.3m. The
ODDLS results agree quite well with those predicted by the theory. The small differences found
are probably due to the non-linear effects and the dissipative influence of the viscosity.

Figure 3. Wave map evolution for T =2.0s.

Figure 4. Dynamic pressure distribution for T =2.0s.

Figure 5. Wave map evolution for T =2.1s.
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Figure 6. Comparison between numerical and (ODDLS) theoretical values of the wavelength.

Figure 7 shows the dynamic pressure maps obtained after 21 s of physical time for different
wave-maker periods and 0.3m stroke.

Additionally, the convergence behaviour of the method under mesh refinement has been studied.
The case T =2.6s was run with three different meshes: 35 000 linear triangles, 140 000 linear
triangles ( 12 of the previous global mesh size) and 560 000 linear triangles ( 14 of the previous
global mesh size). The results obtained in these simulations are shown in Figure 8. This figure
shows a snapshot of velocity contours at t=14s. The wave pattern in the three cases is practically
identical.

Finally, an additional case has been analysed in order to check the influence of the reinitialization
step in the results. In this case, an obstacle of 1×1m has been arranged at 10m from the inlet.
This obstacle causes the generated wave (T =2.6s in this case) to break as shown in Figure 9. In
this figure, the results above correspond to the case where the reinitialization step is performed
every iteration, whereas the results below correspond to the case where the reinitialization step is
performed every five iterations. These results show a minor sensitivity with respect to the number
of reinitializations. However, more reinitializations tend to slightly smoothen the interface and to
remove sharp features from the interface geometry.

Flip bucket

This example shows an application of the ODDLS methodology to the analysis of a flip bucket.
Flip buckets are commonly used to discharge flow away from a hydraulic structure into a plunge
pool to dissipate energy. The ODDLS method results are compared with those obtained in the
hydraulic experiments presented in [5]. The experiments were conducted in a 499-mm-wide and
700-mm-deep rectangular channel with a total length of 7m. A scheme of the experimental set-up
is shown in Figure 10. The flip bucket consisted of a 1-m-long approach channel with a bucket of
radius R and a deflection angle �. The solution to the same problem using the PFEM based on a
purely Lagrangian formulation is reported in [20].

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1297–1327
DOI: 10.1002/nme



ODDLS METHOD 1313

Figure 7. Dynamic pressure maps obtained after 21 s of physical time for different simulations (from
bottom to top T =3.0,2.88,2.76,2.64,2.52,2.4,2.28,2.16,2.04,1.92,1.80s).

Figure 8. Comparison of results obtained in the case T =2.6s (snapshot of velocity contours in
the water at t=14s) with three different meshes (from top to bottom 35 000 linear triangles,

140 000 linear triangles and 560 000 linear triangles).
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ODDLS METHOD 1315

Figure 10. Sketch of the experimental set-up (lateral view).

Figure 11. Dimensions of the experimental facilities (lateral view, above; top view, below).

Figure 11 summarizes the main dimensions of the experimental facility. The geometry used for
the numerical simulations reproduces the experimental set-up. Only half of the channel geometry
was defined, due to the symmetry of the problem.

The mesh used is shown in Figure 12. It consists of 1.5 million four-noded linear tetrahedra
and around 275 000 nodes. The element size ranges from 1 to 5 cm. Note that the mesh has been
refined in a band around the area where water is expected to flow.

The analyses have been carried out with and without the deflector, for two different arc radii
of the flip bucket and four different Froude numbers Fn=3.0,4.0,5.0 and 7.0, with the Froude
number defined as

Fn= ūin√
gh

(57)
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Figure 12. Mesh used in the different analyses.

Figure 13. Maximum set elevation versus Froude number.

where ūin is the mean flow velocity in the approaching channel and h is the depth of fluid.
All the simulations have been carried out with a fluid density �=1000kg/m3 and a viscosity
�=0.001kg/ms.

Figure 13 compares the maximum experimental set elevation with the values obtained in the
simulation for each of the four Froude numbers analysed. The ODDLS results closely match the
experimental data in all cases.

