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The effect of the pollution or dispersion error has been extensively addressed in the literature
and, concordantly, a priori estimates for the dispersion error have been derived [1–7]. Also,
a posteriori error estimates assessing the accuracy of the finite element approximations of the
Helmholtz equation both in global norms or in some specific quantities of interest have been
proposed [8–16]. However, the issue of measuring the dispersion error of the approximations of
the Helmholtz equation using a posteriori error estimates was first addressed in [17].

The wave number corresponding to the approximate solution is different from the exact one. The
corresponding error is directly related to the dispersion error and it is, according to practitioners,
a good measure in order to assess the overall quality of the numerical solution. The problem of
assessing the error in the wave number is addressed in [17] for standard finite element (Galerkin)
approximations. The proposed error estimation strategy is paradoxical in the sense that, in the
error to be assessed, the obvious information is the exact value � and all the efforts are devoted
to compute the value of the wave number corresponding to the approximate solution. Note that in
the usual error estimation business the situation is the opposite: the approximate value is available
and the exact value has to be estimated.

In practice, standard Galerkin methods are not competitive for high wave numbers because
controlling the pollution effect requires using extremely fine meshes. Numerous approaches allevi-
ating this deficiency have been proposed based on modifications of the classical Galerkin approx-
imation [4, 18–20]. The Galerkin/least-squares method is one of the most popular techniques. It
provides a significant reduction in the dispersion error with an extremely simple implementation
using only standard resources available in finite element codes [21].

Stabilized formulations allow eliminating the pollution effect for one-dimensional problems. In
two dimensions, the pollution effect is reduced substantially but it cannot be completely elimi-
nated [6]. Thus, also when using stabilized formulations, the end-user of a finite element acoustic
computation is concerned with the accuracy of the solution in terms of the dispersion. In this work,
an extension of [17] is proposed allowing to assess the dispersion error when the approximate
solution is computed using either the standard Galerkin method or the GLS method.

The assessment of the dispersion error aims at obtaining a good estimate of the value of the
numerical wave number, corresponding to the approximate solution. Here, the definition of the
numerical wave number provided in [17], based on the idea of fitting the numerical solution into
a modified equation, is adopted. This strategy requires obtaining an inexpensive approximation
of the solution of the modified problem using post-processing techniques. Here, a new recovery
technique is introduced, using exponential functions rather than polynomials, to take advantage of
the nature of the solutions of wave propagation problems.

The remainder of the paper is structured as follows. Section 2 introduces the notation and the
description of the problem to be solved along with the standard and stabilized Galerkin formulations.
Section 3 describes the main ideas of the paper. First, the basics of the dispersion error assessment
are reviewed. Then, the extension to stabilized formulations is described. Finally, the standard
polynomial recovery is recalled and the novel exponential post-processing technique is introduced.
Section 4 contains four numerical examples demonstrating the efficiency of the proposed technique
both in academic and practical examples.

2. PROBLEM STATEMENT

2.1. Acoustic modeling: the Helmholtz equation

The acoustic pressure u(x) is a complex function taking values in the spatial domain �⊂Rd (being
d =1, 2 or 3). The function u is determined as the solution of the Helmholtz equation

−�u−�2u = f in �, (1)

which is stated for a given wave number � as the Fourier transform of the transient wave equation.
Equation (1) has to be complemented with proper boundary conditions on ��. For interior problems,
three types of boundary conditions are considered: Dirichlet, Neumann and Robin (or mixed).
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Thus, the boundary �� is partitioned into three disjoint sets �D, �N and �R such that ��=
�D ∪�N ∪�R and its associated boundary conditions are

u = ū on �D, (2a)

∇u ·n = g on �N, (2b)

∇u ·n =Mu on �R, (2c)

where n is the outward normal to � and ū, f,g and M are the prescribed data, which are assumed
to be sufficiently smooth.

Remark 1
For interior acoustic wave propagation problems g =−i�c�v̄n and Mu =−i�c�Anu, where c is
the speed of sound in the medium, � is the mass density, v̄n corresponds to the normal velocity of a
vibrating wall producing the sound that propagates within the medium, and the coefficient An is the
admittance and represents the structural damping and i is the standard imaginary unit. For exterior
problems, reduced to fictitious domains, M is a linear operator called the Dirichlet-to-Neumann
(DtN) map relating Dirichlet data to the outward normal derivative of the solution on the fictitious
boundary �R. It is worth noting that in general the data g and M depend on the wave number
�. A notation explicitly stating the dependence of �, for instance g(�) and M(�), would be more
accurate but for the sake of simplicity this dependence is omitted in the notation.

The boundary value problem defined by Equations (1) and (2) is readily expressed in its
weak form introducing the solution and test spaces U :={u ∈H1(�),u|�D = ū} and V :={v∈
H1(�),v|�D =0}. Here, H1(�) is the standard Sobolev space of complex-valued square integrable
functions with square integrable first derivatives. The weak form of the problem then reads: find
u ∈U such that

a(�;u,v)= l(�;v) ∀v∈V, (3)

where

a(�;u,v) :=
∫

�
∇u ·∇ṽ d�−

∫
�

�2uṽ d�−
∫

�R

Muṽ d�,

l(�;v) :=
∫

�
f ṽ d�+

∫
�N

gṽ d�

the symbol ·̃ denotes the complex conjugate, a(�; ·, ·) is a sesquilinear form and l(�; ·) is an
antilinear functional depending on � through the Neumann boundary conditions g. The notation
adopted marks the explicit dependence of � on the forms a(�; ·, ·) and l(�; ·). Although not standard,
this is useful in the following to assess the error in the wave number. It is worth noting that
the sesquilinear form a(�; ·, ·) is not elliptic but satisfies the inf–sup condition and the Gärding
inequality. However, for large wave numbers �, the upper bound for the inf–sup condition is too
crude [1]. Moreover, the inf–sup property is not carried over from V to a discrete subspace yielding
to a loss of stability which produces spurious dispersion in the discrete approximations.

2.2. Galerkin finite element approximation

The Galerkin approximation is obtained from a partition TH of the domain � into nonoverlapping
elements and introducing the discrete spaces UH ⊂U and VH ⊂V associated with the parameters
of the discretization, namely, the characteristic element size H , and the degree of the polynomial
approximation inside the elements p. The discrete finite element solution is then u H ∈UH such that

a(�;u H ,v)= l(�;v) ∀v∈VH . (4)

In practice, low-order Galerkin approximations to the Helmholtz equation involving high wave
numbers are corrupted by large dispersion or pollution errors due to the loss of stability of a(�; ·, ·).
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The wave number � characterizes the oscillatory behavior of the exact solution: the larger the
value of �, the stronger the oscillations. Hence, the rule of thumb is used in computations: each
wavelength is resolved by a certain fixed number of elements. For linear elements, the rule of
thumb is stated as �H =constant<1. However, it is widely known that this rule is not sufficient
to obtain reliable results for large �. The dispersion error, which is related to the phase lag of the
FE-solution, can only be controlled when �2 H/p is small. This undermines the practical utility of
the Galerkin finite element method since severe mesh refinement is needed for large wave numbers.
The performance of finite element computations at high wave numbers can be improved by using
stabilization techniques. These techniques, which are extremely simple to implement, alleviate the
dispersion effect of the finite element solution without requiring mesh refinement.

2.3. Galerkin/least-squares finite element approximation

Stabilized finite element methods were originally developed for fluid problems [22]. The first
upwind type stabilized methods [23] subsequently gave rise to consistent stabilization techniques—
ensuring that the exact solution u is also a solution of the weak stabilized problem. Among these
techniques, the Galerkin/least-squares method (GLS) has been successfully applied both to fluids
and to the Helmholtz equation [24, 25].

