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1. Introduccidén

An action has a dynamic character if it has a rapid time-variation, causing inertia
forces in structures. The intensity, the direction or sense, or all these characteristics
of dynamic loads are time - dependent. Two different concepts can be used in the
definition of the dynamic loads: the deterministic concept and the nondeterministic
or stochastic or random one. A dynamic load has a deterministic character in the
case in which its time variation is completely known at each time instant. On the
contrary, a dynamic load is nondeterministic if some parameters of it, or its complete
time-history, have been statistically defined). The methods of structural analysis
have to be in accordance with the concepts used in defining the loads. In the case of
a deterministic definition the analysis is performed by means of deterministic methods
and, consequently, the dynamic response is described in a deterministic way. When
the action is a random process, the methods have to be appropriate for a stochastic
treatment of the problem and the structural response is defined through its statistic
characteristics.

The dynamic actions defined by using deterministic representations are time-varying
functions whose values are known at each time instant. This type of representation
is appropriate in an a posteriori analysis of structures, that means, in verifying the
dynamic behaviour of a structure subjected to a previously defined action. The results
calculated in this way are only qualitative ones, due to the fact that they have been
obtained under the optimistic assumption that the actions expected in the future will
have characteristics similar to the past ones.

Stochastic representations are used in the cases in which the dynamic actions cannot
be expresed through time-dependent functions whose values are known at each time
instant. In such cases the loads are represented by means of families of possible func-
tions, defined through some probabilistic characteristics. This operation is followed by
an evaluation of certain probabilistic parameters of the structural response. Thus, the
dynamic actions and, at the same time, the structural response are defined as stochastic
processes, that is by means of families of chaotic events having a time evolution(®).

When a structure is subjected to a dynamic load, the actual structural response is
the result of filtering the dynamic action through the actual structure and the dynamic
analysis requires the previous definition of both the action and the structural charac-
teristics. Nevertheless, as in all branches of Applied Mechanics, in Structural Dynamics
the subject of analysis is not an actual structure, but rather a mechanic model of it
which, in this case, is a dynamic one. The definition of a dynamic model depends on
the type of structure and its objective is to provide not only realistic description of
the behaviour of the actual structure, but also a simple relationship between actions
and responses. The necessity of a definition of a dynamic model in order to perform
the dynamic analysis of a structure demonstrates that the traditional design process
is a verification one: starting from a pre-defined structural shape, checks are made to
assure that the response comply with some previously stated conditions.

The relationship between action and response is expressed quantitatively by means
of a mathematical model. The physical characteristics to take into account in defining
mathematical models, are the mass (inertia), the damping and the stiffness of the
structure. A complete calculation of the dynamic response would require its obtention
in every point of the structure, that is, in an infinite number of points and in an infinite
number of time instants, a fact that greatly complicates the problem to be solved. In
order to simplify the mathematical model of the problem, it is convenient to define
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dynamic models with a finite number of prescribed points in which the response is to
be calculated. One comes to such a result by means of an operation named spatial
discretization(®®). Further simplifications are performed by computing the dynamic
response only in a finite number of time instants, by means of a time discretization.
The definition of both dynamic and mathematical models is dependent not only on the
discretization methods used but also on the geometric and mechanical characteristics
of the actual structure. Inaccuracies introduced in the dynamic models and in the
correspondent mathematical ones, including those affecting the material characteristics,
greatly influence the accuracy of the computed response.

An important difference between the effects of a static and a dynamic load on a
structure consists in the presence of the inertia forces in the dynamic case, in which
the stresses are produced in the structure by the action of both the dynamic force f(t)
and the inertia force f;(y,t). Another difference is the time-evolution of the dynamic
response, due to which the analysis has to provide a solution at each time instant, that
is a time history of the response. The simulation process of the structural response,
illustrated in the block scheme of figure 1.1, would introduce physical estimates during
the phase of the dynamic modelization, would use an exact definition of the correspon-
dent mathematic model, and, further on, would perform the calculation of the response
by suitable numerical procedures.

Dynamic »| Dynamic| , ‘Mathematic- ;, Numeric‘zflwr:,'—-'; Dynamic
excitation model model procedures response

Figure 1.1 Block scheme for the dynamic response computation process.

d’Alembert’s principle provides the most direct procedure to write equations of
motion). It can be formulated as follows: the dynamic equilibrium of a system is
assured if all the forces acting on the system, the inertia ones included, comply with
the static equilibrium condition at each instant of time. The inertia forces are expressed
according to Newton’s second law

(F), (1) = —m;d;(t) (j=1,2,...,n)

where (Zj(t) is the acceleration corresponding to the mass m; of the system.
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2. Linear systems with a
single-degree of freedom

2.1 EQUATIONS OF MOTION

The equation of motion corresponding to the dynamic model of figure 2.1(a) are
deduced by using d’Alembert’s principle. One considers that the mass is cut off from
its connections and that all the forces corresponding to the mentioned connections, the
inertia ones included, are applied on the mass [see figure 2.1(b)]. Thus, the equation
of equilibrium is written as

Fi(t) - Fu(1) = Fa(t) = f(2) (2.1)

where F;(t), Fe(t) and F,(t) are the inertia, elastic and damping forces respectively,
while f(t) is the dynamic force applied on the model.

7 k
—AWA— -
é m —— (1) kz mz -
1] 0] & - ~
7T 777 777777 Inertia
| force
(a) ¢z (b)

Figure 2.1 Single-degree of freedom model. (a) Dynamic model; (b) forces in dy-
namic equilibrium.

The elastic force is proportional to the displacement x(t) of the mass m, and to the
stiffness k& of the model

F.(t) = kz(t) (2.2)
The inertia force is generated by the absolute acceleration of the mass m
F;(t) = —mé(2) (2.3)

Voigt’s hypothesis is admitted for the damping force; according to it, the damping is
”viscous”, that is proportional to the velocity

Fau(t) = ei(t) (2.4)
With these definitions the equation of equilibrium (2.1) is expressed as
mi(t) + ci(t) + ka(t) = f(t) (2.5)

For the damped free vibration case, the equation can be written as
mi(t) + ca(t) + ka(t) = 0 (2.6)
and for the undamped free vibration case it changes into

mi(t) + ka(t) =0 (2.7)
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Inertia force can be generated in the model not only by a directly applied dynamic
force, but also by the motion of its support points. Consider the case of the system of
figure 2.2, which vibrates due to the displacement xs(t) of its support.

Figure 2.2 Single-degree of freedom model subjected to support excitation.

In this case, the absolute acceleration of the mass is

Fi(t) = —m [2(t) + &4(1)) (2.8)
and the equation of equilibrium (2.1) can be expressed as
m[#(t) + &s(t)] + ca(t) + ka(t) =0 (2.9)
After some transformations it becomes
mi(t) + ci(t) + ka(t) = —mi,(t) = f(1) (2.10)
where f(t) = —m#4(t) is the force which acts on the mass m, which has the nature of

an inertia force.

2.2 DYNAMIC CHARACTERISTICS OF SINGLE-DEGREE OF FREE-
DOM MODELS

The dynamic characteristics of a single-degree of freedom model are defined by study-
ing its undamped free vibrations. The model vibrates due to some initial conditions
which can be, for example, an initial displacement and an initial velocity and does not
suffer the effect of any perturbation during its vibration. Consequently, the model does
not dissipate the initially induced energy.

Dividing equation (2.7) by m and using the notation

k
wi=—
m
the following equation is obtained
i) +wia(t) =0 (2.11)

The quantity w is the angular or circular natural frequency of the system, sometimes
called simply frequency and is expressed in radians per second. This is one of the
dynamic characteristics of the system. Another one is the natural period T, defined as

2T
T=— 2.12
- (2.12)
and measured in seconds. Finally, the cyclic frequency f is given by
1 w
== = — 2.13
f=7=75 (2.13)

and is expressed in cycles per second or Hertz.
The general solution of the equation (2.11) can be written in the form
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x(t) = Asin(wt + 9) (2.14)

where A is the amplitude of the motion and 1 is the phase angle. A and 1 are

calculated starting from the initial conditions of the problem. For example, for an

initial displacement @(0) = z, and an initial velocity @(0) = @,, the resultant values
(1,2)

are

&y \ 2 &
A=z + (—0) , tany) = — (2.15)
w

we,

2.3 DAMPING CHARACTERISTICS OF SINGLE-DEGREE OF FREE-
DOM MODELS

The free damped vibration which will be studied is described by equation (2.6). The
damping, characterized by the coefficient ¢, is proportional to the velocity according
to a Kelvin-Voigt model and is called viscous damping. The most important reason of
the use of such a definition is its simplicity®%. Actually, damping forces in structures
are produced by different causes, between which the following can be enumerated(*):

— Friction between sliding surfaces, which can be dry or lubricated; the damping
force is proportional to the force acting normally to the surfaces in contact, accord-
ing to Coulomb’s hypothesis. The mentioned normal force is considered constant
and independent from the displacements or velocities.

