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Abstract

A constitutive mode! that couples plasticity and damage is presented. The maodel is thermodynamically consistent and comes
from a generalization of classical plasticity theory and isotropic damage 1huvr\ of Kachanov. Coupling between plasticity and
hieved through a s multancous solution of the plastic & problem. After a description of the model. a
numeri gorithm for the integration of the xuulunL con presented. It is an Euler Backward type of
algorithm that is particularly suitable to solve pl ain stress non-linear problems with a 2D finite element program. The consistent
stiffness matrix is also derived. The paper & f with some applica examples that show that the model presented
accurately reproduces the behaviour of clastic-plastic-damaged materials.

1. Introduction

The greater part of the materials, in particular geomaterials, presents a non-linear behaviour
accompanied by permanent strains and stiffness degradation when they are subjected to mechanical
forces.

In geomaterials, permanent strains are caused by microcracking. Plasticity theory can be used as a
mathematical framework to treat these permanent strains if it is considered that they resemble plastic
stains |1, 2].

Damage or stiffness degradation is related to initiation, growth and interconnection of microcracks
and micropores. A great number of approaches have been proposed to simulate this phenomena (see
[3.4]). Among them, continuum damage mechanics has been introduced and widely used to simulate
progressive degradation of mechanical properties of materials before the initiation of macro cracking.
Kachanov [5] was the first to introduce the concept of effective stress to model creep rupture. Later,
continuum damage mechanics was extended to model fatigue. creep, creep—fatigue interaction and
ductile-plastic damage. Recently. it has been applied to brittle materials like concrete or rock.

Continuum damage mechanics theories are based on the thermodynamics of irreversible process.
Only one scalar variable is needed to model isotropic damage while tensorial variables are needed to
model damage anisotropy. For simplicity. efficiency and adaptation to different practice applications,
isotropic formulations are widely used [3].

There is some experimental evidence that damage is linked to plastic strains [3]. Physical mechanisms
of interaction between damage and plastic strains arc complicated in nature and cannot be modeled by
only one phenomenological approach. Little is known about cffects of temperature, strain rate,
Jocalization or microstructure in these interactions {4]. A great cffort was made by some authors to
reproduce coupling of damage and plastic processes. Ju [3] gave an cnergy-based isotrepic elastoplastic
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damage thcory that is capable of accommodating non-linear clastic response and general plastic
response. The theory can predict degradation in both elastic and plastic responses. This framework was
further extended to develop simple energy-based fourth-order anisotropic damage models for brittle
materials. Voyiadjis [4] presented a coupled theory of continuum damage mechanics and finite strain
plasticity (with small elastic strains). He derived an explicit matrix repr ion for the damage effect
tensor for a genecral state of deformation and damage. Edlun [6] presented a coupled elastic-plastic
damage model for rubber-bond epoxy adhesives. It is a phenomenological model derived from a
mathematical framework based on thermodynamic considerations where the micromechanical processes
are accounted for by a set of internal variables.

The model presented in this paper is thermodynamically consistent and comes from a generalization
of plasticity theory [1, 2] and isotropic damage theory. The plastic model is more general than the one
in [2] and the treatment of damage is completely different. Coupling of damage and plastic strains is
achicved by solving buth problems simultaneously [7]. In this way correct encrgy dissipation is also
assured.

2. Thermodynamic basis

The constitutive model proposed is based on the hypothesis of uncoupled elasticity {8, 9]. According
to this hypothesis, the total free energy ¥ can be supposed to be formed by two independent parts: an
clastic part ¥* and a plastic part ¥". corresponding to the elastic and plastic processes, respectively

W(eya; B) =¥ (e B) + ¥i(a) m

where g is the elastic strains tensor and « and B represent groups of internal variables plastic and
non-plastic, respectively.

For small strain and thermally stable problems, the elastic part of the free energy is written as
quadratic function as follows [10]

e 1 ¢ s .
‘I”‘(Frl: B)= m [ST,C:,U(B)EU] (2)

where m, is the density of the material and Cj,,(B) the sccant constitutive tensor affected by the
evolution of non-plastic internal variables which can be written as [10]