The idea behind stabilized finite element methods is to modify the variational form a(�; ·, ·) (and,
accordingly, the right-hand side) in such a way that the new variational form is unconditionally
stable. In particular, the weak form of consistent stabilized methods is obtained from (3) by adding
extra terms over the element interiors which are a function of the residual of the differential
equation to ensure consistency. For instance, the additional stabilization terms of the GLS method
are an element-by-element weighted least-squares formulation of the original differential equation.

The weak form of the GLS method associated with the partition TH is: find u ∈U such that

a(�;u,v)+(Lu− f,�HLṽ)�̂ = l(v) ∀v∈V, (5)

where Lu =−�u−�2u is the indefinite Helmholtz operator, �̂=⋃nel
n=1 �n denotes the union of

element interiors of TH , nel being the number of elements of TH and (·, ·)�̂ is the reduced L2

inner product, where integration is carried out only on the element interiors (i.e. the singularities at
interelement boundaries are suppressed in the reduced inner product). Note that the GLS formulation
depends on the stabilization parameter �H which has to be properly defined to make the form on
the l.h.s. unconditionally stable.

Remark 2
The exact solution u verifies Equation (5) for any choice of the stabilization parameter �H since
Lu− f =0. That is, the GLS method is consistent for any choice of �H .

The GLS finite element approximation of u is u H ∈UH such that

aGLS(�,�H ;u H ,v)= lGLS(�,�H ;v) ∀v∈VH , (6)

where

aGLS(�,�;u,v) :=a(�;u,v)+(Lu,�Lṽ)�̂

and

lGLS(�,�;v) := l(�;v)+( f,�Lṽ)�̂.

Note that for the sake of simplicity, the same notation, u H , for the Galerkin and GLS finite
element approximations has been used. A different notation for the GLS/FE approximation, for
instance uGLS

H , would be more precise. However, since the error estimation strategy is valid for
any approximation u H ∈VH of u, there is no need to distinguish between u H and uGLS

H or any
other approximation. Moreover, note that �H =0 results in the Galerkin approximation.

The stabilization parameter �H is usually determined using discrete dispersion analyses with the
aim of eliminating spurious dispersion of plane waves in a user-prescribed direction (�opt). That is,
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the goal is that the GLS/FE approximation has no phase lag if the exact solution is a plane wave
in the direction �opt. Different definitions for the parameter �H depending on the underlying size
and topology of the mesh may be found in the literature [20, 25].

Unfortunately, it is not possible in general to design a stabilization parameter �H that confers
the ability of fully removing the dispersion error on the GLS method. The reason is twofold. First,
a general signal consists of plane waves going in an infinite number of directions. Even if there are
directionally prevalent components in this decomposition, they are not necessarily known a priori.
Moreover, it is not clear whether the GLS method improves the approximations of solutions that
are not dominant in the preferred direction. Second, the parameter �H is derived for particular
structured topology meshes. The optimal behavior obtained for some particular structured meshes
(which are of limited use in real-life applications) is partially lost when general unstructured
meshes are used.

2.4. Matrix form

The Galerkin or GLS finite element approximation u H is expressed in terms of the basis-functions
{N j } j=1,. . .,nnp

spanning UH , namely

u H =
nnp∑
j=1

N j u j
H =NuH ,

where nnp is the number of nodes in the mesh, u j
H is the complex nodal value associated with the

mesh node x j , N= [N 1, N 2, . . . , N nnp ] and uT
H = [u1

H ,u2
H , . . . ,u

nnp
H ].

In the case of linear elements (p=1), Lu H reduces to Lu H =−�2u H in �̂, and the matrix
form of (6) reads

(KH −CH −�2M�H
H )uH = f�H

H +fN
H , (7)

where KH , CH and M�H
H are the so-called stiffness, damping and mass matrices, respectively

KH :=
∫

�
(∇N)T(∇N)d�, CH :=

∫
�R

MNTNd�, M�H
H :=

nel∑
n=1

∫
�n

(1−�H �2)NTNd�

and the right-hand side vectors accounting for the source term and the Neumann boundary condi-
tions are

f�H
H :=

nel∑
n=1

∫
�n

(1−�H �2)NT f d� and fN
H :=

∫
�N

NTg d�.

In the particular case where the stabilization parameter �H is constant in the elements of the mesh,
M�H

H = (1−�H �2)MH and f�H
H = (1−�H �2)fH , where

MH :=
∫

�
NTNd� and fH :=

∫
�

NT f d�

are the standard (non-weighted) mass matrix and vector force. Besides, recall that �H =0 results
in the matrix form of the Galerkin finite element method (4).

3. A POSTERIORI ERROR ESTIMATION OF THE WAVE NUMBER

3.1. Basics of error estimation of the wave number for the Galerkin method

It is well known that the error introduced in the numerical solution of wave problems has two
different components: interpolation error and pollution error. The interpolation error is the classical
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error arising in elliptic problems and pertains to the ability of the discretization to properly
approximate the solution

eint :=u−uint
H =u(x)−

nnp∑
j=1

N j (x)u(x j ), (8)

where uint
H is the approximation of u in UH coinciding with u at the mesh nodes x j , j =1,2, . . . ,nnp.

Thus, the pollution error is defined as:

epol :=uint
H −u H =

nnp∑
j=1

N j (x)(u(x j )−u j
H ).

In standard thermal and elasticity problems, the error in the finite element solution is equivalent
to the interpolation error, and converges at the same rate. This error is local in nature because it
may be reduced in a given zone by reducing the mesh size locally in this zone.

The pollution error, however, is especially relevant in the framework of Helmholtz problems due
to the blowup of the inf–sup and continuity constants of the weak form when the wave number is
large (i.e. the inf–sup constant tends to zero and the continuity constant tends to ∞ as � tends to ∞).
In transient wave problems, pollution is associated with the variation of the numerical wave speed
with the wavelength. This phenomenon results in the dispersion of the different components of
the total wave. In the steady Helmholtz problem, the word dispersion is also used and corresponds
to the error in the numerical wave number �H , which is therefore identified with the pollution.
In other words, the FE error is decomposed into two terms

FE error =u−u H =eint +epol = Interpolation error +Dispersion/pollution error,

which, in the case of wave problems, behave completely differently (see Figure 1). It has been shown
that the pollution term converges at a different rate, lower than the standard interpolation error.

The pollution error epol is related to the phase difference between the exact and FE solutions,
that is, the difference between the wave number � associated with u and the numerical wave
number �H associated with u H . Usually, the dispersion or pollution error is assessed by obtaining
an approximation of the error in the wave number �−�H instead of trying to measure the pollution
error epol in some predefined norm.

Remark 3
For the sake of a simple presentation, the definition adopted here for the interpolation error
eint =u−uint

H uses the nodal interpolation as described in (8). Other authors prefer substituting the
nodal interpolation by the best approximation in UH , according to some natural norm associated

Figure 1. Illustration of the errors arising in the approximation of the Helmholtz equation. The exact
solution (solid line, smooth) and interpolant (dashed line) coincide at the nodes, the FEM solution

reproduces approximately the shape of the wave with a larger wavelength (�H <�).
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Figure 2. Illustration of the exact solution u, the approximate solution u H and the auxiliary solution um
H

coinciding with u H at the nodes and sharing its wave number �H .

with the problem. For instance, in the present case of the Helmholtz equation, the norm selected
can be either the H1 norm or seminorm. This choice (using a least-squares-like fitting instead of
a simple nodal interpolation) provides a definition of the pollution error such that, in the case
of the Poisson equation, the pollution vanishes (which is obviously a desirable property). Here,
this definition is only used to recall the pollution concept and, consequently, this choice has no
practical relevance.