—Damping due to the vibration of structures in the surrounding medium which,
generally, is a fluid.

— Damping due to internal frictions within the structural material, or between struc-
tural members, mainly produced by imperfect elasticity. In this case the damping
force is proportional to the restoring force, and is called structural damping.

The before mentioned viscous damping is often used to characterize the global damp-
ing of a structure; in such cases it is named equivalent viscous damping. It can be defined
as a force which produces the total energy dissipation in the structure(®,

The equation of motion (2.6) is divided by m, resulting in

#(t) + 264(t) + w?a(t) = 0 (2.16)
where the notation
c
— =2 (2.17)

has been introduced. The solution of (2.16) is obtained by starting from the substitution

a(t) = e (2.18)
which provides the characteristic equation

1'2+2[3¢+w2:0

r, = =B+ /B - w? (2.19)

The critical damping is denoted ¢, or . and is defined by the equation

whose solutions are

B2 —-w?=0 (2.20)

It results from here

fe=w (2.21)
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and by using (2.17), the coefficient c. is obtained
c. = 2mpP. = 2mw (2.22)

The case in which the damping is greater than the critical one

i (2.23)

corresponds to overdamped systems. This is not a situation given in the case of normal
structures and therefore, it will be not discussed herein. The only observation which
will be made is that in such conditions a structure does not oscillate, but rather it
returns to its rest position without vibrations.

The typical case given in the dynamic analysis of structures is the undercritical one,

defined by

c< e (2.24)

A better definition of this case is achieved by introducing another damping coefficient
.

= — (2.25)
Ce

known as damping ratio. The damping ratio is expressed using (2.22)

¢
, = 2.2
: 2mw (2.26)
and the substitution of (2.17) provides
p
= — 2.2
(=5 (2.27)

In this case the quantity 8% — w? of equation (2.19) is negative and consequently the
solutions r, and r, are complex

rp = =B+ dwy/1-(2 (2.28)

where ¢ = v/—1. Defining the damped vibration frequency w, as

Wy = wy/1 — (2 (2.29)

T, = —Cw tiw, (2.30)

the solution (2.28) becomes

The general solution of the equation (2.16) can be written in the form
2(t) = c et + c,e™? (2.31)
By substituting 7, and r, from (2.19) the final form of the solution is obtained
2(t) = Ae”“sin(wyt + 1) (2.32)

The coefficients A and 9 are calculated by using the initial conditions of the problem.
Obviously, the equation of motion (2.16) can be expressed in the form

#(t) 4 2Cwi(t) + w?a(t) = 0 (2.33)

where the definition of the damping ratio (2.27) has been used.
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2.4 DYNAMIC RESPONSE OF SINGLE-DEGREE OF FREEDOM SYS-
TEMS

2.4.1 General considerations

Single-degree of freedom systems are the simplest dynamic models which can be
used in analyzing the dynamic behaviour of a structure. From a theoretical point of
view, their application in solving practical problems is restricted to a limited class of
systems, namely those whose mass is physically concentrated at a given point of the
model and which oscilates in one direction. However, their analysis is important, due
to the fact that it can be extended to the study of multi-degrees of freedom models
by using the superposition concept. Another interesting aspect is that their response
can be obtained by expressing the solution of the equation of motion in an explicite
form. This solution depends on a reduced number of parameters whose influence can
be studied easily.

2.4.2 Transfer function of a dynamic system

The Fourier transforms of the dynamic excitation f(t¢) or of the support acceleration
i4(t) are defined as

F(0) = / f(t) e7 at (2.34a)

-mA(f) = —m / &4(t) e dt (2.34b)

o0

while the Fourier transform of the response x(t) is

X@) = [ () (2.35)
In equations (2.34) and (2.35), 0 is the frequency of the excitation and A(6) is the
Fourier transform of the support acceleration &4(¢). Since in dynamic problems the
excitation signals f(t) or #5(t) and the response ones x(t) are always finite, continuous
and bounded, the integrals of the Fourier transforms (2.34) and (2.35) always exist and
can be evaluated::6®), The same statement can be made on the corresponding inverse
Fourier transforms defined by

z2(t) = -zl—w/_w X(6) e ab (2.36)
(1) = 2—17; _m F(0) ¢ d (2.37)

The transfer function H(6) of the system, formulated in the complex frequency do-
main, is defined as

H(8) = % (2.38)

The complex frequency response is thus expressed as
X(0)= H(8) F(0) (2.39)

The convolution theorem is used now, which states that the inverse transform of the
product of two Fourier transforms is equal to the convolution integral of the inverse of
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their transforms. By applying this theorem to equation (2.39), the following equation
is obtained(®19):

a(t) = 1/ X(0) ' (10:2%/ H(6) F(6) ¢ a8

21
= /w B(r) f(t - 7) dr = /w Wit —7) f(r) dr (2.40)
where A(t) is the inverse Fourier transform of the transfer function H () of the system
ht) = %/: H(0) ¢ do (2.41)

Taking into account that h(t) is meaningless for ¢ < 0 and that the excitation f(t)isa
finite signal, distinct from zero only for ¢ > 0, equation (2.40) can be rewritten as

#(t) = /t h(t) f(t —7) dr = /t h(t —7) f(r) dr (2.42)

2.4.3 Response to unit impulse

Consider a single-degree of freedom system subjected to a unit impulse defined by
means of a delta Dirac function

6(t—1,)=0 fort#t, (t>0) (2.43a)

/m §(t—t,) dt = 1 (2.430)

This function has the property that

[ s t0) i =) (2.44)

where ¢(t) is any time function.
The Fourier transform of the unit impulse is

F(0) = / T8 e ay (2.45)
and, according to (2.44)
F(9) =1 (2.46)
Consequently, the complex frequency response of the system subjected to a unit im-
pulse, which will be denoted by X"(8), is
X"(0)= H(O)F(0) = H(0) (2.47)

It can be stated from here that the Fourier transform of the response to a unit Dirac
impulse is equal to the transfer function of the system. The time domain response of
the system 2" (t) produced by a unit impulse is equal to the inverse Fourier transform
of the complex impulse response of the system
P L% gy st
218 = —/ X"(8) % do (2.48)

s

—0o0

By using (2.47), the unit-impulse response is expressed as
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(1) = 2—17;/00 H(B) ¢ do = h(1) (2.49)

—0o0

where the transfer function of the system

o0

H(0) = / h(t) e~ dt (2.50)

is the Fourier transform of the unit-impulse response. Equation (2.49) states that the
inverse transform h(t) of the transfer function is equal to the unit impulse response of
the system.

2.4.4 Response to a general excitation

Consider that the system is now subjected to a general dynamic load f(t) or to a
support acceleration &,(t). The displacement response of the system is obtained by
applying Fourier transforms to the terms of equation (2.1). Considering zero initial
conditions, the following linear algebric equation with complex coefficients is obtained

[—m#% + i Oc + k] X(0) = —m A(0) = F(6) (2.51)

where A(#) and F(6) are the Fourier transforms of f(¢) and x4(t), respectively and
X (0) is the Fourier transform of the displacement response. Using (2.51), the complex
frequency response can be expressed in the following form:
—mA(0) B F(0)
—mb2 +ifc+k  —mb? +ifc+k

X(0) = (2.52)

By comparing (2.39) with (2.52), it results that, in the general dynamic case, the
complex frequency domain transfer function of the single-degree of freedom system is

1
—mb? +i0c+ k

() =

which can be transformed into
1
H(0) = 2
(9) m(—0% + i2¢wb + w?) (2.530)

where the well known expressions

¢ = 2(wm
and
k
w? = —
m

have been used. In the support excitation case, the complex frequency domain transfer
function of the single-degree of freedom model will change according to (2.52), becoming

1

") = -yt 1 0?)

(2.53b)

More transformations can be performed on the expression (2.53a) of the transfer
function, which allows to express it in the form

1
m [(i0 + (w)? + w?(1 — (?)]

By using now the frequency of the damped vibration

wy =w /1 —(?