CrLu(B)=f(B)Ciy 3)

where (,':'l“ is the initial secant constitutive tensor of the virgin material and f(B8) a tensorial
transiormation function from an undamaged equivalent space to the real damaged space. The most
simple form for the transformation function is the one coinciding with isotropic damage theory of
Kachanov [5]

f(B)y=(0-4d) (4)

where B =d is the inner damage variable and is such that

d =0 for the undamaged virgin material

d=1 for thc completcly damaged material

For this particular choice. the elastic part of the frec energy can be written as
C 0 1 e Al (3
vi=(1-dW'=(1 —d)TnU[s,,C”“e“] (5)

where " represents the elastic free energy of the undamaged material.
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Inequality of Clasius—Duhem [11] can be written in terms of frec energy as follows

_ S )

E=my(-¥-nb)+0,¢, _E‘I'Er—,zn 9)

where 7 is the entropy. # a measure of temperature, ¢ the heat flow and x, a set of spatial coordinates.
Substituting the form proposed for the free energy (Eq. (1)) in Eq. (2) and splitting the total strain

tensor in an elastic and a plastic part. the following inequality is obtained

ary [ av . 1 a0
([r,, 7;}100‘&“;)5,/ - m“( + n)() + (r” ” m,,Ta’a, mnmd —;q,K?U (7)

The fulfillment of inequality of Clasius—Planck for a given thermodynamic state is guaranteed if the
following equations, known as Coleman [12] relations, are satistied

av ay
g, = ”IUTF; and 5= Ty 8)

On the other hand, for uncoupled thermomechanical problems, the inequalities of Clasius-Planck
must be independently satisfied

(a) Mechanical dissipation

E0,: Plastie dissipation F4: Damage dsipation
- A ave
=, = ,IE,/ my—=— e, @, — '""Tdd =() 9)

(b) Thermal dissipation

— 1 a0
=~ =94 ax,

Mechanical dissipation must satisfy first incquality of Clasius—Planck and can be decomposed in two
parts: one part due to the plastic process =¥, and the other duc to the damage process _.:’,

E

3. Plastic process

The plastic process is described by a generalization of classical plasticity theory that takes into
account many aspects of geomaterials behaviour.
Elastic threshold is defined by a yield function:

Flo,: ) = flo,) — K(os ) <0 (10)
where f{g;) is the equivalent tension defincd in the damaged space. K(o;;; @) is the equivalent yielding
threshold dnd a; a sct of internal variables defined as follows

o, ={c" ¢: K} (1)
where «” is the plastic damage variable [1,2] and ¢ the angle of internal friction.
The following rules arc used for the evolution of plastic strains ¢ and plastic internal variables o,
N ()G((r L)
h_ Tpuns A )
&y (’il)’,, (12)
G (o, A0La,,,¢ ) 13
Ao, (13)

where A is the plastic consistency factor. G the potential function and (h,),; a tensor to be defined for
each plastic internal variable [1,2].

&, = AH(0,: @) = A(h;),,
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The plastic damage variable " is obtained normalizing energy dissipated by the plastic process to
unity {7] and varies from 0, for the virgin material, to 1, when the maximum energy if plastically
dissipated.

. r (a-n .
« [gf“ 8" ]"uES (%
where

2 (o)

r= (@) =%+ o] (15)

2 loil

o;: principal stresses.

s
2‘1 ]

2 |o|R"™
=420 *p 47 ”
8 = f((r,,) gy - flo,) 8¢ (16)

R™ is the relation between the yielding threshold in uniaxial compression and that corresponding to
uniaxial tension: gf and gf arc the maximum energy densities dissipated by the plastic process in
uniaxial tension and compression processes. respectively. In the casc of a thermodynamic process with
no damage dissipation, they can be evaluated as follows

G,
gl=7" and gr="7 an

where Gy and G, are the fracture and crushing energies, respectively, and /, is an external parameter
that depends on the characteristic size of the finite element mesh that is introduced in order to obtain
objectivity of the solid response respect to the mesh size [13].

The following evolution equation is proposed for the equivalent yielding threshold [7]:

K(o;. k™) = ro (k") + (1 + No (k") (18)
where o(«") and o (x") represent the evolution of the yiclding threshold in uniaxial tension and
compression tests, respectively.

Loading/unloading conditions are derived from the Kuhn-Tucker relations formulated for problems
with unilateral restrictions:

(@ A=0
(b)y F<0 (19)
(€) AF=0

4. Damage process

The damage threshold is described by a damage function in the following way [7)
Gl)=(;((tl’)—f;(0'”"(d)$0 (20)

where 6{(a,,) is the equivalent tension defined in the damaged space, f.(3,;. k") is the equivalent damage
threshold and «* is the degradation variable.