A priori error estimates assess the dispersion error by means of providing a closed formula of
the numerical wave number �H . Recently, a new approach to a posteriori estimate the dispersion
error, thus using the information given by u H , has been developed [17].

The key idea is to define an auxiliary solution um
H ∈U having the same wave number as u H and

from which to recover the value of �H . Intuitively, um
H ∈U is the best solution of the Helmholtz

equation (3) associated with a wave number �H matching u H at the nodes of the mesh, see
Figure 2.

To fix the ideas, consider the one-dimensional Helmholtz equation in �= (0,1) with boundary
conditions u(0)=1 and u′(1)= i�u(1). This simple problem admits the analytical solution u(x)=
ei�x . Then, given a uniform finite element mesh and its associated FE approximation u H , it turns
out that there exists a wave number �H such that the solution of Equation (3) associated with �H ,
um

H =ei�H x , exactly fulfills the equations of the Galerkin method (7) associated with the interior
nodes. This wave number is

�H = 1

H
arccos

(
1−(�H )2/3

1+(�H )2/6

)
≈�− 1

24
�3 H2 + 3

640
�5 H4 +O(�7 H6) (9)

see [2]. The verification of Equation (7) associated with the interior nodes enforces that the
auxiliary solution um

H shares the same wave number as u H , although this does not guarantee that
um

H matches u H exactly at the nodes of the mesh, due to the influence of the Robin boundary
conditions. However, the difference between um

H and u H at the nodes of the mesh is nearly
negligible. Thus, for this particular problem, a very good measure of the dispersion error can be
computed as

E =�−�H ≈ 1
24�3 H2 +O(�5 H4). (10)

Unfortunately, in general, it is not possible to determine um
H ∈U verifying (3) for a suitable

wave number �H ∈R and concurrently fulfilling the equations of the Galerkin method associated
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with the interior nodes. However, a slight modification of this idea yields a proper definition for
um

H . Specifically, um
H ∈U and �H ∈R are such that:

• um
H ∈U coincides with u H at the nodes of the mesh (that is um

H (x j )=u H (x j ) for j =
1,2, . . . ,nnp)

• for a given �H , um
H ∈U is such that

a(�H ;um
H ,v)= l(�H ;v) ∀v∈V0, (11)

where a subspace of V is introduced that can be intuitively defined by

V0 :={v∈V,v(x j )=0, j =1,2, . . . ,nnp}.

A more rigorous definition would require dealing with point values in H1 similarly as is
done when the Dirichlet boundary reduces to a point in a standard boundary value problem.
However, in this paper, for all practical purposes, this technicality can be skipped because,
as detailed in (13), the methodology is actually referred to a reference space of continuous
functions.

• �H and um
H minimize the norm of the residual functional

‖R(�H ,um
H ; ·)‖∗ := max

v∈H1
0\{0}

R(�H ,um
H ;v)

‖v‖ , (12)

where R(�H ,um
H ; ·) := l(�H ; ·)−a(�H ;um

H , ·), H1
0 :={v∈H1(�),v|�� =0} and ‖v‖ is some

norm defined on H1(�) to be given by the user.

Note that the values of um
H on the boundary of � do not affect the norm of the residual ‖·‖∗.

This definition is used to minimize the influence of the errors due to the boundary conditions
(which are considered to be a part of the interpolation error and not of the dispersion error) in the
assessment of the dispersion error. Also note that the condition enforcing that um

H and u H share the
same phase lag, i.e. fulfilling of the equations of the Galerkin method associated with the interior
nodes, is replaced by the more simple and equivalent condition of matching u H at the nodes of
the mesh.

In a compact form, �H and um
H are the solutions of the following constrained optimization

problem

(�H ,um
H ) = arg min

�m∈R
um∈U

‖R(�m,um; ·)‖∗

subject to a(�m;um,v)= l(�m;v) ∀v∈V0

um(x j )=u H (x j ), j =1,2, . . . ,nnp.

The relation between the finite element solution u H and the modified solution um
H allows to state

that the numerical wave number associated with u H , coincides with the wave number associated
with the solution um

H . That is, the finite element solutions u H and um
H share the same phase lag

and therefore the dispersion error associated with u H is E =�−�H .
It is worth noting that the definition of the numerical wave number through the modified solution

um
H is not applicable as a practical error estimation strategy, since �H and um

H are even more
difficult to compute than the exact solution u. Nevertheless, this rationale is used as a starting
point to obtain a fully computable estimate for the dispersion error, by just introducing two simple
modifications.
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3.2. Practical a posteriori explicit error estimate for the wave number

First, the finite-dimensional reference spaces Uh and Vh much finer than UH and VH are
introduced. These spaces yield to the following approximations of �H and um

H

(�H [h],um
H [h]) = arg min

�m∈R
um∈Uh

‖R(�m,um; ·)‖∗,h

subject to a(�m;um,v)= l(�m;v) ∀v∈Vh ∩V0

um(x j )=u H (x j ), j =1,2, . . . ,nnp (13)

and

‖R(�H [h],um
H [h]; ·)‖∗,h := max

v∈Vh\{0}
v|��=0

R(�H [h],um
H [h];v)

‖v‖ .

If the finite element mesh Vh is sufficiently fine, one expects that um
H ≈um

H [h] and therefore
�H [h]≈�H . If the finite element mesh Vh is not fine enough, as mentioned in [17], a correction
factor has to be applied to recover a good approximation of �H from �H [h], i.e. �H [0]=c f �H [h],
where c f is the correction factor based on a Richardson extrapolation technique.

Second, since the computation of �H [h] and um
H [h] is still unaffordable in practical applications

another simplification is introduced. An approximation of um
H [h] in Uh , denoted by u∗, is obtained

by post-processing u H . In general, the approximation u∗ is not obtained solving Equation (11) for
some �H and thus the computation of �H is independent. Indeed u∗ does not verify

a(�H [h];u∗,v)= l(�H [h];v) ∀v∈Vh ∩V0

and is therefore no longer linked with the computation of �H [h]. Once this approximation u∗ is
computed, the wave number �H [h] is approximated by �∗ solution of

�∗ =arg min
�m∈R

‖R(�m,u∗; ·)‖∗,h .

It is worth noting that if the functional norm ‖·‖ in (12) is such that its discrete counterpart is
the Euclidean norm in Cnnp , then the norm of the residual ‖R(�m,u∗; ·)‖∗,h is a function depending
only on the scalar variable �m and may be computed as

‖R(�m,u∗; ·)‖∗,h =
√

r(�m,u∗)′r(�m,u∗),

where

r(�m,u∗) := B0((Kh −Ch −(�m)2Mh)u∗−fh −fN
h )

= B0((Kh −(�m)2Mh)u∗−fh)

is the residual associated with the interior nodes of the fine h-mesh, the approximation u∗ and
the wave number �m . The symbol ′ stands for the conjugated transpose, that is v′ ≡ ṽT, and B0
is a diagonal matrix on the h-mesh with ones in the positions associated with the interior nodes
and zero elsewhere. That is, the matrix B0 sets the values of the residual at the boundary (either
Dirichlet, Neumann or Robin) to zero.