H(0) =

(2.54)
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the equation (2.54) becomes
1 1
m (01 ) + ]

Obviously, in the support excitation case the transfer function has to be written ac-
cording to (2.53b)

H(6) = (2.55a)

1
(60 + (w)? + w3
Remember that the transfer function H(6) is the Fourier transform of the unit impulse
response of the system. The inverse Fourier transform h(t) of H(#) is given by the

equation (2.41). The integral of this equation can be solved analytically. For example,
if H(#) is expressed by means of (2.55a), the unit impulse response of the system is

H(0) = — (2.55b)

1
h(t) = e~ “hsin(wyt) (2.56)

MWy

By using now the equation (2.42), the time domain response of the system is formulated
in the follwing final form:

1 t
x(t) = / F(r) et sinfw,(t — 7)) dr (2.57)
mwy J,
In the case of a support excitation, equation (2.57) transforms into
1 7t
a(t) = —— [ &s(7) e~ t=7) ginfw, (t — 7)) dT (2.58)
wll 0

The integrals in (2.57) and (2.58) are known as Duhamel’s integrals, which have ana-
lytical solution only for some particular cases of functions describing the excitation. In
a general case it has to be solved numerically.
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3. Linear multi-degree
of freedom systems

3.1 EQUATIONS OF MOTION

3.1.1 General formulation

Consider a multi-degree of freedom model obtained by means of the concentrated
mass method. The corresponding equations of motion can be written by expressing the
dynamic equilibrium of each mass of the model, according to d’Alembert’s principle.
This operation requires to cut off the connections of each mass m,,r =1,2,..., Tyunny T,
to introduce all the corresponding forces, the inertia ones included and to express the
dynamic equilibrium of the mass. One obtains

Fi (t)—Fer(t)_Fﬂ-r(t): fr (7‘: 1,2,...,71/) (31)

Obviously, the entire dynamic model is in equilibrium if all its concentrated masses are
in equilibrium, that is, that all (3.1) type equations are similar to (2.4). By writing
these n equations in matrix form, it results

Fi(t) — Fe(t) = Fu(t) = F(1) (3:2)

The equations (2.2), (2.3) and (2.4), which define the elastic, inertia and damping
forces of a single-degree of freedom model, turn in this case into the following matrix
relations(!~):

F.(t)=KX(t)

Fi(t) = -M [X(1)] (3.3)
F,(t) = CX(t)

M, C and K are the mass, damping and stiffness matrices, respectively. The substi-
tution of equations (3.3) in (3.2) provides
MX(t)+CX(t)+ KX(t) = F(t) (3.4)

If the same model is subjected to a support displacement x,(t), the equation of
motion becomes
Fi(t)— F.(t)— F,(t)=0 (3.5)
where now
F. (t)= KX(t)

Fi(t) = -M [X(1) + Jiy(1)] (3.6)
F,(t) = CX(t)

and the vector J defines the rigid body displacements of the model according to each
degree of freedom. By substituting the equations (3.6) in (3.5), the following equations
of motion are obtained:

MX(t)+CX(t)+ KX(t) = —MJi,(t) (3.7)
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3.1.2 Kelvin’s model

The simplest multi-degree of freedom model which can be used in the dynamic mod-
elling of structures is constituted by a series of mass-spring-damper systems which are
schematically pictured in figure 3.1(a). It is based on the hypothesis that the only
possible displacement of the interconnected rigid bodies is the horizontal one. The
dynamic forces f,(t) act according to the degrees of freedom.

Ky

Figure 3.1 Multi-degree of freedom model. (a) Dynamic model; (b) force equilib-
rium.

In this particular case the stiffness matrix has the following particular form:

/Cl + kg —1\72 0 0 0
—ky ko + k3 —ks 0 0 0
0 —,1\73 1\73 + l\’74 —,1674 0

E= 0 _kr k’r‘l'kr-i—l —kr-l-l 0

(3.8)

k

where k, is the stiffness of each spring. The mass matrix M of the same model is
diagonal and the damping matrix C' can be considered, for instance, of the same type.

3.1.3 3D beam model

In the more general case of a three-dimensional beam structure subjected to a spa-
tial support motions, six degrees of freedom have to be considered for each node of the
model. With this aim, the the three components of the support acceleration, according
to both horizontal axes z; and y, and to the vertical one, zs, have to be considered.
Thus, the equations of motion (3.7) can be completed to cover these possibilities, re-
sulting in

MD(t)+ CD(t) + KD(t) = =M [Jis(t) + Jyiis(t) + J:25(1))] (3.9)

The vector of the unknown displacements D(t) has six elements for each degree of
freedom r: three translations (z,,¥,,2,) and three rotations (g, ,@y,, Pz, ), being of
the form

D)) =2, ¥ 2 Po1 Pyy Por+Tr Yr Zr Pu, Pyp Papoes
-l Yn Zn Prn Pyn Pzn ]

Other notations that have been introduced in the system of differential equation

(3.9) are

(3.10)

Jr=[100000..... 180000, .-. 10000 0]
J,=[010000..... 010000..... 01000 0] (3.11)
JE=[001000:.... 001000..... 00100 0]

The formulation given for the seismic force vector assures that the acceleration com-
ponents produce nonzero elements only for the translational degrees of freedom. One



EQUATIONS OF MOTION 13

S

@fis(t) %

Figure 3.2 Dynamic three-dimensional model.

must remark that the matrices M, C and K of (3.9) are expanded, so as to be concor-
dant with the vector D(t). Obviously, it would by possible to include in the equations
of motion the effect of the action of dynamic loads in an arbitrary direction respecting
the structure. In such a case, the dynamic forces should be decomposed according to
both horizontal axes @ and y and to the vertical one, z, the components fz(t), f,(?)
and f,(t) being thus obtained. The dynamic models used in the analysis may include
only some of these degrees of freedom, depending on the actual characteristics of the
structure studied.
An alternative formulation can be given, by writing the equations of motion as

MD+CD+ KD =-MJi,(t) (3.12)

J is, in this case, a vector which performs the decomposition of &s(t) according to
the directions z, y and z and has values distinct from zero only for the translational
degrees of freedom of the model. Generally, the nonzero elements of J are direction
cosine functions.

The free damped vibration of the dynamic model is described by

MD+CD+KD=0 (3.13)

and when the damping is neglected, the following system of equations:

MD+KD =0 (3.14)

describes the vibration of the model. In the equations of motion (3.10), (3.12), (3.13)
and (3.14), the stiffness matrix K is expressed exactly as in the static case(*), while the
mass matrix M is normally diagonal. If rotations are considered in vector D(?), it is
necessary to consider in the mass matrix M elements corresponding to the rotational
inertia. The influence of these elements on the solution of the problem is generally
small, being therefore substituted in many cases by zero®7),
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3.2 MODES OF VIBRATION

3.2.1 Spectral and modal matrices

The dynamic characteristics of concentrated mass multi-degree of freedom models
are defined now, analyzing the undamped free vibration. For any of the studied cases,
the motion of the system is governed by equation (3.14). The system of differential
equations (3.12) is verified by a particular solution of the following type:

D(t) = Ae™! (3.15)
or by the similar one

D(t) = Asin(wt + 7)) (3.16)

where the vector A contains the amplitudes of the vibration, w is the natural frequency
of the model and ¥ is the phase angle. The substitution of (3.15) or (3.16) in the
equations (3.14) gives

(K-w’M)A=0 (3.17)

This algebraic system of homogeneous linear equations constitutes an eigenvalues
problem. The system has solutions A distinct from the trivial ones (with the physical
meaning that the system vibrates), only if the determinant of the matrix coefficients
is equal to zero

|K —w*M|=0 (3.18)
Equation (3.18) can be developed in the following polynomial form:
w4 aw 4 a4+ a,_w+a, =0 (3.19)

and is called characteristic equation. The matrices K and M are real, and symmetric.
K is also positive definite. M is at least semipositive definite. In the case in which
M is also positive definite, the characteristic equation provides n positive solutions w?,
and consequently n real values w;. If M is only semipositive definite, the number of
finite solutions w? is smaller than n. The n eigenvalues w; are the natural frequencies of
the multi-degree-of-freedom model. The frequencies w; can be arranged in a sequence
in the diagonal matrix € which is called spectral matriz. The lowest frequency w, is
known as fundamental frequency. A similar spectral matrix Q? can be defined, which
has as elements the values w?. The natural periods of the model are defined by

27

T; 1=1,2,00:40 (3.20)

Wi
where 7, is the fundamental period. The amplitude vector A; corresponding to the
frequency w; satisfies identically the equations (3.17). Therefore, the vector A;, known
as eigenvector, can be obtained by expressing all the elements of A; in terms of any one
of them. For example, the elements of A; can be divided by A;, resulting thus
A;
= 3.21
Y= (3.21)
where all the normalized eigenvectors ¢;, i = 1,2,3,...,n, have the first element equal
to the unit. This operation is called normalization. Another possibility to normalize
the eigenvectors is based on the use of the relation

ATMA; = M (3.22)

which permits the application of the following scaling formula:
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= Aix (M) T i=1,2,...,n (3.23)
This normalization procedure assures the fulfilment of the condition
oI My, = 1 (3.24)

where the eigenvectors ; can be organized in the matrix @

S=[p, @, - P o Pal (3.25)

The eigenvectors ¢; does not express the amplitudes of the vibration, which are
indeterminate; actually, they describe the shape of the system during its vibration,
corresponding to each one of the eigenvalues. Therefore, in the structural analysis, the
eigenvectors are called sometimes natural shapes of vibration. An eigenvalue w; together
with the correspondent eigenvector ¢; constitute the natural mode of vibration i, and
the matrix ® is called modal matrix.