The equivalent tension 6{g;;) can be evaluated using known yiclding functions (Tresca. Von-Mises,
Mohr-Coulomb or Drucker-Prager) or any function specially developed for damage.
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The degradation variable varies from 0, for the virgin material, to 1, for the completely damaged
material and is obtained normalizing energy dissipated by damage to unity [7].

-
@l= [ roat )]m‘,‘lf"zl @n
8 lsc

where

3

3
2 |o|R" 2 |l
wd _ i1 d 4

gil=t—m—yg  gl=al (22)

R™ is the relation between the damage threshold in uniaxial compression and that corresponding to
uniaxial tension and g and g¢ are maximum energy densities dissipated by damage in uniaxial tension
and compression processes, respectively.

The following evelution equation is proposed for the equivalent damage threshold:

[y k) =ro (") + (1 - Do (x*) (23)

where o,(«") and o,(x") represent the evolution of the damage threshold in uniaxial tension and
compression tests, respectively.

The loading/unloading conditions are derived from the Kuhn—Tucker relations and are analogous to
the ones corresponding to the plastic process:

@ d=0
(b) G°=0 (24)
() dG°=0

5. Coupled plastic-damaged response

Evolution of permanent strains and damage is obtained from the simultancous solution of the
following equations called the consistency conditions of the problem [7]
F=0
&P o (25)

Egs. (25) are two linear equations in A and d that can be casily solved.
The secant constitutive law can be written as follows

L AN
o;=m, Fe° = (.,uen =(1- d)C::“(S” - 521) (26)
0, =(1-d)o}; @7

where zrf', is the stress tensor of a fictitious undamaged solid. Eq. (27) can be interpreted as a
transformation between the real damaged space an a fictitious undamaged space.
Tangent constitutive law can be obtained from Egs. (25) and (26) and results

""u = C:yklékl (28)
where
. G oF
e i 3a,, ao' CmnAI
('i,kl = C.,u ‘:;p G BG (29)
(h ) Fo C ;

p )i 6(, 60’ mnrs BU
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and

o[22 (-3 OF o IG5 0G .
- ".,I:aa.m - ( e g 60' ﬂa' Counrs i, B‘Tm"(mun aa,, (,,,’ Cruni

- -
ke Tk oF ﬂG oF of, o oF . 4G\ oF
(73_% By 80, + 30, Coonrs aa.”)( ahat aa,, ”m) - (;,,,"m Connrs io, ) a0, "0

(30)

6. Algorithm for the numerical implementation of the plastic-damaged model

Capacity of a constitutive model to predict solid response not only depends on the model itself but
also on the numerical integration of the model. The precision with which constitutive equations are
integrated has a direct impact on the accuracy of the results [14, 15].

For the proposed model, yielding and damage equations must be integrated simultancously. An
Euler-Backward algorithm (7, 16, 17] is presented for this purpose. Solution of plane stress problems
with this type of methods is straightforward. Between two equilibrium configurations n and n — 1 the
variables of the problem are updated as follows

(€= (e}, + 155 a1
qH/n

(@), = (@), + AN, @2

d,=d, | +Ad, (33)

(‘7,,),, =(l~d, )C,,“[(E“) (521),.] (34)

Replacing this equation in Egs. (10) and (20), corresponding to yielding and damage conditions, the
following non-linear system of equations is obtained
H™(8),. Ad,) = F[(,),3 (@),] =0 )
HY(AA,.Ad,) = G”[(g,),; (k*),] =0

This system can be solved, for example, by the Newton-Raphson method
(aH") 'BH") Lt
{AA }k {AA }A~| AN/ n \3Ad/n {HV(A/\ Lad )}k*l
al n _ (O A (36)
Ad, Ad, (6Hd) (HH") H(AA,, Ad),)
The algorithm is summarized in Table 1.

3N 8ax /

Some recent publications [16-19] pointed out the advantage of using a consistent stiffness matrix
when solving elastoplastic problems. It has been proved that the quadratic rate of convergence of an
incremental solution bascd on a Newton—Raphson procedure can only be ensured if the tangent
modulus is derived in a way consistent with the constitutive integration algorithm.

The consistent tangent modulus corresponding to the plastic-damaged model and the algorithm
proposed is developed below.