Thus, for a given value of u∗ ≈um
H [h], the wave number �∗ is the parameter of the modified

problem that better accommodates u∗. In practice, �∗ is determined minimizing the squared norm
of the residual, namely

�∗ :=arg min
�m∈R

‖R(�m,u∗; ·)‖∗,h =arg min
�m∈R

√
r′r=arg min

�m∈R

r′r. (14)

Note that given u∗, the squared residual norm r′r is a fourth degree polynomial in �m and thus �∗
is computed explicitly, see [17] for the computational details.
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In short, the approximation �∗ of the numerical wave number �H is assessed by first post-
processing the finite element solution u H to compute u∗ and then explicitly solving Equation (14).
The computable a posteriori error estimate for the wave number is then

E∗ :=�−�∗.

3.3. Assessment of the numerical wave number for stabilized formulations

The dispersion error associated with a stabilized finite element approximation of u may be assessed
using the same methodology detailed for the standard Galerkin approximation. Given the GLS/FE
approximation u H , a post-processing technique is used to compute an approximation u∗ of the
solution um

H [h] of (13). Then, the wave number �H is approximated by �∗ solution of (14).
However, the use of stabilized formulations also for the fine mesh solutions in (13) allows to

improve the quality of the estimates. Note that the accuracy of the estimate �∗ relies on two
facts: first on the quality of the approximation u∗ of um

H [h] and second on the quality of the
approximation um

H [h] of um
H . The quality of u∗ depends on the post-processing strategy which will

be discussed in the following section. The quality of um
H [h], on the other hand, depends on the

size h of the reference mesh Vh . In fact, it depends on the ratio of � versus h since for large
values of � the reference mesh should be finer in order to get good approximations of um

H . Thus,
for large wave numbers, the discrete approximation um

H [h] will only be a good approximation of
um

H if the reference mesh is taken remarkably fine.
A simple workaround that avoids dealing with fine reference meshes is to stabilize the problem

associated with um
H [h]. That is, for a given finite element approximation (either stabilized or not),

the stabilized approximation um
H [h,�h] is the solution of

(�H [h,�h],um
H [h,�h]) = arg min

�m∈R
um∈Uh

‖RGLS(�m,�h,um; ·)‖∗,h

subject to aGLS(�m,�h;um,v)= lGLS(�m,�h;v) ∀v∈Vh ∩V0

um(x j )=u H (x j ), j =1,2, . . . ,nnp (15)

where

RGLS(�m,�h,um;v) := lGLS(�m,�h;v)−aGLS(�m,�h;um,v).

This modification yields to the following strategy to assess the error in the numerical wave
number:

(1) compute u∗ approximation of um
H [h,�h] by post-processing u H ,

(2) compute the approximation �∗[�h] solution of

�∗[�h] :=arg min
�m∈R

‖RGLS(�m,�h,u∗; ·)‖∗,h =arg min
�m∈R

rGLS(�m)′rGLS(�m), (16)

where

rGLS(�m) :=B0((Kh −(�m)2M�h
h )u∗−f�h

h ).

The explicit dependence of the vector rGLS on �h and u∗, rGLS(�m,�h,u∗), is omitted for simplicity
of presentation. Note that the matrix M�h

h and the vector f�h
h depend explicitly on the wave number

�m and also implicitly via the stabilization parameter �h . Therefore, the dependency of r′
GLSrGLS

with respect to the wave number �m is no longer a fourth-order polynomial and the solution of (16)
may not be computed explicitly in general.
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3.4. Computation of the wave number �∗[�h]

In order to detail the computation of �∗[�h] verifying (16) in a simple manner, the stabilization
parameter �h is assumed constant on the elements of the fine mesh. In this case, �∗[�h] is the
solution of (16) where

rGLS(�m) :=B0(Khu∗−(�m)2Mhu∗+�h(�m)4Mhu∗−fh +�h(�m)2fh)

and �h depends non-linearly on �m . For instance, to minimize the phase lag on the x-direction for
a structured regular quadrilateral mesh, Harari and Magoulès [20] proposed the use of

�h(�m)= 1

(�m)2
− 6

(�m)4h2

1−cos(�mh)

2+cos(�mh)
.

Thus, the computation of �∗[�h] requires solving a scalar root-finding problem.
Three different options have been considered in this work to approximate �∗[�h]. The first

approach is to compute an approximation of �∗[�h] using an algorithm to numerically approximate
the minimum of F(�m) :=rGLS(�m)′rGLS(�m). Namely, a root-finding method on the derivative of
F(�m) is used taking as initial guess �m =�. This approximation is taken to represent the exact
value �∗[�h] since its accuracy can be controlled by the end-user through adjusting the tolerance
of the root-finding method.

The second approach assumes that �h does not vary considerably when varying the parameter
�m . In this case, the dependency of the parameter �h with respect to �m is removed by setting the
value of �h(�m)=��

h , where ��
h :=�h(�), and the approximation of �∗[�h] is denoted by �∗[��

h].
Note that ��

h denotes the value of the parameter �h associated with the wave number �. Doing this
approximation, the residual rGLS(�m) is approximated by a fourth-order polynomial on �m

rGLS(�m)≈a0 +a2(�m)2 +a4(�m)4 (17)

for a0 =B0(Khu∗−fh), a2 =B0(−Mhu∗+��
hfh) and a4 =��

hB0Mhu∗. The minimization of the
squared residual F(�m) is then reduced to find the critical points of F(�m) which is equivalent to
find the solutions of

dF

d�m
=2�m(c0 +2c2(�m)2 +3c4(�m)4 +4c6(�m)6)=0, (18)

where c0=a′
0a2+a′

2a0, c2=a′
0a4 +a′

2a2 +a′
4a0, c4 =a′

2a4 +a′
4a2, c6 =a′

4a4. Although Equation (18)
may have seven real solutions, �∗[��

h] is defined to be the solution of (18) closer to �. Thus,
ruling out the trivial solution �m =0, �∗[��

h] is computed by first finding the roots of the bicubic
polynomial appearing in Equation (18), which is equivalent to finding the three solutions �̄ of

c0 +2c2�̄+3c4�̄
2 +4c6�̄

3 =0

and then setting �∗[��
h] to be the value of

√
�̄ nearer to �, see [17] for the computational details.

Thus, the assumption �h(�m)=��
h yields to a simple and explicit algorithm to approximate the

exact value of �∗[��
h].

Finally, the third approach directly applies the strategy presented in [17] by considering that the
terms added by the GLS method are constant with respect to �m , that is, not only the parameter
�h is set to ��

h , but also the (�m)2 associated with the GLS method is set to �2. In this way, the
residual is approximated by the quadratic function

rGLS(�m)≈B0(Khu∗−(�m)2Mhu∗+��
h�2(�m)2Mhu∗−fh +��

h�2fh)

and the minimization of the fourth-order polynomial F(�m) which allows to compute the approx-
imation of �∗[�h] is done by using the technique detailed in [17].

As will be seen in the numerical examples, the second option yields a fairly good approximation
of the exact solution of the one-dimensional non-linear optimization problem (16). The practical and
straightforward algorithm to estimate the dispersion error using this second option is summarized
in the box shown in Figure 3.
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Figure 3. Practical and straightforward algorithm to estimate the dispersion error.

Remark 4
Note that the second step of the previous procedure requires to compute the coefficients c0,
c2, c4 and c6 associated with the residual rGLS. These coefficients depend on the stabilization
parameter ��

h which in turn depends on a user-prescribed direction �opt which will be denoted in

the following by �opt
h . In the case that u H is computed using the standard Galerkin method, it

is not natural to define a direction �opt
h . However, information about the prevalent wave direction

of the exact solution can be used if available. If u H is computed using the GLS method with
wave direction �opt, the estimates may be computed using �opt

h =�opt or again, if information about
the exact solution is available, this parameter may be set to adjust the prevalent wave direction
of the exact solution. The choice of this parameter will be further discussed in the numerical
examples.