3.2.2 Orthogonality conditions
The orthogonality condition of two eigenvectors is defined by
¢ ;=0 i# (3.26)

Similar orthogonality conditions with respect to the mass matrix M and to the stiffness
matrix K can be now introduced, by means of the expressions(*3)

p; Mep; =0 i # ] (3.27)

¢TK ¢, =0 i# (3.28)

The normality condition (3.24), together with the orthogonality one (3.27), can be
expressed by an unique orthonormality condition respecting the mass matrix

'Md=1 (3.29)

where ® is the modal matrix and I the identity one. In a similar way, the orthogonality
condition respecting the stiffness matrix (3.28) is expressed as

KP=K" (3.30)

where

K =¢; Ko, (3.31)

K* is thus a diagonal matrix. In the case of a modal matrix for which the normalization
condition (3.29) has been not used, the following orthogonality condition respecting the
mass matrix can be written:

'Md=M" (3.32)

where M* is again diagonal matrix.

3.3 CLASSICAL DAMPING

It has been explained previously how the mass and stiffness matrices of a multi-
degree of freedom model can be defined. In the definition of the damping matrix,
some simplifying hypotheses have to be made in order to permit a reasonable numer-
ical description of the damping properties of the structure. One of these hypotheses
makes the assumption that a homogeneous energy loss mechanism exists throughout
the entire structure®. In such a case, a damping matrix which fulfils the orthogonal-
ity condition respecting the modal matrix can be developed. This condition defines a
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classical damping®), which is considered to be proportional to the mass matrix, to the
stiffness matrix or is obtained as a linear combination of both. Thus, the damping can
be specified for each mode of vibration of the structure, by using the damping ratio
¢0),

When the damping matrix C is proportional to the mass matrix

C=a M (3.33)
the following orthogonality condition holds:
PiCp =0  i#] (3.34)
and a diagonal generalized damping matrix C* is thus obtained
C*=%"C%® (3.35)
By substituting (3.33) in (3.35), the generalized damping matrix results in
C* = o, M® = aM" (3.36)

If the definition of the damping ratio of a single-degree of freedom model is now
applied to the generalized damping coefficient C*, the damping ratio (; is expressed
for each mode of vibration by means of

_ o
n 21\/ 1*w1

Gi i=1,2,...,n

In the case in which the damping matrix C is proportional to the stiffness matrix K
C=au0,K
a similar orthogonality condition is obtained
C* = ,M® = o, K~
where C* is diagonal. The combination of these two cases

C=a,M+a,K (3.37)

defines Rayleigh’s damping.

3.4 NON-CLASSICAL DAMPING

The case of the structural models with proportional damping has to be considered
as a particular one, which is based on the assumption of the homogeneity throughout
the entire model of the energy loss mechanism. This hypothesis permits to develop
orthogonal damping matrices which simplifies the procedures to solve the equations of
motion of the structure.

If there are important differences between the energy loss mechanisms of the distinct
parts of a structure, the correspondent damping is non-classical®. Such a damping
is characteristic, for example, for models composed of structures laying on a soft soil,
or for structures coupled with fluid media. In such cases the damping matrix is not
orthogonal, with the consequent increase of the numerical difficulties in solving the
equations of motion(!1).
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3.5 MODAL ANALYSIS

3.5.1 TUncoupling of the equations of motion

According to the equations (3.4), (3.7) or (3.12) the system of dynamic equations
corresponding to a linear structure with n degrees of freedom is

MD +CD+ KD = F(t) (3.38)

The free vibrations of the corresponding system without damping are governed by the
equation

MD+KD=0 (3.39)

There are n eigenvalues and n eigenvectors associated to equation (3.39). The eigen-
values are the squares of the eigenfrequencies w, while the corresponding eigenvectors
are the mode shapes ¢ of the system. They are obtained as solutions of the following
homogeneous system of algebraic equations

(-’ M+K)p=0 (3.40)

The mode shapes ¢ are orthonormal respecting the mass and stiffnes matrices(!?),
As the modal matrix @ = [ ¢ ,¢,,...,¢.,...,¢ ] constitutes a complet set of n or-
thonormal eigenvectors, the solution of the system of equations (3.38) can be expressed
in the following form:

D= () (3.41)

where y;(t), ¢ = 1,2,...,n are scalar functions of time to be determinated, denomi-
nated generalized coordinates. By substituting (3.41) in (3.38), the equation of motion
expressed in this new system of coordinates results in

MY i)+ €Y i) + K S puni(t) = F(1) (3.42)
i=1 =1 i=1
If (3.42) is now premultiplied by the transpose of any eigenvector ¢, it becomes
M 1) + 9103 piiit) + 91K o () =¢FU) (343
The orthogonality condition of the modal matrix ®, prvides
o M Z::w,; =@ Mo =M~ (3.44a)
¢, K i;goi = Ko =K (3.44b)

Particular types of damping matrices are usually considered in the dynamic analysis
of structures. For example, if the damping is a classical one, such as the Rayleigh
damping, the modal matrix is orthonormal respecting the damping matrix. In this
case, the following equation, similar to (3.44a) and (3.44b) can be written:

ICY p=¢'Cop =C: (3.44c)
1=1
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Using the three equations (3.44), the equation (3.43) can be written in a form similar
to that of the corresponding to a single-degree of freedom model

M)+ Cr i (1) + K7y, (1) = F MT i,(),  j=1,2,...,n (3.45)

As it can be seen, the system of differential equations (3.38) whose solution is D,
has been reduced to n independent differential equations whose solutions are y;, j =
1,2,...,n. Equation (3.45) is now writen in the following usual form:

T

% : 2. N ; @ .
§;(1) +2¢w, y,(t) + wiy (1) = —Wa,s(t), j=12,...,n (3.46)

where w; is the eigenfrequency associated to the mode shape ;. The equation (3.46)
can be solved by using any of the procedures developed for single-degree of freedom
models.

An important aspect concerning the modal analysis has to be pointed out: due
to approximations owning to the discretization process of the structure, as well as
to approximations associated with the numerical calculations, the errors wich appear
in the computation of the frequencies increase with the increase of the order of the
modes of vibration. Consequently, the frequencies corresponding to the first modes of
vibration are more exact than those corresponding to the higher modes. Moreover, due
to the fact that the lower modes contain smaller elastic energy of deformation, their
contribution to the structural response is the most important. And this is so to such
an extent that the higher modes only contribute with perturbations and errors to the
correct response of the structure. That is why equation (3.41) is normally written in
the following form:

D=3 (1) (3.47)

where usually ¢ << n and, in any case, ¢ < n. Therefore, the number of equations of
the type (3.46) to be solved is considerably smaller than n, a fact that simplifies the
numerical process remarkably.

The trasformation of equation (3.41) into (3.47) is very advantageous, given the fact
that computers spend most of the calculation time required by the computation of the
structural response in evaluating the eigenfrequencies and eigenvectors. Thus, if the
calculation of the response includes only a few modes of vibration, corresponding to
the lower frequencies, much of the computer time can be saved. Therefore, a procedure
capable to calculate only the first desired modes of vibration is necessary to be used
to take advantage of the modal analysis. Such a procedure, the Determinant Search
Method, is described in Appendix 1.

3.5.2 Computation of the dynamic response

The dynamic response of structures is described through the time history of the
displacements, bending moments, shear forces, stresses, etc., corresponding to each
degree of freedom of the structural model. This description normally provides an excess
of information on the structural response, due to the fact that for design purposes
the knowledge of the maximum response is sufficient. Such an excess of information
obviously implies longer calculation time and a larger amount of computer memory
storage.

The computation of the time history of the response starts from the numerical eval-
uation of the solution y;(t) of the equations (3.46), for all the modes of vibration
considered in the analysis. This evaluation can be made using known numerical proce-
dures for single-degree of freedom models. The displacement response history D(t) is
then obtained by applying the modal superposition according to equation (3.47). The
calculation of the time history of the displacements, bending moments, shear forces,
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stresses, etc., is performed by means of well-known static equations, applied at each
time instant by starting from the values D(t) previously established.