Differentiating Eq. (34) and taking into account Eqgs. (31)-(33), it results

(@9, =~ dd ) o= 20,1 -0, (5 |

doy,

G
+(Clan)alde;), = dA(Chi), (al,) - A (c,,k,),,(afw% D @7

P4
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Table 1
Algorithm for the numerical i ion of 3
(1) Initialization: &k = 0; AA} =0: Ad, =0
@G !
(2) Plastic strain updating: (¢, )% = (¢,), , + 3A, (m’ )
(3) Damage variable updating: d% =d, | + Ad"
(4) Non-damaged stress updating: (o0)h = €, (6, = (1))
(5) Damaged stress updating: (:r,,),, = (1= dio,
(6) Updating of the other internal variables: (a,)} = (a,), , + AL
! N3
A"y, = [ﬁ+ (& '] m ), Adi: (k)= (k) | T (KT,
(7) Yielding and damage conditions: 1f (H")4 =0 and (H": <0 goto (13)
(8) If (H™): =0 goto (10)
(9) (H10Ad), =0 goto (12)
(10) I (HH =0 goto (12)
(11) (8H"7aA), =0
HPQAAL MM (Hi0ad)s = (HPQAAL. AdS )Y (@H 1add))
(12) axit = gt - LA D)L d), = (i ()>E dY,
QM TAAN AH 1aAd Y — (GH TaAM (A 1ad Y
Ao adh = {H(AAL AdD)WOHT/aAAY, ~ (H (AL Ad%))(aFH " 13 AN),
T T T GHT IaAN G TaAd Y, — (aH TaANGH 1aAd),
k=k+1 Goto (2)
U3) d, =d;z (@,), = (0,12 ("), = (N2 (), = U5 (), = ) (), = (@)
(14) END
Eq. (37) can be written as
dG
ek
(@), = (€ (e, = (i, dA..((,(,“) (38)
where
(Cuu) [ 8,8, + A, (C un)n a0, a0, ] Chrant (39)
(€)= [ 8+ AA,.<C.,,‘),, (,,, (,‘,M ] Cham (40)
The consistent tangent modulus results
G JaF .
(C!i ) o ((.“ *‘ )
. o uraln\ da,, ) \ o, /), rski/n
(Co)u=(Cii), ~ (41)

aF oG AN ey (G
(i) ol (). + (3 (5. ),

7.1. Concrete under biaxial compression

7. Application examples

In this example the behavior of concrete under biaxial compression [20] is studied. Concrete was
modeled as an elasto-plastic-damaged material. Mechanical properties of concrete are summarized in
Table 2. finite element mesh and loading conditions are represented in Fig. 1. The problem was solved
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Fig. 1. Concrete under cyclic biaxial compression.

Fig. 2. Concrete under uniaxial compression.

with a 2D finite element program and the algorithm previously described. A consistent tangent modulus
was used and no more than two iterations were needed for each loading step.

Stress—strain curves corresponding to the loading plane and the direction normal to the plane are
represented in Fig. 1. It can be seen that a good agreement between numerical and experimental results

is achieved with the elasto-plastic-damaged model.

7.2. Concrete under cyclic uniaxial compression

This example was used to prove the ability of the model and the algorithm proposed to reproduce
cyclic behavior of an elasto-plastic-damage material like concrete. The behaviour of concrete under
cyclic uniaxial compression [21] was studied.

Table 2
Mechanical properties of concrete

E= 'm (MK] MPa

o, = m; MPa
O = 328 MPa

Fo 1

L

K0 =0.38

=0.08 N/mm

=8.0N/mm
Lubliner-Oller Yielding Criteria [1}
(@ =0.12: y =3.0: p=0.0)

Mohr-Coulomb Potential Function: ¢ = 15°

Gy =0.08 N/mm

G!=8.0N/mm

Lubliner-Oller Damage Criteria [1]
(@=0.12; y =3.0; p=0.0)

Table 3
Mechanical properties of concrete

=19324.4 MPa
v=024
2.0 MPa
=26.5MPa

Gy
(1" =30.0N/mm
Lubliner-Oller Yielding Criteria {1]

(@=0.12; y=3
Associated flaw

0.12

.08 N/mm

G" =10.0N/mm

Lubliner—OMler Damage Criteria [}
(@ =0.12; y=3.0: p=0.0)

), p =0.0)
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The finite element mesh and loading conditions are represented in Fig. 2. Concrete was modeled as
an clasto-plastic-damaged matcrial with the mechanical properties summarized in Table 3.

Experimental and numerical stress—strain curves are represented in Fig. 2. It can be seen that the
model accurately reproduces the behavior of concrete. Unloading branches have almost the same
average modulus. Obviously. the model is not able to reproduce hysteresis loops appearing in
experimental results because linear elastic behaviour was assumed for unloading cases.