3.5. Enhanced solution u∗ by post-processing u H

The quality of the estimate �∗ depends on the quality of the approximation u∗ of um
H [h]∈Uh

(respectively um
H [h,�h]). The idea proposed here is to build up an inexpensive approximation using

a post-processing technique standard in error estimation analysis [26, 27] and likely having all
its features. The post-processing technique starts from the finite element solution u H ∈UH and
computes an approximation u∗ of um

H [h] in Uh .
Reference [17] presents a procedure to compute u∗ following the work of Calderón and Díez [28].

For each element of the H -mesh, �n , the patch of elements surrounding �n is considered and
it is denoted by �n . In this patch, the values of uH at the nodes of the H -mesh are used
as input data and a polynomial is fitted using a constrained least-squares technique. That is,
in a two-dimensional setting, for a given polynomial degree q, a complex-valued polynomial
field

p(x)= ∑
k+l�q

pkl x
k yl

is determined from the following constrained least-squares problem

min
pkl∈C

∑
x j ∈�n

|u j
H − p(x j )|2

restricted to p(x j )=u j
H for x j ∈�n,

where |·| denotes the modulus of a complex number. Note that the real and imaginary parts of
p(x) can be computed separately. The real part of p(x) (and analogously its imaginary part) may

12



be found solving the real-valued constrained optimization

min
�(pkl )∈R

∑
x j ∈�n

|�(u j
H )−�(p(x j ))|2

restricted to �(p(x j ))=�(u j
H ) for x j ∈�n.

Once the polynomial is obtained in �n it is evaluated to find the nodal values of u� in the nodes
of the h-mesh lying in element �n of the H -mesh. This approach allows recovering the curvatures
of the solution coinciding with u H at the nodes where it is computed.

This simple and straightforward strategy provides fairly good results. However, this approach
does not use specific information about the differential operator or the exact solution. The use of
analytical information about the natural solutions of the differential operator yields an alternative
approach to compute u∗.

The approach to compute u∗ also requires solving a local constrained least-squares problem for
each element �n . Instead of using a polynomial representation for u∗|�n

an exponential fitting
is used. This is a natural choice because the exact solution of the 2D homogeneous Helmholtz
equation is an infinite sum of plane waves of the form Aeik·x, where k=�[cos(�),sin(�)].

Thus, in each patch �n , u H is approximated by an exponential field of the form

A(x)eip(x),

where A(x) and p(x) are polynomial fields representing the amplitude and wave direction. The
fields A(x) and p(x) are determined by a constrained least-squares criterion and hence, they are
taken as those minimizing

min
∑

x j ∈�n

|u j
H − A(x j )eip(x j )|2

restricted to A(x j )eip(x j ) =u j
H for x j ∈�n .

Using a standard technique to linearize the exponential least-squares fitting transforms the previous
problem into an equivalent linear constrained least-squares problem

min
∑

x j ∈�n

| ln(u j
H )− ln(A(x j )eip(x j ))|2

restricted to ln(A(x j )eip(x j ))= ln(u j
H ) for x j ∈�n .

Splitting the real and imaginary part of the previous problem yields a simple strategy to compute
ln(A(x)) and p(x) independently using a restricted least-squares fitting, namely:

min
∑

x j ∈�n

| ln(|u j
H |)− ln(A(x j ))|2

restricted to ln(A(x j ))= ln(|u j
H |) for x j ∈�n

and

min
∑

x j ∈�n

|arg(u j
H )− p(x j )|2

restricted to p(x j )=arg(u j
H ) for x j ∈�n,

where arg(·) denotes the argument of a complex number and a polynomial fitting of ln(A(x)) and
p(x) is considered.

The only intricate part of this strategy involves the input data, arg(u j
H ), of the least-squares

problem for p(x). The non-unique arguments associated with the data u j
H have to be carefully

selected so that the polynomial fitting yields proper results.
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Table I. Example 1: assessment of the dispersion error for a uniform coarse quadrilateral mesh (24×2
elements) a successively refined reference meshes for the Galerkin approximations of the solution.

Galerkin Epri =1.02211

Option 1 Option 2
h E[h] c f E[h] E[h,�h] c f E∗ E∗[�h] E∗[��

h] Option 3

H/2 0.76790 1.02387 1.02211 1.01428 1.01469 1.01486 1.03682
H/4 0.95869 1.02261 1.02211 1.01428 1.01469 1.01486 1.03682
H/8 1.00627 1.02224 1.02211 1.01227 1.01232 1.01232 1.01368
H/16 1.01815 1.02214 1.02211 1.01214 1.01215 1.01215 1.01249
H/32 1.02112 1.02212 1.02211 1.01210 1.01210 1.01210 1.01218
H/64 1.02186 1.02211 1.02211 1.01208 1.01208 1.01208 1.01210

The truth error estimates (left) are computed using the fully non-linear solution yielding to E[h] and E[h,�h].
The exponential post-processed solution (right) u∗ obtained from u H and then different options are used to
recover the wave number �∗ associated with u∗ only for the Galerkin approximation.

First, the influence of the selection of the finite reference mesh associated with Vh is studied.
If the finite element mesh Vh is sufficiently fine, one expects that um

H ≈um
H [h,�h]≈um

H [h] and
therefore �H ≈�H [h,�h]≈�H [h]. If the finite element mesh Vh is not fine enough, one should
apply a correction factor to �H [h] to account for the finite size h of the reference mesh and recover
a good approximation of �H , see [17]. This correction factor is not necessary for the estimate
�H [h,�h]. That is when the reference problem is also stabilized.

A uniform coarse mesh of 24×2 quadrilateral elements is used for both the Galerkin and the
GLS method. The dispersion error associated with the Galerkin approximation can be assessed
using the a priori estimate of the wave number given by (9)

Epri =�−�pri =�− 1

H
arccos

(
1−(�H )2/3

1+(�H )2/6

)
,

which in this case is taken as the actual error in the wave number due to the one-dimensional
character of the solution (up to the pollution errors introduced by the Robin boundary conditions).
Note that the GLS solution is, for this particular mesh and problem, dispersion free. Thus, the Robin
boundary conditions are the unique perturbation producing errors in the approximations of �.

The different a posteriori estimates of the dispersion error are computed using a series of succes-
sively nested reference meshes, both triangular and quadrilateral. For the quadrilateral meshes,
refinement is performed only in the x-direction and thus maintaining two rows of elements on
all the reference meshes, due to the one-dimensional character of the solution: for h = H/2 each
quadrilateral in the coarse mesh is divided into two new ones yielding a mesh of 48×2 elements,
for h = H/4, each quadrilateral element is divided into four new ones yielding a mesh of 96×2
elements, etc.

The first columns of Table I show the truth estimates of the dispersion error E[h] :=�−�H [h] and
E[h,�h] :=�−�H [h,�h] where the numerical wave numbers �H [h] and �H [h,�h] are computed
solving the non-linear problems (13) and (15), respectively, and c f =n2

r /(n2
r −1) stands for the

correction factor applied to �H [h], where nr = H/h. Note that these truth estimates are computa-
tionally unaffordable in real applications, because they involve many resolutions of the problem
in the reference mesh. They are computed in academic problems to see the effectivity of the
proposed practical estimates. As can be seen, both the estimates cf E[h] and E[h,�h] assessing
the dispersion error of the Galerkin approximation are in very good agreement with the a priori
estimate. It is worth noting that the estimate E[h,�h] yields very good results even for the case
h = H/2 being less sensitive than cf E[h] to the choice of the reference mesh size.