3.6 FREQUENCY DOMAIN ANALYSIS

Consider a multi-degree dynamic model whose behaviour is governed by an equation
of the type (3.38). The excitation signal, f(t), as well as the response signals D(t),
D(t) and D(t) are considered finite, continuous and bounded. In these conditions their
direct and inverse Fourier transforms always exist and can be evaluated. Moreover, the
dynamic excitation f(t) is a finite signal and distinct from zero only for 0 < t < i,
and the same statement will be made on the dynamic response. Thus, the Fourier
transform of the excitation can be written as

tf )
F(6) = :/ (1) e ay (3.48)
0
and the Fourier transforms of the response signals are
tj )
D(6) = / D(t) e g4 (3.49)
0
—_— lf . . i
D) = / D(t) e™" dt = i6D(6) (3.50)
0
= Yo . 2—
D) = / Dty e at = —6°D(o) (3.51)
0

where 6 is the frequency of the excitation. Using these equations, the system of
differential equations (3.38) transforms into the following system of algebraic equa-
tions with complex coefficients

(=0°M +i6C + K)D(6) = —~MJF(0) (3.52)

The time domain response of the system is obtained by taking the inverse Fourier
transform of the complex frequency response

D(t) = 51;/'5(0) e dg (3.53)
D(t) = % / t(mﬁ(a)) €% o (3.54)
D(t) = %/t(-#‘ﬁw)) e dp (3.55)

Both the direct and inverse Fourier transform have to be evaluated numerically, by
means of the discret Fourier transform, which is usually computed by means of the Fast
Fourier Transform (FFT) algorithm(13-15),
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4. Random vibrations

4.1 SINGLE-DEGREE OF FREEDOM MODELS SUBJECTED TO STA-
TIONARY DYNAMIC ACTION

4.1.1 Probabilistic input-output relations

Consider the linear single-degree of freedom model of figure 4.1, subjected to a dy-
namic action f(¢), which can represent both an applied dynamic force or the force
produced on the model by a support displacement w4(¢). The force f(t) is modelled
as an ergodic, normal, zero mean random process, characterized through its power
spectral density Sy(6).

m —— f(1)

Ne

e

Figure 4.1 Single-degree of freedom models subjected to a random action.

A sample function f(t) of the stochastic process is expressed by means of the inverse
Fourier transform

tee .
Ft) = / F(8)c 40 (4.1)
where
F(0) = 51;/ " e at (4.2)

is the direct Fourier transform of f(t).
Consider now the equation of motion of the model of figure 4.1, subjected to the
sample function f(t) of the action

mi(t) + ca(t) + ka(t) = f(1) (4.3)

As the analyzed system is linear, the response #(t) is also a stochastic ergodic process.
In a frequency domain analysis, the Fourier transform of the response, X(8),is

X(8) = H(0)F(6) (4.4)

where H(0) is the frequency response function of the model expressed by
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1
k(-5 +2icL +1)

H(6) = (4.5)

0 is the frequency of the excitation, w is the natural frequency of the system and ( is
the damping ratio.

Each term of equation (4.4) is now multiplied by its complex conjugate and divided
by 27T, resulting thus

1 ey L . :
Ty X(OX7(0) = 57 H(0)H*(6)F(6)F*(6) (4.6)

where X*(6), H*(9) and F*(f) are the complex conjugate values of X(6), H(6) and
F(8), respectively. Thus, (4.6) can be written in the following form:
1
2rT,

2

[H () |F(6)°

IX(0) = (4.7)

2w,

Estimates for the power spectral density of the excitation random process Sy(#) and
of the response random process S,(f) can be now written™*

$¢(0) = lim ;T |F(6)|? (4.8)
Sx(0) = Tlfi“m onT, 1X(6)I° (4.9)

At limit, for T, — oo and by using (4.8) and (4.9), equation (4.7) becomes(?)
5:(6) = [H(O)* 54(6) (4.10)
where

|H(8)] = ! (4.11)

MR

Thus, the filter which performs the transformation of the power spectral density of the
action Sf(#) into the power spectral density of the displacement response of the system
is

w-4

w57

Equations similar to (4.10), but relating the power spectral densities of the processes
describing the velocity and acceleration responses to the power spectral density of the
action can be obtained®

[ (6)]*=

(4.12)

Ss(60) = 6% [H(0)"S;(6) (4.13)

5:(0) = 60* |H(0)]*S;(0) (4.14)

The variance of the displacement, velocity and acceleration response of the structure is
defined by®

+co

o = / S.(6)do (4.15)

— 00
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+ oo

a§:/ S:(0)do (4.16)
+ oo

a;jf_:/ S3(8)de (4.17)

By using now in (4.15) the expression of S,(#) given by (4.10), the variance of the
displacement response becomes

+oo

o2 = / |H(0)]25,(6) a6 (4.18)

—0o0

Similarly, the substitution of (4.13) and (4.14) in (4.16) and (4.17) respectively, provides

t oo

o2 = / 62| 1 (6)]°S(6) db (4.19)
e
gl = / 0% H (8)[25 () do (4.20)

4.1.2 Structural response to a white noise

In the case in which f(t) is described by an ideal white noise, S¢(8) is constant and
equal to S,. It follows from here that

+ oo
ol :5’0/ |H(0)[* 46 (4.21)

By using the expression of H(6)|* given by (4.12), the variance of the displacement
response becomes

-4 .+oo 1
5 w 1
o2 = —,50/ : ~d6 (4.22)
L E
w? w
and solving the integral, the last equation turns into(!~3
5 TS5,
s = = 4.2
Ta 2Cw3m? (4.23)

By making the same substitution in (4.19) and (4.20), the variances of the velocity and
acceleration responses, become

5 TS,
— 4.24
e 2Cwm? ( )
5 TS,w
L= 4.25
Ti 2(m? ( )

The interpretation of these results in term of values used in structural analysis will be
given in a further section.

4.1.3 Structural response to a filtered white noise

Consider that the dynamic force acting on the system is a white noise process with a
power spectral density S, filtered through a model with a frequency response function
|Hy(6)]*. The power spectral density resulting after the filtering operation is S1(6)

SI(0) = |H,(0)]%S, 0 € (—o0, +00) (4.26)
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Using (4.10), (4.13) and (4.14), the power spectral densities of the displacement,
velocity and acceleration responses of the single-degree of freedom model subjected to
the filtered white noise process are given by the following equations:

5.(0) = (@) 11,0 5, (127
Se(0) = 6% [H(O)]"|Hy(8)]* S, (4.28)
53(0) = 0" [HO)P [H,(0)] 5, (4.29)

If equations (4.15), (4.16) and (4.17) are now applied, the correspondent variances are
obtained

+oo
ol = 50/ \H(O)F |H,(0)]*d8 (4.30)
.+ oo i
oF = 50/ 02| H (0)[2 | H,(0)]*d0 (4.31)
.+ oo )
ol = 5'0/ 6411 (0)[* | H,(0)|d6 (4.32)

The integrals of these equations can be generally solved only by using numerical pro-
cedures.

4.2 Models of random dynamic excitations

4.2.1 Seismic ground acceleration

As a first example, the case of an earthquake ground motion is considered. The
seismic acceleration in the epicenter is defined as a white noise process*®) having a
sample function a(t) and the power spectral density S, The equation of motion of a
single degree of freedom model subjected to a(t) is

mi(t) + ci(t) + ka(t) = —ma(t) (4.33)

The power spectral density resulting after filtering the white noise process through
the soil layers is 57(6). Kanai and Tajimi(® have introduced a single-degree of freedom
model for the soil layer, whose characteristics are its natural frequency 6, and its
damping ratio ¢;. The model has the following frequency response function:

2

L4146, ()

-T2

For firm soil conditions Kanai has recommended §,, = 15.6 rad/s and Cg, = 0.6.

[H1y(0))" = (4.34)

By using (4.34) the power spectral density of the filtered process, a’(t) can be ex-
pressed as

ST(0) = | Hy,(8))* S, 0 € (—o0,+00) (4.35)

This filter reduces the high frequency components and amplifies those components
which have the frequency in the neighbourhood of 0, = 4m. Nevertheless, this filter
produce at the same time singularities for very low frequencies and consequently, un-
bounded variance of the ground velocities and displacements(). A plot of 54(0) is given
in figure 4.2.
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Figure 4.2 Plot of the power spectral density function S!(6).

To avoid the mentioned problem, the process af(t) can be filtered another time,
through a filter which reduces the components with very low frequency. The following
transfer function can be used for the second filter(2):

()

|Hay(0)]° = = = (4.36)
T )

The process a®(t) resulted by passing a’(t) through this second filter has a power
spectral density 5%(6) given by

Sa(0) = [y (0)*5] (4.37)
By using now (4.35) the following equation is obtained:
5a(0) = [Hy(0))" S, (4.38)
where
[Hy (O = [Hiy(0))° [Hay(0)? (4.39)
Figure 4.3 shows a plot of $5(4).
sa 8 A
So
1 1 E
8g, 6g, o

Figure 4.3 Plot of the power spectral density function S%(0).

The power spectral densities of the displacement, velocity and acceleration responses
are now given by the equations (4.27), (4.28) and (4.29), with |Hy(0)]> = |H ().
Similarly, the corresponding variances are expressed by (4.30), (4.31) and (4.32), with
the inclusion of the same modification.
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Figure 4.4 A four wheel vehicle moving on a road(®),

4.2.2 Roughness of road surface

A second example considers the case of a stochastic model of the roughness of a road
surface("™). A scheme of a four-wheel vehicle moving on a road can be seen in figure
4.4.