Figure 14 shows a comparison between the numerical and experimental dynamic pressure head
distributions at the bottom of the entry channel for R=0.25m. The non-dimensional dynamic
pressure head parameter is defined as

Hp = pp− p0
pmax− p0

(58)

where pp is the total pressure head at a point in the entry channel or the bucket, pmax is the
maximum value of p and p0 is the total pressure head at the entry point. The normalized streamwise
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Figure 14. Comparison between the numerical and experimental bottom
pressure distributions [5] for R=0.25m.

coordinate used in Figure 14 is defined as XP = x/(R sin�), where x is zero at the takeoff point;
and R sin� is the streamwise bucket length.

Once again the numerical results agree quite well with the experimental data available.
Because of the deflector, some of the water moves upwards, forming the so-called shock wave.

As observed in the experiment, the shock wave forms slightly upstream of the deflector, forces its
way upwards and expands transversely after the minimum jet width point before touching down
in the downstream channel. The maximum height of the shock wave observed in the experiment
is about twice that of the unperturbed flow [5].

Figure 15 shows a comparison between the numerical (ODDLS) and experimental shock wave
profiles for F0=4. The non-dimensional parameters XS , YS are defined as

XS = x−xsmax

hFn
, YS = ys− ysmax

h sin3/8 �
(59)

where ys is the water jet elevation relative to the takeoff point, ysmax is the maximum of ys,� is
the deflection angle (30◦ in our case), x is the longitudinal distance from the takeoff point, xsmax
is the longitudinal distance of the maximum shock wave elevation from the takeoff point and h0
is the water depth at the entry channel, 0.05m.

Finally, Figure 16 shows a sequence of snapshots of the jet surface for the case with a deflector,
Fn=4 and R=0.25m.

2D Dam-break

The 2D dam-break case has been analysed experimentally by Zhou et al. [26] and numerically
with the boundary element method by Greco [27]. In this example the numerical pressure obtained
by the later is compared with the ODDLS results. The problem set-up is shown in Figure 17.

In order to compare the BEM results with the experimental results, Greco had to synchronize
the time series due to lack of information about the initial dam-break time in the experiment. Greco
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Figure 15. Numerical versus experimental [5] shock wave profile for Fn=4.

also points out some uncertainties connected to the complexity of the experiment and the difficulty
in achieving repeatability. In what follows we compare the ODDLS results with the BEM results
reported in [27].

The ODDLS has 127 000 triangular elements in an unstructured mesh. On the walls the slipping
boundary condition is imposed, neglecting boundary layer effects, and the fluid is fresh water at
25◦C. The effect of air is neglected. The comparison of non-dimensional pressures at the two
gauge positions are shown in Figure 18 (left). The results obtained fit well with those of Greco,
although a small difference in the time of impact on the wall is perceived.

The BEM analysis had to be stopped when the water plunged down onto itself after the run up
on the wall. The ODDLS method is able to handle this situation. The peak in Figure 16 (right)
relates to this time instant and it agrees well with the experimental data reported in [26].

Figure 19 compares the wave profile at different time instants. Once again the ODDLS solution
is a bit slower than that of Greco. This effect is probably due to the viscous effects that are
neglected in the BEM analysis.

2D Green water problem

The example shows an application of the ODDSL method to the collapse of a water column with
an obstacle. The geometry of the tank is shown in Figure 20. This example can be seen as a simple
model of green water flow on the deck of a ship or offshore structure. The obstacle placed on the
bottom of the tank represents an element of the ship superstructure.

Experimental results for this problem have been presented in [28]. The water column is supported
by a vertical wall, which is removed rapidly (approximately in 0.05 s) for the beginning of collapse.

The mesh used to discretize the analysis domain has 35 000 linear triangles. The fluid is
incompressible with a density of 1000kg/m3 and a viscosity of 0.001 kg/ms. The slipping boundary
condition is assumed on the walls of the tank. Zero velocity has been imposed on the obstacle.

Figure 21 shows different pictures of the experiment results. At time 0.1 s, the right surface of
the water column is disturbed by the pulling up of the vertical wall in the experiment, although
it is soon smoothed. At time 0.2 s, the leading edges of the water column reach 3l from the left
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Figure 16. Sequence of snapshots of the jet surface for the case with a deflector, Fn=4 and R=0.25m.