The last columns in Table I correspond to the practical estimates obtained from the recovered
solution u∗. In this case u∗ is computed using the exponential fitting. Four different estimates are
computed. The first is the estimate proposed by Steffens and Díez [17], E∗ :=�−�∗, associated
with the assessed wave number obtained from (14) and enhanced by its multiplicative factor.
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Table II. Example 1: convergence of the estimates of the dispersion error through a uniform mesh
refinement using cartesian quadrilateral meshes (top) and hexagonal triangular meshes (bottom).

Galerkin GLS/FE

nnp Epri E E∗
pol E∗

exp E E∗
pol E∗

exp

75 1.02211 1.02211 1.23174 1.01293 −4.1×10−8 0.23026 −0.00626
99 0.60404 0.60404 0.71868 0.59251 −5.1×10−8 0.12522 −0.00134
123 0.39584 0.39584 0.46304 0.38942 5.1×10−8 0.07167 −0.00035
147 0.27851 0.27851 0.32051 0.27525 4.1×10−8 0.04401 −0.00011

172 0.79686 0.79782 0.58502 0.78168 2.6×10−8 −0.22714 −0.00542
293 0.47022 0.46319 0.36999 0.45619 2.9×10−8 −0.09656 −0.00229
446 0.30565 0.30074 0.25304 0.29794 5.4×10−8 −0.04915 −0.00116
631 0.21365 0.21040 0.18306 0.20935 3.6×10−8 −0.02829 −0.00066

The other three options correspond to the three approximations of �∗[�h] detailed in Section 3.3.
Recall that Option 1 results from numerically solving the non-linear one-dimensional problem and,
since this approximation only depends on an end-user relative tolerance set to 10−12, it is assumed
to be exact, that is E∗[�h] :=�−�∗[�h]. Option 2 is associated with �∗[��

h] yielding the estimate
E∗[��

h] :=�−�∗[��
h], and Option 3 is the most crude approximation of �∗[�h] since it considers

that all the terms in the residual associated with the GLS formulation are constant with respect to
the wave number. It is worth noting that all estimates produce similar and sharp approximations
to the dispersion error for all the values of the reference mesh size h.

As expected, the truth estimates provide almost exact values for the dispersion error, fully
coinciding with the a priori estimate. The effect of correcting the estimate with factor c f or
considering a stabilized reference problem is equivalent.

Following these results, in the remainder of the numerical examples, the parameter h is set to
h = H/4 (refining only in the x-direction for this example and uniformly refining the elements
in the following examples) and the wave number is approximated using Option 2 that provides
really good approximations. Hence, in the following the notation E∗ is used to denote the estimate
E∗[��

h] (both for the Galerkin and GLS method). A subindex is added to the notation E∗ to specify
the type of recovery used to compute u∗, namely, E∗

pol ans E∗
exp for the polynomial and exponential

fittings, respectively. Finally, the estimate E∗ is compared with the truth estimate E[h,�h] which
is considered as the one providing the most accurate-but not computable approximation of the
dispersion error, and it is denoted by E .

Table II and Figures 5 and 6 present the estimates corresponding to a sequence of uniformly
refined meshes. Two series of meshes are used: one of structured quadrilaterals and one of triangular
elements following a hexagonal pattern. The two fitting strategies (polynomial and exponential)
are compared.

Note that the dispersion error associated with the GLS solution is almost negligible for the
truth estimates. The Robin boundary conditions are the unique perturbation producing errors in
the approximations of � for the practical estimates.

Figure 5 shows the convergence of the estimates for the dispersion error of the Galerkin approx-
imation using cartesian quadrilateral meshes. The convergence rate of all the estimates is 2 in the
number of points of the mesh, matching the a priori expected convergence rate for the dispersion
error, since, for a fixed value of �, E =�−�H =O(H2), see Equation (10). Here, a one-dimensional
refinement only along the x-direction is done, and the characteristic element size H is inverse
proportional to nnp, namely H =C/nnp and therefore E =O(n−2

np ). However, it can be observed
that the exponential fitting provides estimates which are in better agreement with the a priori or
reference estimates.

Finally, Figure 6 shows the convergence of the bounds for both the Galerkin and GLS approxi-
mations using either quadrilateral or hexagonal triangular meshes. The reduction in the dispersion
error using the stabilized GLS formulation becomes apparent both for quadrilateral and hexagonal
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Figure 5. Example 1: convergence of the estimates of the dispersion error of the Galerkin approximations
through a uniform mesh refinement using cartesian quadrilateral meshes.
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Figure 6. Example 1: convergence of the dispersion error both for the Galerkin and GLS approximations in
a series of uniformly refined meshes: quadrilateral meshes (left) and hexagonal triangular meshes (right).

meshes. This important reduction is due to the fact that the stabilization parameters that have been
used are particularly designed to eliminate the spurious dispersion of the exact solution ei�x for the
particular quadrilateral and hexagonal meshes at hand. It is also clear that the exponential fitting,
in this example, captures more precisely the shape of the solution and thus yields better estimates
for the dispersion error.

Although extremely simple, this example demonstrates that the proposed methodology is able
to assess the dispersion error in both Galerkin and GLS formulations. The estimate clearly detects
that the GLS method reduces the dispersion. As shown in the following examples, the same tools
are also useful in more involved situations.

4.2. Example 2: plane wave in square domain

We consider the unit square �=]0,1[×]0,1[ with inhomogeneous Robin boundary conditions
specified on all the boundaries of the square so that the exact solution is u =ei�(cos�x+sin�y). That
is, the solution is a plane wave propagating in the direction of angle �, as illustrated in Figure 7.
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α

Figure 7. Example 2: problem setup (left) and solution for �=�/8 (right).

Table III. Example 2: assessment of the dispersion error of the Galerkin method
for uniformly refined structured quadrilateral meshes.

Galerkin

nnp E E∗
pol E∗

exp 	∗
pol 	∗

exp

81 0.24912 0.41670 0.23725 1.6727 0.9524
289 0.06330 0.09033 0.06328 1.4271 0.9998
1089 0.01563 0.01943 0.01593 1.2434 1.0197

Table IV. Example 2: assessment of the dispersion error of the GLS method for uniformly refined structured
quadrilateral meshes. The GLS approximations are computed using different stabilization directions �opt.

GLS/FE

�opt =0 �opt =�/8 �opt =�/4

nnp E E∗
exp E E∗

exp E E∗
exp

81 −7.45×10−2 −7.17×10−2 6.82×10−4 3.40×10−4 7.71×10−2 7.34×10−2

289 −1.99×10−2 −1.93×10−2 −4.43×10−4 3.80×10−5 1.91×10−2 1.95×10−2

1089 −5.02×10−3 −4.87×10−3 −1.84×10−4 1.68×10−6 4.66×10−3 4.88×10−3

The model parameters are �=8 and �=�/8 and the analytical solution associated with these
parameters is depicted in Figure 7.

The performance of the estimates is studied for three different structured uniform quadrilateral
meshes (8×8, 16×16 and 32×32 elements). In order to estimate the dispersion error associated
with the Galerkin approximation, the stabilization parameters involved in the computation of
E :=E[h,�h] and E∗ := E∗[��

h] in Equations (15) and (17) are computed using the predefined

direction �opt
h =�=�/8. The results are shown in Table III, where 	∗

pol := E∗
pol/E and 	∗

exp := E∗
exp/E

is the effectivity index of the estimates with respect to the reference value E (truth estimates).
Again, the exponential fitting provides better estimates to the dispersion error yielding very good
effectivity indices near to one. A linear convergence rate of the estimates with respect to the
number of nodes is obtained, matching the a priori expected convergence rate for the dispersion
error. Indeed, since a uniform refinement is done in both the spatial dimensions, the characteristic
element size H is related to the number of points in the mesh via the relation nnp ≈C/H2 and
thus the convergence rate E =O(H 2) is equivalent to O(n−1

np ).
The same study is done for the GLS approximations of the problem using the same meshes.