The displacements Z(x,y) describing the roughness of the road induce in the wheels
excitations which are described through their statistical properties. In order to obtain
the dynamic response of the vehicle, the cross-spectral densities or the cross-correlation
functions between the displacements applied on the four wheels have to be estimated.
The statistics of the road surface roughness can be evaluated starting from measure-
ments. As an example, the spectral densities obtained in this way are shown in figure
4.5. The spectral density of the road surface roughness is usually plotted against the
wave number n, which is the reciprocal of the wave length, and not respecting to the
frequency. The values given in figure 4.5 can be simulated by means of the following
equation(®):

0+

1o
€ 10°F
~N
[}
S
>
> B
N
o
€ =3
=10k
{ =4
[dp]

0k

| 1 1
0.0l o.l I 10
n(cycle /m)

Figure 4.5 Example of the spectral density of a typi-
cal road surface roughness(®:19),
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w
1

7
S(n)=S(n,)(—]) , n<n
0 (7_[0 ) 0
(4.40)
n\ "2
= S(n,){—) , n>n
¢ (77/(,) 0
where n, = 1/(27)cycle/m and S(n,) is the roughness coefficient. Some numerical

values of S(n,), whose units are 10~° m" /cycle, can be seen in table 4.1 for different
classes of roads.

Table 4.1 Values of the roughness coefficient(*).

) Range of
Road class Quality roughness
coelficient
motorways very good 2-8
good 8-32
principal roads very good 2-8
good 8-32
average 32-128
poor 128-512
minor roads average 2-128
poor 128-512
very poor 512-2048

Consider that the displacement Z(z,y) induced by the road surface on a wheel is
a three-dimensional, zero-mean, stationary Gaussian process. Suppose, also, that the
rear wheels of the vehlcle follow the same profile as the front wheels. In such a case,
only the auto-correlation functions of the profiles of two parallel tracks Z L(2) and

Zg(x) and their corresponding cross-correlation functions have to be detelmlned The
auto-correlation functions are defined by

RLL(6) = E{ZL(‘,I’.)ZL('/D + 5)}

(4.41)
Rpp(6) = E{Z (2)Z (2 + )}
while the cross-correlation function between the profiles are
Ry p(0) = E{Z (2)Z (2 + 6)}
(4.42)

Rpp(8) = E{Zy(2)Z,(x + 6)}

Using now the additional assumption that the road surface profiles are isotropic, which
means that the process Z(x,y) has circular symmetry, the following equations can be
written:

R, (6) = RR(5) = R((‘f) (4.43)

R,.(6) = R, ,(6) = R\/& + 4 (4.44)

where R(§) is the profile autocorrelation function in any direction and b is defined in
figure 4.4 as one half of the track width. Thus, the auto-spectral densities of the road
profiles are

S, (n) = Spn(n) = S(n) = / R(8)e™™™ ¢ (4.45)
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while their cross-spectral densities can be expressed as

1 oo —127mn
8, (n) =S8, (n) = ;/ RO/E + 46y e™*™ g5 (4.46)

The hypotheses which have been made are supported by results obtaind from mea-
surements as those shown in figure 4.6, where the spectral densities of two parallel track
profiles are plotted for three different roads. As it can be seen that the auto-spectral
densitie of the road profile is almost independent of the track.

<
oy
— 4 A
£ % " Ve '\{/“
> A i\ K "i"‘v..f\
3 Yol iy
N Y (%) . \
i N
;)5 6% \ \
\\\ \
\“‘ ]
W |
X p— W,
0% {‘\ sy
SRR(n) _— :" '3.\
N,
I | ! SR
1072 107" n, |
n(cycle/m)

Figure 4.6 Spectral densities of two parallel track profiles
corresponding to three typical roads(®: A —
motorway, B — minor road, C - paved road.

The interdependence between the road profiles corresponding to two parallel tracks
can be analyzed by using the following coherency function®19):

(2 7] = |SLR(n)|2
90 = g Sl

where 0 < g2(n) < 1. If the function _(/2(77,) — 1, it means that the two profiles are
highly dependent at wave number n. Figure 4.7 showes a comparison between the
measured coherency functions of the same three typical motor roads and the computed
ones. It can be observed a high dependence between two parallel track profiles at low
wave numbers, i.e. long wave length.

(4.47)



SINGLE-DEGREE OF FREEDOM MODEL — NONSTATIONARY ACTION 29

g(n)

n(cycle/m)

Figure 4.7 Measured and computed coherency functions g(n) for: A — motorway, B
— minor road, C - paved road(®).

4.3 SINGLE-DEGREE OF FREEDOM SYSTENS SUBJECTED TO A
NONSTATIONARY DYNAMIC ACTION

4.3.1 Nonstationary excitations

A nonstationary random processes can be generated in a simplified way by trans-

forming a stationary process f(t) in a nonstationary one f(t), through its multiplication
by a deterministic time functions I(¢)(1~13)

ft)y = fI1(1) (4.48)

The shape of the intensity functions depends on the concrete problem to be solved. For
instance, intensity functions like the following proposed by Oto(!*) are usualy consid-
ered:

I(t)y= —e T (4.49)
The equation of motion for a single-degree of freedom model subjected to a nonstation-
ary action f(t) is

mz(t) + ci(t) + k(t) = f(1) (4.50)

where the response &(t) is a nonstationary random process. By using Oto’s intensity

function (4.49) in (4.48), by substituting the obtained expression of f(t) in (4.50) and
finally by dividing this equation by m, it results
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F(t) + 2wi(t) + W E(t) = e o — f(1) (4.51)

This is the equation of motion of the model subjected to a ground acceleration defined
in a nondeterministic way.
4.3.2 Solution of the equation of motion

The deduction of the solution of equation (4.51) starts from expressing the stationary
process f(t) by means of

+oo _
F(t) = / |F(6)] oLl g (4.52)
where F(6) is the Fourier transform of f(t)
L1 —iot
F(0) = ——/ F(1) e dy (4.53)
m2m J__,

and where the phase angles ¢(#) are random variables. By substituting (4.52) in (4.51),
this turns into

t e 3
F(1) + 20w () + W (1) = Tiel‘w / |F(0)] eilor+eO] qg (4.54)

‘0
The solution of (4.54) will be obtained by starting from%

+ oo

#(1) = /_ |F(8)] £(6,1)d6 (4.55)

The substitution of (4.55) in (4.54) provides the equation

. . , -t
€(0,1) + 20wE(6,1) + w*¢(6,1) = — el =75 eil0t+e(0)] (4.56)
0
which has the initial conditions
£(6,0) = 0
; 4.57
£0,0) = 0 Sl

The solution £(6,t) of (4.56) is obtained as a sum of the solution of the homogeneous
equation £ (#,t) with a particular solution of the nonhomogeneous equation £*(6,t)

£(0,1) = &(6,1) + €(6,1) (4.58)

The general solution £,(6,1) is of the form
£,(0,t) = et [C’l(())sin wy t + Ca(@)cos w, t} (4.59)

where w, = /1 — (? and the constants C';(#) and Cy(#) are calculated from the initial
conditions (4.57), resulting

Cr(0) = = [(0,0) + GwE (0,0) (1.60)

Ca(8) = —€7(6,0) (4.61)

The particular solution £*(6,t) is expressed in the following form

€(0,t)= ¢ 7T c(6,1) (4.62a)
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being its derivatives

- it 1
£(0,0) =77 [¢(0,1) - f—c(f),t)] (4.620)
‘0
vy l_L . 2 . l
€(0,0) = 70 [¢(0,0) = =4(8,0) + <(60,1)] (4.62¢)
» 2
By substituting £*(6,t) and its derivatives in (4.56), this becomes
. 1y, 2 LNz ot etre0)]
$(0,1) + 2(Cw % )c(t) +w (Cw - to) s(t) = Ee (4.63)
whose solution is
: t
«(0,0) = 14O [y ()= 1 4,(0)] (4.64)
0

It has to be remarked that vy, and v, are coefficients independent of time.
By introducing (4.64) in (4.63), the following equation is obtained:

[0 2.0 = 1]+ [0,0) 10 + 0,0 ,0)] = 0 (4.65)

where
0,(0) = wl— 0+ ((w— ri) + 26w - ti) (4.66)
a,(f) = % [i6 + (¢w - %)] (4.67)

7,(0) and v,(8) are obtained from (4.65) by identifying with zero both terms of the left
side member

(0) = all(o) (4.68)
n(® = 2 9,0) (4.69)
These equations can be written in the following form:
%0 = R [10)] +iS [10)] (4.70)
%0 = R [1,0)] +iS [10)] (4.71)

where the real part, denoted R, and the imaginary part, denoted <, have been sep-
arated. The equations (4.62) provides now the particular solution of (4.56), solution
which is written by substituting ¢(6,t) from (4.64) and 7, (8) and 7,(8) from (4.70) and
(4.71). Finally it results

ewmw:e“*{[f:wnw»+%mxmﬂwqm+@wﬂ—

0

| (4.72)
[Zmnw»+mn@ﬂmﬁm+ﬂﬁQ

The general solution of (4.56) can be now rewritten by substituting in (4.60) and
(4.61) the expressions of £*(6,0) and £*(,0) obtained from (4.72)
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£(0,0) = 0 { R [1,(0)]cos(2(8)) — S [1,(6)]sin(2(6)) }

£(6,0) =0 { = (RO (8)) = R (6)) os (6)] -

‘0

%[3(%(0)) - ‘3"(72(9))] sin [(6)] -

OR(7,(8))sin [9(8)] — 63 (7,(8))cos [90(_9)]}

The solution of (4.56) will be now written by using in (4.58) the general solution
(4.59) and the particular solution (4.72). It can be expressed in the form

€0,1) = A" Z,sin[p(0)] + A" Z,cos[x(0)] (4.73)
where the following matrix notations have been introduced

el=Cwt ginw,t

el=CwWt cosw, t
1-+ .