8. Concluding remarks

The constitutive model presented. simultancously solves the problem of evolution of permanent
strains and stiffness degradation. Yielding and damage consistent conditions are both satisfied in each
loading step. In this way, using hardening variables related to cnergy dissipation in each problem,
correct energy dissipation of the whole problem is achieved.

The model is simple and presents a total analogy with other clasto-plastic models used to reproduce
the behaviour of frictional materials.

The algorithm presented for the numerical implementation of the model proposed is a generalization
of Euler-Backward algorithms commonly used in plasticity to the case of plasticity coupled with
damage. It is particularly suitable for plane stress problems. The consistent tangent modulus developed
preserves quadratic rate of convergence of Newton-Raphson method.

References

f1] S. Oller. Un Modelo de *Dafio Continuo® para Materiales Friccionales, Ph.D. Thesis, Universitat Politecnica de Catalynya,
Escola Tecnica Superior D'Enginyers de Camins. Canals 1 Ports, Spain. 1988,

[2] J. Lubliner, J. Oliver, S. Oller and E. Ofate. A plastic damage madel for concrete, Int. J. Solids Struct. 25(3) (1989)
299-326.

[3] 3.W. Ju, On cnergy-based coupled clastoplastic damage theories: constitutive modeling and computational aspects, Int. J.
Solids Struct. 25(7) (1989) 803-833.

14} G.Z. Voyiadjis and P.1. Kattan, A plasticity-damage theory for large deformation of solids-—1. Theoretical formulation, Int.
J. Engrg. Sci. 30(9) (1992) 1089~1108.

{5] L.M. Kachanov, Time of the reputre process under creep conditions, 1VZ Akad Nauk-$.S.R.-Otd Tech Nauk 8 (1958)
26-31.

{6} U. Edlund and A. Klarbring. A coupled elastic-plastic damage model for rubber-modified epoxy adhesives, Int. J. Solids
Struct. 30(19) (1993) 2693-2708.

7] B.M. Luccioni. For ion de un modelo consti parz materiales ortétropos. Ph.D. Thesis. Universidad Nacional de
Tucumdn, Argentina. 1993.

[8] A. Green and P. Naghdi. A general theory for an clastic-plastic continuum, Arch. Rational Mech. Anal. 18 (1964) 19-281.

9] J. Lubliner, Plasticiiy Theory (MacMillan, New York. 1990).

(10} S. Oller. J. Oliver. M. Cervera and J. Oitate, Simulacién de procesos de | en anica de solidos. medi un
modelo pldstico. Memorias del 1 Congreso de Métodos Numéricos en Ingenieria, SEMNI 1990 (1990) 423-431.

[11] L.E. Malvern, Introduction to the Mechanics of Conti Medium (Prentice Hall, Englewood Cliffs, NJ, 1969).

[12] J. Lubliner, On the tk i { of Ai hanics, Int. J. Non Linear Mech. 7 (1972) 237-254.

[13] J. Oliver. A consistent characteristic length for smeared crdckm;, models. fnt. ). Numer. Methods Engrg. 28 (1989) 461-474.

{14] M. Ortiz and E.P. Popov, Accuracy and stability of integration algorithms for Tati Int. J.
Numer. Methods Engrg. 21 (1985) 1561--1576.

{15] M. Ortiz and J.C. Simo. An analysis of a new class of integration algorithms for clasto-plasti itutis ions, Int. J.
Numer. Methods Engrg. 83 (1986) 353-366.

{16] 3.C. Simo and T.J.R. Hughes. E icity and viscoplasticity. Computational Aspects (Springer-Verlag, Berlin) 97-137,
in press

[17] M.A. Crisfield. Non-Lincar Finite Element Analysis of Solids and Structures (John Wiley & Sons Lts.. England 1991).

{18] J.C. Simo and R.L. Taylor. Consi tangent op for rate ind p . Comput. N ds Appl.
Mech. Engrg. 48 (1985) 101-118.

[19] G.P. Mitchell and D.R.J. Owen, Numecrical ions for elasto-plas! bl Engrg. Comput. 5 (1988) 274-284.

{20] H. Kupfer, H. Hidsford and H. Rusch. Behaviour of concrete under hmxml stresses, J. ACI 66(8) (1969) 656-666.
[21} B.P. Sinha, K.H. Gerstle and L.G. Tulin, Stress—strain relations for concrete under cyclic loading, J. ACI 62(2) (1964)
195-210.