Although the exact solution is a plane wave, since the cartesian meshes are not aligned with the
wave direction �=�/8, none of the possible choices for the stabilization direction �opt yields a
nodally exact solution. Table IV shows the dispersion error of the GLS method for three different
stabilization parameters �opt =0, �opt =�/8 and �opt =�/4. In all the computations the error esti-
mates are performed using the same value of �opt for the reference h-mesh, that is �opt

h =�opt.
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Figure 8. Example 2: performance of the estimates of the dispersion error for the Galerkin method and the
GLS method for a plane wave associated with �=�/8 using a reference mesh (left) and the exponential

fitting (right). The GLS approximations are computed using different stabilization parameters.

0
0

0.005

0.01

0.015

0.02

0.025

θ

E
- 

G
LS

π/8

w.r.t Galerkin = 0.06328E

Figure 9. Example 2: influence of the selection of the stabilization angle �opt in the dispersion error of
the GLS approximation for the mesh with 269 nodes. The estimates are computed both using �opt =�.

The GLS method substantially reduces the dispersion error even for the non-optimal parameters
�opt =0 and �opt =�/4. The error estimate E∗

exp is properly approximating the truth error E in all
the cases. For �opt =�/8 the dispersion error is so small that the resulting effectivity is not as sharp
as for the choices producing longer errors.

Figure 8 graphically displays the information shown in the tables in Tables III and IV. As can
be seen, the estimates (depicted on the right of the figure) are in very good agreement with the
reference mesh computations (depicted on the left of the figure). As mentioned before, the GLS
method always performs better than the Galerkin method but there is a qualitative leap of accuracy
when the optimal parameter �opt =�/8 is used.

Finally, Figure 9 shows the influence of the stabilization direction �opt used to compute the GLS
finite element approximation in the dispersion error. The study is done varying �opt in the range
[0,�/2]. As expected, the optimal performance is reached when the wave direction of the GLS
method coincides with the angle of the exact solution, �opt =�=�/8. In any case, if no information
about the exact solution is at hand and thus, an arbitrary choice of �opt is considered, the GLS
method provides an important reduction in the dispersion error when compared with the Galerkin
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Figure 10. Example 3: geometry of the fictitious bounded domain to study the scattering from a
submarine-shaped obstacle problem (top) and a mesh of 2567 nodes (bottom).

approximation: the estimated dispersion error is reduced from E∗
exp =0.06328 to E∗

exp ≈0.02 in
the worst case.

4.3. Example 3: scattering from submarine-shaped obstacle

The acoustic scattering from an acoustically hard obstacle is studied. The geometry is a submarine-
like object parameterized by the distances l =3, L =60 and D =6, see Figure 10. The incident
wave is characterized by its wave number �=�/3 and an angle of incidence �=5�/4. The
original problem is an unbounded Helmholtz problem which is reduced to an interior problem
over a bounded computational domain with a circular boundary of radius R =36. In the fictitious
boundary, second-order Bayliss–Gunzberger–Turkel (BGT) [29, 30] absorbing boundary conditions
are applied.

The solution of the acoustic scattering problem is decomposed into u =ur +ui, where ur and
ui are the so-called reflected and incident waves, respectively. For a given wave number � and
incident wave direction �, the incident wave is ui =ei�(cos�x+sin�y) and the reflected wave ur is
the solution of the Helmholtz equation (1) with f =0 (because the total wave u is the solution
of the homogeneous Helmholtz problem, Equation (1) with f =0, and −�ui −�ui =0). Neumann
boundary conditions are applied on the boundary of the obstacle

∇ur ·n=−∇ui ·n
(g =−∇ui ·n in (2b) since homogeneous Neumann boundary conditions are applied the total wave
u, that is, u verifies Equation (2b) with g =0), and first-order Bayliss–Gunzberger–Turkel (BGT)
non-reflecting boundary conditions are applied to the fictitious boundary

∇ur ·n=Mur =−i�ur − 


2
ur

in (2c). Here, 
 is the curvature of the surface of the scatterer, which for the particular case of a
circular boundary of radius R is 
=1/R.

In this example, the dispersion error committed in the approximation of the reflected solution
ur is studied. The total approximated scattered field u is computed from ur adding the known
incident field ui. Figures 11 and 12 show the approximations obtained using the Galerkin method
with a triangular mesh of 10 026 nodes.

The behavior of the estimates of the dispersion error is analyzed for different unstructured
triangular meshes both for the Galerkin and SUPG approximations of the reflected solution ur. The
triangular meshes are obtained from the initial mesh (see Figure 10) using a uniform refinement, that
is, a new mesh is obtained from a previous mesh by refining each triangle into four new triangles.

Table V shows the results associated with the Galerkin approximation. In this case, the stabi-
lization parameters involved in the computation of the truth estimate E and the practical estimate
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Figure 11. Example 3: real part of the approximated solutions of the scattering problem
for �=5�/4 and �L =62.83: scattered wave (top) and total wave (bottom). Approximations

computed using the Galerkin method and a mesh of 10 026 nodes.
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Figure 12. Example 3: imaginary part of the approximated solutions of the scattering problem
for �=5�/4 and �L =62.83 computed using the Galerkin method and a mesh of 10 026 nodes:

scattered wave (left) and total wave (right).

E∗ are computed using the predefined direction �opt
h =�=5�/4. Both the estimates obtained using

a polynomial and an exponential fitting provide fairly good approximations to the truth value E .
However, the exponential approach provides better effectivities, closer to one. Moreover, the
expected rate of convergence of the estimates of the dispersion error is obtained in all the cases.

Table VI shows the results obtained by the GLS approximations. Three different stabilized
approximations are computed associated with the stabilization directions �opt =0, �opt =�/12 and
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is characterized by the maximum horizontal and vertical lengths, Lx =2.7m and L y =1.1m,
respectively. The source term entering in Equation (1) is f =0, and as mentioned in Remark 1, for
interior acoustic wave propagation problems, the Neumann and Robin boundary conditions entering
in Equation (2) are of the form g =−i�c�v̄n and Mu =−i�c�Anu, where in this case the material
parameters are c=340m/s standing for the speed of sound of the medium and �=1.225kg/m3

standing for the mass density. The vibrating front panel is excited with a unit normal velocity
v̄n =1m/s, whereas the roof is considered to be an absorbent panel with associated admittance
An =1/2000m(Pas)−1. The rest of the boundary is assumed to be perfectly reflecting and thus
v̄n =0m/s. Finally, a wave number of �≈9.7 has been considered in the computations (equivalent
to a frequency of 525Hz).

In this problem, the exponential fitting presented above yields bad estimates, worse than the
standard polynomial fitting. This is due to the fact that the solution is extremely complex without
a predominant direction. At many points of the domain, the solution can be expressed as a sum
of several plane waves with similar amplitudes. Thus, the exponential fitting fails to properly
approximate the local behavior of the modified solution in the vicinity of these points. Actually,
the exponential recovery in these zones introduces unrealistic discontinuities resulting in bad
estimates. In the following, this phenomenon is described in detail, as well as the proposed
remedy.