+ e sinft

0
g (T

L e "% cosft

to

t
e 'P sinft
1__.
e t cosft )

z, ={ 4.(0) S[n©)] - N, (0)]
=S O] - R0) - S0}
z, ={ 4,(6) —R0)] -SHO)] R (0)]
~S[n(0)] R (0)}
The elements ¢, () and ¢,(#) in these last two equations are

o= o-{ FS O (- ) SO+ 630,01

= 5-{ RO (- 1) R0+ 030, 0]}

w'l] ‘0

By using trigonometric transformations, the solution (4.73) becomes

£(0,t) = G,(0,1)sin [7/}(‘97 t)+ 99(9)]

where
G.(0,0)= (A" 2, + (4" 2,)’ (4.74)
A'Z
¥(0,t) = arctan = 4.75
(6,1) 1z, (4.75)

The function G'3(#,t) can be finally expressed as

G.(0,)=\A"ZZ A (4.76)

where the notation
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Z=[2 2Z, (4.77)
has been introduced.
Once obtained £(#,1), the solution of the equation (4.54) is written by using (4.55)

+oo

a":(t):/_ |A(0)| G,(8,1) sin [¥(6,1) + (8)]d6 (4.78)

It is obvious from (4.68) and (4.69) that for a1(#) = 0 the solution (4.78) can be
not calculated because it would imply divisions by zero. It can be seen from equation
(4.66) that this case occurs if

5 b . 1\* . Ly
w —0° + (Qw — E> + 210(@) — E) =0 (4.79)
resulting from here
w, = 0 (4.80)
. 1
(w = — (4.81)
tO

In this particular situation, the vectors A, Z, and Z, have to be calculated by means
of the following relations(!4):

sin 6t )
cos 0t
l %sin 0t
A=¢"% Tto' cos Ot (4.82)
%sin ot
%cos ot
T 1 t
Z =00 —— 0 0 % 4,
= 7 6 | (483)
T 1 1 1
Z =| —— 0 0 — =2 0 4.84
2 { 4t,0° 402 46 ] ol

The velocity response process of the analyzed system can be deduced in a similar

way and expressed as(1%1%)
. +eo
B0 = [ 140 Go(6,0) cos [9(0,0) + p(0)] 40 (4.85)
where
T T T
G.(0,1) = \/A B ZZ BA (4.86)

The matrix B is defined by the time derivation of the functions contained in the vector

A,

A=B A (4.87)

and has the form
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—(w  wy, 0 0 0 0
—w, —(w 0 0 0 0
0 0o -+ 6 L 0
Lo Lo
B = 0 0 -9 -1 9 1 (4.88)
i to
0 0 0 0 -+ 0
o
0 0 0 0o -6 -£
L o
In the case in which «,(#) = 0, the matrix B turns into
(-~ ¢ 0 0 0 0]
0
-6 -+ 0 0 0 0
= 0 -+ 6 0 0
_ to to
B = 0 Loy 1 g 0 (4.89)
0 0
o 0 £ -= 8
o o
0 0o X -0 -+
L 19 o J

The statistic characteristics of the nonstationary processes &(t), defined by equation
(4.78) and #(t), defined by equation (4.85), are time dependent. The hypothesis that
these processes are (Gaussian and with zero mean is made now.

4.3.3 Statistics of the response process

For the stationary case corresponding to equation (4.3), the power spectral density
of the response is expressed by (4.10) in function of the power spectral density of the

process f(t)
S:(8) = m*| H(0)|°S;(0) (4.90)

An evolutionary power spectral density of the response process #(t), denoted 53(0,1)
will be defined now. Such a spectral density has been introduced by Prlestley(lﬁ)
Damrath(®® and others, and is expressed as

S:(0,t) = |G,(8,t) |°S4(0) (4.91)
or, by using (4.90)
Sz(0,1) = m*|G (6, 0))*|H(0)]*S1(6) (4.92)

|Gz(6,1)|* can be interpreted as complex transfer function of the nonstationary displace-
ment response. It can be seen from (4.90) t G3z(0,t)|* = 1.

A similar expression can be found for the power spectral density of the velocity
response process S:(0,1)

5:(60,t) = mz|Gi(0,t)[Q]H(9)|25'f(9) (4.93)

where |Gz (0 t)|* is the transfer function of the nonstationary velocity response process.
By comparing (4.93) whith (4.13) it results that for a stationary process S:(6,t) = 6°.

In the case of a nonstationary process with evolutionary power spectral densn;y, the
variance of the process is also a function of time. The variance of the displacement
response process [O’T(t)] and of the velocity response process [0 (1‘)] can be calculated
by means of expressions similar to (4.15) and (4.16), such as it is demonstrated in
references (16-19)

+ oo

[053(2‘.)]2:/ S+(6,1) 6 (4.94)

-0
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+ oo

[o:0)] = / 5.(0,1) d6 (4.95)
The integrals in (4.94) and (4.95) have to be solved numerically.

4.4 EXTREME MEAN RESPONSE OF SINGLE-DEGREE OF FREE-
DOM MODELS

4.4.1 Formulation of the problem

The extreme mean value x. of a structural response process x(t) is defined as the
response expected only one time during a given finite time interval ¢.. The problem of
the computation of 2. can be solved under some restrictive hypotheses. For example
the hypothesis that the process is a narrow band one is considered herein(!%).

The number of cases in which the response overpass the positive or negative value .
during the time interval ¢, is denoted N (+z.), while n(+2.) is the number of overpasses
on time unit. Thus

N(+2e) = n(ade) to =1 (4.96)

It can be demonstrated that the following equation holds

ls2: ) = /00 plas, &) & dd (4.97)

which express the probability that x(t) € [z, 2. 4+ dz] and at the same time @(t) €
[¢,% 4 d&]. The second order Gaussian probability density of the variables 2 and & can
be written according to the equation (A8.10) as
1 L[z )2 (2
p(z,2) = —— e () +5)]
2MO, O

(4.98)

where the hypothesis has been made that x(¢) and @(¢) have zero mean. For the extreme
mean value x. the probability density becomes

pze ) = 1 e_%[(%)2+(“i)2] (4.99)

2ro, 0;

The substitution of (4.99) in (4.97) leads to!*)

1 o _Llizey2
n(+2e) = — —= e 2(e3) (4.100)
T Oy
4.4.2 Stationary process
If the process z(t) is stationary, the relation
-
% _p (4.101)
U(U

can be used to define the mean frequency 6, of the process!¥). The substitution of

(4.101) in (4.100) gives

(- —L1(Z=2)2
Te) = ——e 2oz 4.102
n(+e) = e (4.102)
By taking into account that
n(zxe) =2 n(+xe) (4.103)

the substitution of (4.102) into (4.103) results in
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0 _ 1l 3e 2
ix2,) = g ?’” e~ 2(o5)

(4.104)

The expression (4.96) permits to establish the following equation which defines 2,:
Hm e_%(_ﬂ

L, 2 =) =1 (4.105)
™

ze = o\ (2 In (1 977”) (4.106)

4.4.3 Nonstationary process

whose solution is

In the case in which the response process is nonstationary #(t), the variances o: and
oz are only approximately proportional. But including in this case, Damrath(*®) has
defined a mean frequency of the process, by means of the equation

o:
g, == (4.107)
Oz

The process can be treated as stationary in an infinitesimal time interval dt. Thus,
according to (4.104), the expected number of cases in which () overpass a given value
+ T, in the time interval dt is

n(+de) = 9—;”— 5 gy (4.108)
By taking into account that in this case

N(sd.) = /w n(+3,) dt (4.109)

0
the equation which defines Z.
N(sg.) =1

can be expressed in the following form:

b [7=4GEP 4y =y (4.110)