Figure 17. Sketch of the 2D dam-break problem with h=0.6m. The pressure
gauge at position x=3.2196m is shown in [26].
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Figure 18. Comparison of pressures at the two gauge positions.

wall. At time 0.3 s the collapsed water is very close to the right and it crashes immediately. At
time 0.4 s, splashed water goes up along the right wall with fragmentation.

As in the wave breaking case presented above, this case has been additionally run performing
the reinitialization procedure every five time steps. No noticeable changes in the solution have
been detected. A comparison of the results at time 0.4 s of the two cases are shown.

Figure 21 shows good agreement between the experimental and numerical results obtained for
the presented ODDLS method.

3D Green water problem

Experiments have been performed at the Maritime Research Institute Netherlands (MARIN) in
order to reproduce a simple model of green water flow on the deck of a ship or an offshore structure
[29]. Green water can cause serious damage to deck structures, deck house, cargo and personnel.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1297–1327
DOI: 10.1002/nme



ODDLS METHOD 1321

Figure 19. Comparison of wave profiles. Profiles from Greco [27] and ODDLS (right).

2l

2h

4l
l l

h

l = 14.6 cm 
h = 2.4 cm

Figure 20. Geometry of the 2D green water problem.

In the test, an object, resembling an element of the superstructure, is placed on the deck. The
pressures that are exerted by the plunging dam are measured as a function of time. The model is
described in Figure 22 and consists of a tank with an open roof of dimensions 3.22×1×1m. The
dam has a height of 0.55m and is closed behind a door. The door is opened almost instantaneously
by releasing a weight. The locations of the pressure gauges are shown in Figure 23. This problem
has previously been used to validate a volume-of-fluid method [30] and the particle finite element
method [20].
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Figure 21. Experimental (left) and numerical results (right).

The fluid is incompressible with a density of 1000kg/m3 and a viscosity of 0.001 kg/ms. The
slipping boundary condition is imposed on the walls of the tank. The model consists of 1.16
million tetrahedra in an unstructured mesh. Figure 24 shows a comparison between the zero level
set function, the free surface and the experimental water front. The pressures at four of the gauges
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Figure 22. Dimensions of dam-break tank [29].

Figure 23. Positions of pressure gauges [29].

are compared with the ODDLS results in Figure 25. P1 and P2 are positioned close to the initial
impact point, whereas P6 and P7 are positioned at the top of the object. There is an excellent
agreement between the experimental and ODDLS results in all cases, although the pressure peaks
obtained in P1 and P2 are slightly higher than the experimental values.

Finally, Figure 26 shows the evolution of the free surface at several times.

CONCLUSIONS

A new methodology for the analysis of free surface flows termed ODDLS has been presented. The
method is based on the domain decomposition technique combined with the level set technique and
a stabilized FEM. The ODDLS approximation allows a sharper resolution of contact discontinuities
between different fluid phases compared with more standard methods, such us volume of fluid,
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Figure 24. Zero level set surface at t=0.425s (upper) and t=0.575s (lower).

Figure 25. Comparison of experimental [29] and ODDLS pressures at positions P1, P2, P6 and P7.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1297–1327
DOI: 10.1002/nme



ODDLS METHOD 1325

Figure 26. Zero level set surface at t=0.8,1.0,2.0 and 2.3s.

where the variation of physical properties of the phases in contact must be smoothed. This fact
increases the accuracy of the free surface capturing (level set equation) as well as the solution to
the governing equations in the interface between two fluids. The higher accuracy in the solution
to the interface allows the use of larger elements on the free surface. The method can be easily
simplified by solving just one of the two fluids, which increases the efficiency in cases where the
effect of one of the fluids can be neglected.

The ODDLS methodology has also been integrated with an ALE algorithm for the treatment of
moving meshes.

The ODDLS technique has been applied for the analysis of several free surface flows problems.
The good qualitative and quantitative results obtained in comparison with experimental data and
other numerical techniques show the capability of the ODDLS methodology for solving free surface
flow problems of practical interest.
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