It is well known that the exact solution of the 2D homogeneous Helmholtz equation can be
expressed as an infinite sum of plane waves traveling in different directions. In the previous
examples, the solutions were either a single plane wave traveling in a predefined direction (see
examples 1 and 2) or had a prevalent plane wave direction, although the prevalent wave direction
may vary from different zones of the domain (see the scattered solution of example 3). The sound
transmission inside a car cabin is a more complex phenomenon and the solution does not present
clear prevalent directions but is a combination of different plane waves with similar amplitudes
(see Figure 14).

Even if the exact solution has no prevalent directions, one can consider an exponential repre-
sentation of the exact solution of the problem

u(x)=r (x)ei�(x),

where r (x) and �(x) are the real-valued functions providing the modulus and angle of u, respectively.
In the cases where the solution does not have a prevalent direction two phenomena may appear: on
the one hand the angle distribution �(x) may present discontinuities coinciding with areas where
the modulus vanishes, and, on the other hand, the modulus distribution r (x) may present a highly
non-linear and non-smooth behavior in some regions.

To illustrate these phenomena, the modulus and angle distributions of three simple solutions are
shown in Figure 15. First, the solution u =2e�ix +e�iy is considered. Note that, in this case, the plane
wave traveling in the x-direction, e�ix , prevails over the wave traveling in the y-direction, e�iy . As
can be seen in Figure 15, the standard representation of the angle distribution �(x) is a discontinuous
function, which can be easily post-processed to recover a continuous angle distribution. Moreover,
the modulus does not present large variations over small regions. In this case, the exponential fitting
described in Section 3.5 provides accurate approximations of u. The second example, u =e�ix +e�iy ,
shows that if the solution is obtained combining two plane waves of the same amplitude, and thus
it does not have any prevalent direction, angle discontinuities appear in some predefined straight
lines. As the number of plane waves that comprise the solution u increases, see for instance the
third example u =e�ix +e�iy +e−�iy , the modulus and angle distributions may present areas with a
highly non-linear and non-smooth behavior. Note that, although the angle distribution only presents
point or removable discontinuities at nine points of the domain, obtaining a globally smooth
angle distribution from the standard angle representation is not a trivial task. Figure 16 shows the
behavior of the modulus and angle distribution associated with the acoustic pressure inside the car
cabin. As can be seen, it is not easy to clearly identify the regions where the angle distribution is
discontinuous.
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Figure 14. Example 4: solution of the noise transmission problem inside the cabin of a car obtained with
an overkill mesh of 20 160 nodes: real part of u (top) and imaginary part of u (bottom).

The exponential fitting technique is based on finding a proper local polynomial representation
for the modulus and angle distributions. Thus, in regions where either the angle is discontinuous
or the modulus presents large oscillations, the exponential representation yields poor results. In
this work, a simple workaround is proposed: first, the smoothing technique identifies the elements
near the angle discontinuities or near the regions where the modulus has a non-smooth behavior.
Then, the exponential fitting is applied only to the non-selected elements while a polynomial fitting
is applied to the problematic elements. The estimates obtained with this combined approach are
denoted in the following by Ê∗

exp.
Estimates of the dispersion error for the Galerkin approximations of the solution are computed

for two different triangular meshes of 568 and 2122 nodes, respectively. The results are shown in
Table VII. As can be seen, both the polynomial and the combined estimates provide fairly good
approximations to the truth value E . However, using an exponential representation, where possible,
allows obtaining effectivities closer to one.

Figure 17 shows the elements that have been selected in the combined approach to apply the
polynomial smoothing technique instead of the exponential one. Note that these regions are in
good agreement with those highlighted in Figure 16.

The reduction in the dispersion error obtained by using stabilization techniques is shown in
Table VIII. This table also shows the influence of the selection of the stabilization parameter.
As can be seen the results of the GLS approximations with the three stabilization parameters
are nearly identical for the two meshes, and provide significant improvement over the Galerkin
method.
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Figure 15. Example 4: behavior of the modulus and angle distributions, �(x) and r (x), respectively,
for three simple solutions in the unit square. From top to bottom: u =2e�ix +e�iy , u =e�ix +e�iy and
u =e�ix +e�iy +e−�iy for �=9.7. For each solution, the modulus distribution (left) and two views of the
angle distributions (middle left, middle right) are shown. When possible, equivalent angle distributions only
containing non-removable discontinuities—where the discontinuities associated with a 2� angle jump have

been smoothed—are shown (right).
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Figure 16. Example 4: modulus (left) and angle (middle and right) distribution of the acoustic pressure
inside the car cabin. The areas where the modulus is nearly zero are highlighted in the plot in the middle

to see the areas where the angle distribution may present discontinuities.

Table VII. Example 4: assessment of the dispersion error of the Galerkin
method for unstructured triangular meshes.

Galerkin

nnp E E∗
pol Ê∗

exp 	∗
pol 	∗

exp

568 0.15001 0.08231 0.12960 0.5486 0.8639
1092 0.07506 0.06694 0.07389 0.8918 0.9845
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Figure 17. Example 4: two unstructured triangular mesh where the red elements corre-
sponding to solution fitting polynomial.

Table VIII. Example 4: assessment of the dispersion error of the GLS
method for an unstructured triangular mesh.

GLS/FE

nnp E E∗
pol Ê∗

exp

�opt =0
568 0.03792 0.02267 0.03563
1092 0.00577 0.00653 0.00644

�opt =�/12
568 0.03808 0.02281 0.03583
1092 0.00583 0.00658 0.00651

�opt =�/6
568 0.03824 0.02294 0.03601
1092 0.00589 0.00663 0.00656

The GLS approximations are shown for different stabilization directions �opt.

5. CONCLUSIONS

This paper introduces an error assessment technique for the numerical wave number �H of the
Helmholtz problem, both for standard Galerkin and stabilized formulations. The strategy introduced
in [17], which determines the numerical wave number �H as the one that better accommodates the
numerical solution u H in a modified problem, has been extended to deal with stabilized formula-
tions. The numerical solution u H and the reference modified problem are computed using stabilized
methods to obtain both more accurate approximations of the solution and sharper estimates of the
dispersion error.

The proposed strategy requires obtaining an inexpensive approximation of the modified problem,
using post-processing techniques. Thus, the associated numerical wave number is readily recovered
using a closed expression. A new improved recovery technique is developed to take advantage of
the nature of the solutions of wave problems. The standard polynomial least-squares techniques
is replaced by an exponential fitting yielding much sharper results in most applications. However,
both the error estimates computed using a polynomial and exponential fitting provide reasonable
approximations of the true errors.

The estimates of the dispersion error reaffirm that using stabilized approximations substantially
improves the performance of finite element computations of time-harmonic acoustics at high wave
numbers. The sensitivity of the choice of the stabilization parameter for the GLS method has been
studied concluding that the change in the orientation of the stabilization parameter has little effect
on the results of non-academic problems or when considering non-structured meshes.
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14. Babuška I, Ihlenburg F, Strouboulis T, Gangaraj K. A posterori error estimation for finite element solutions of
Helmholtz. Part II: estimation of the pollution error. International Journal for Numerical Methods in Engineering
1997; 40:3883–3900.

15. Stewart JR, Hughes TJR. Explicit residual-based a posteriori error estimation for finite element discretizations
of the Helmholtz equation. Computation of the constant and new measures of error estimator quality. Computer
Methods in Applied Mechanics and Engineering 1996; 131(3–4):335–363.

16. Stewart JR, Hughes TJR. A posteriori error estimation and adaptive finite element computation of the Helmholtz
equation in exterior domains. Finite Elements in Analysis and Design 1996; 22(1):15–24.

17. Steffens LM, Díez P. A simple strategy to assess the error in the numerical wave number of the finite
element solution of the Helmholtz equation. Computer Methods in Applied Mechanics and Engineering 2009;
198:1389–1400.
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