T Jo

The equation (4.110) can be solved for @, only numerically, but it can be simplified
under the hypothesis that the following equation holds:

t
0z(t) = 0z,, —e ‘im (4.111)

m -
"Tm

where o5, is the maximum standard deviation and ¢z, is the time instant at wich the
maximum standard deviation occurs. By using now the substitution

=

(4.112)

t
Lam
the equation (4.111) takes the form

ag(2) = oz, 2 €° (4.113)

and (4.110) can be expressed as
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2
077 e (n- i e -Z>
e P\ T g de =1 (4.114)

T Jo

The time instant ¢z, is calculated by means of the formula(!%)

1
t‘”’:'m = 5 (tGm + tD) (4115)

where ¢, and t, are respectively the time instants at which the intensity function
I(t) and the functmn G3(wy,t) take a maximum value. t, is obtained by means of

a step by step procedure. Thus, the maximum standard dev1a‘tion of & and Z can be
calculated by means of

Oip = 0z (13,,) (4.116)
T = 03 (Lay) (4.117)
and 6, is given by
6, = 22 (4.118)
O3

The equation (4.114) is now expressed in the form

o8 Fo ’
/ e—%<".i,,, =) dz = = ul (4.119)
] ,

and the value

Te
p s 4.120
== (4.120)
is obtained numerically. Finally
& = 03, (4.121)

is obtained as a solution of the problem.

4.5 MULTI-DEGREE OF FREEDOM MODEL SUBJECTED TO STO-
CHASTIC DYANMIC ACTIONS

4.5.1 Modal uncoupling

Consider a linear multi-degree of freedom system subjected to a motion of its support
x, modelled as a random process. According to the formulations given in Chapter 3,
the system of equations of motion is

MD(t)+ CD(t) + KD(t) = —MJi (t) (4.122)

Due to the linearity of the model the elements of the vectors D(t), D(t) and D(t) are
also stochastic processes of the same type as f(¢). The system of equations of motion
(4.122) is uncoupled by using the standard procedure developed in Chapter 6. The
usual transformation

D(t) = & y(1) (4.123)

is applied, which leads to the following n independent equations



38 RANDOM VIBRATIONS

J.(1) + 20,9, (1) + w2y, (1) = ——

A oM JEs() (4.124)

in which 7 takes values from 1 to n and y;(t) is also a random process. The generalized
mass M is defined by

M =g Mg,
and the coefficient (); has the form
o'MJ
; = ===
eI M o,

The vector of the displacement response corresponding to the mode of vibration 1 is
denoted D;(t) and is given by

Di(t) = ¢l i(t) (4.125)

where ¢; is the column ¢ of the modal matrix ¢. The displacement according to the
degree of freedom 7 and the mode of vibration 7 is

(lri = (I’Orxyl(t) (4126)
The equation (4.124) is now rewritten in the form

() + 20,5, (1) +0,29,(1) = =@, &,(1) (4.127)

whose solution in the frequency domain is
?;(9) = —Q, H,(0) X,(0) (4.128)
where X(6) is the Fourier transform of #4(¢) and H;(€) is

1

k(-5 +2ig £+ 1)

1,(60) = (4.129)

The frequency domain displacement response d,;(f) is expressed by using (4.125) in
the following form:

3,(0)= ¢, 7.00) (4.130)
and by using now (4.128), it turns into
3,(0) = —p,, Q, H,(0) X,(6) (4.131)
By using the mode shape coefficients Q{i defined by
Qf =, Q; (4.132)
the solution (4.131) becomes
d.(0)=—-Q . H.(6)X,0) (4.133)

Input-output statistical relations will be now given for both stationary and nonsta-
tionary ground acceleration processes.
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4.5.2 Stationary ground acceleration

The power spectral densities of the displacement response can be organized in the
following matrix form

i Sll“ 5(112 e Sdl;‘ e Sdln i
‘5'1121 51122 T Sdzi T Sd2n
SD(()) = Sdrl Sd,g e S, - (4.134)

‘ri

‘Sdnl ‘S'dn2 e 5"1

ni

which is calculated by means of the following expression:

S, (0) = Q" H*(6) 53.(0) (4.135)

S3.(0) is the power spectral density of the random support motion. The other notations
used in equation (4.135) have the following meaning:

(Qlfl Qljz "'Qlfi ons T

1In

f f f f
Q?l Q22 “'Qm‘ '”an

Q’:A (4.136)

H*(0) = 2 (4.137)

The elements of the diagonal matrix H?(6) are of the form
1
m? Wi [(1—”—2)@ (2;%)2]

|]{i(9)|2:

(4.138)

The matrices of the variance of the displacement, velocity and acceleration responses
are finally given by means of equations similar to (4.18), (4.19) and (4.20), respectively
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o2 = Qf‘mﬂﬂ(a)szs(e) a6 (4.139)
o? = Qf??ﬂﬁ(e)sfs(e) a6 (4.140)
o’ = Q7+02)“H2(())5;5((9)d() (4.141)

The matrix 2 has as elements the variances of the displacement response according
to each degree of freedom r and each mode of vibration %

2 2 2 2 =
r A
94y Tdys T4, d;.,
o2 g> ...02 o’
dzy T dap da; dan
9
g. = 9 9 9 9 (4.142)
D 2 2 ..g2 ...g2
a-drl 0(11‘2 Udri Udrn
o T e
dnl dn2 d'nl' dnn

The matrices cr;“’,) and a'zﬂ) are defined similarly.

The equation (4.139) can be particularized for the calculation of the response of
structures subjected to ground accelerations defined as white noise with a power spec-
tral density S, (6) = 5,, resulting thus for the variance of the displacement response
the expression

1 -
¢y m?wf
1
- 0
¢miw,
9 ILS, f
ot =—"Q . (4.143)
Gmiv]
0
1
Cam2 )

Similar equations can be written for the variance of the velocity response (4.140), by
substituting the diagonal elements of (4.143) by

1
—_— 1=1 2, R |
¢imiw, ’ '
and for the variance of the acceleration response (4.141), by substituting the elements
of the principal diagonal of (4.143) by
w.

1 ] b <
—— 1= 1y 2450 5%
G;ms?

For a filtered white noise process, expressions similar to (4.35), (4.36) and (4.37) can
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be derived.

The usual systems of structural engineering are lightly damped systems, and the re-
sponse processes corresponding to two different modes y; and y; are almost statistically
independent. In this condition the total variance of the response process corresponding
to a given degree of freedom 7 can be calculated by means of

2 _ 2 2 2
0, =0,1+05+...054+...

where a sufficient number of modes of vibration have to be introduced.

4.5.3 Nonstationary support motion

If the support motion is defined as a nonstationary process Ts(t) defined by the
equations (4.48) and (4.49), the system of equations of motion to be solved becomes

38 = ~ t B
MD(t) + CD(t) + KD(1) = -MJ — e' T F,(1) (4.144)
0
where #,(t) is a stationary process and D(t) is the the nonstationary displacement
response vector. Matrices of the variance of the response of the same type as (4.142)
are introduced(®)
Pt

- / G2(6,t) H*(0)S3.(0) db (4.145)

2
D

.t oo
o = Q’/ G2(0,1) H*(0)Sz,(0) o (4.146)

where G%(6,t) and Gi(,1) are expressed as

G, (6,1)]* ]
G, (0,0)] 0
0
G, (6,1)]?
L J
164, (6,0 ‘
IG_%Q((},t)F 0
G;((),t): IG-E_(‘U)IQ (4.148)
0
G, (6,1))

The elements [GZ(0,t)|* and |G%(6,1)|* of the matrices G%(6, 1) and Gi(0,1), respec-
tively, are obtained by particularizing (4.76) and (4.86) for each mode of vibration.
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4.6 EXTREME MEAN RESPONSE OF MULTI-DEGREE OF FREE-
DOM MODELS

The same procedures developed for the computation of the extreme mean response
of single-degree of freedom models, can be extended to multi-degree of freedom models,
for both stationary and nonstationary processes.

The extreme mean values of a stationary response process can be obtained for each
mode of vibration and for each degree of freedom of the model and can be organized
in a matrix X, of the form

Teyy Tepp "7 Teyy "0 Teyy,
Teyy Tegp "7 7 Teyy * 0 Tey,
Xe=|- = - . (4.149)
"l'erl "Ler2 e :LC,-,' e :Lern
wenl ‘Ten2 e mem’ e :Eenn

The values @, representing the total extreme mean values corresponding to any degree
of freedom 7 of the model, can be calculated by the well known root mean square
approximation

(4.150)

In the case in which the action is modelled as a nonstationary process, a matrix X.,
similar to X. defined equation (4.149), is obtained. It contains the modal extreme
mean values of the nonstationary response and an equation similar to (4.150) permits
the calculation of the total extreme values of the structural response.
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