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A constitutive model that couples plasticity and damage is prcscnted. The model i~ thermodynamically consistent and comes 
from a generalization of classical plasticity theory and isotropic damage thco~y ~f Kachanov. Coupling between plasticity and 
damage is achicvcd through a simultaneou~ solution ~i" the plastic i:nd the damage problem. After a description of the model, a 
numerical a~gorithm fur the integration of the resulting constitutive equations is presented. It is an Euler Backward type of 
algorithm that is particularly suitable tu solve plain stress non-linear problems with a 2D finite element program. The consistent 
stiffness matrix is also dcrivcd. The paper is completed with some application examples that show that the model presented 
accurately reproduces the behaviour of elastic-plastic-damaged materials. 

1. Introduction 

The  greater  part of  the materials ,  in particular geomater ia ls ,  presents  a non-l inear  behaviour  
accompanied  by pe rmanen t  strains and stiffnes~ degradat ion when they are subjected to mechanica l  
forces.  

In geomater ia ls ,  p e rman en t  strains arc caused by microcracking. Plasticity theory  can be used as a 
mathemat ica l  f ramework  to treat these pe rmanen t  strains if it is considered that  they resemble  plastic 
s ta ins  [ I, 21. 

D a m a g e  or stiffness degradat ion is related to initiation, growth and in terconnect ion of  mierocracks 
and micropores .  A great  n u m b e r  of  approaches  have been proposed to s imulate  this p h e n o m e n a  (see 
[3.4]) .  A m o n g  them,  con t inuum damage  mechanics  has  been introduced and widely used to s imula te  
progressive degradat ion of  mechanical  propert ies  of  materials  before the initiation of  macro  cracking.  
Kachanov  15] was the first to introduce the concept  of  e f f e c t i v e  s t ress  to model  creep rupture .  Later ,  
con t inuum damage  mechanics  was ex tended  to model  fatigue,  creep,  c reep- fa t igue  interaction and  
ductile-plastic damage .  Recently.  it has  been applied to brittle materials  like concrete  of  rock. 

C o n t i n u u m  damage  mechanics  theories are based on the the rmodynamics  of  irreversible process.  
Only  one scalar variable is needed  to model  isotropic damage  while tensorial  variables are needed  to 
mode l  damage  anisotropy.  For simplicily, efficiency and adaptat ion to different practice applicat ions,  
isotropic formula t ions  are widely used [3]. 

There  is some  exper imenta l  evidence that damage  is linked to plastic s t rains [3]. Physical m e c h a n i s m s  
of interaction be tween damage  and plastic strains arc complicated in nature  and  cannot  be mode led  by 
only one phenomenologica l  approach.  Little is known about  cffccts of  t empera tu re ,  strain rate ,  
localization or microstructure  in these interactions 141. A great  effort was made  by some  au thors  to 
reproduce  coupling of damage  and plastic proccsses.  Ju [3] gave an energy-based  isotropic elastoplast ic 
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damage thcory that is capable of accommodating non-linear elastic response and general plastic 
response. The theory can predict degradation in both elastic and plastic responses. This framework was 
further extended to develop simple energy-based fourth-order anisotropic damage models for brittle 
materials. Voyiadjis [4] presented a coupled theory of continuum damage mechanics and finite strain 
plasticity (with small elastic strains). He derived an explicit matrix representation for the damage effect 
tensor for a general state of deformation and damage. Edlun [6] presented a coupled elastic-plastic 
damage model for rubber-bond epoxy adhesives. It is a phenomenological model derived fi'om a 
mathematical framework based on thermodynamic considerations where the micromechanical processes 
are accounted for by a set of internal variables. 

The model presented in this paper is thermodynamically consistent and comes from a generalization 
of plasticity theory [1,2] and isotropic damage theory. The plastic model is more general than the one 
in [2] and the treatment of damage is completely different. Coupling of damage and plastic strains is 
achieved by solving both problems simultaneously [7]. In this way correct energy dissipation is also 
assured. 

2 .  T h e r m o d y n a m i c  b a s i s  

The constittttive model proposed is based on the hypothesis of uncoupled elasticity [8, 9]. According 
to this hypothesis, the total free energy ~ can be supposed to be formed by two independent parts: an 
elastic part ~ and a plastic part U p, corresponding to the elastic and plastic processes, respectively 

' e ( ~ ;  ,~;/3) = ~ (~7 , ; /3 )  + ~e"(,~) (1) 

where e'~'~ is the elastic strains tensor and o~ and /3 represent groups of internal variables plastic and 
non-plastic, respectively. 

For small strain and thermally stable problems, the elastic part of the free energy is written as 
quadratic function as follows 1101 

~'~(4;: , ) :  ~ [4ic~,~,(/3)~,] (2) 

where m. is the density of the material and C~jkt(/3 ) the secant constitutive tensor affected by the 
evolution of non-plastic internal variables which can be written as [10] 

cz,(/3) = 1(/3)c'~',~, (3) 

where C~i~/u is the initial secant constitutive tensor of the virgin material and f(/3) a tensorial 
transformation function from an undamaged equivalent space to the real damaged space. The most 
simple form for the transformation function is the one coinciding with isotropic damage theory of 
Kachanov [5] 

f(/3) = (l - d) (4) 

where /3 = d is the imwr damage variable and is such that 

d = (I for the undamaged virgin material 

d = 1 for the completely damaged material 

For this particular choice, the elastic part of the free energy can be written as 

l • • 0 • • 

~ = (~ - d ) ~ "  = (~ - d )  ~ [4 )C , ,~ ,~ ,  l (5 )  

where ~ "  represents the elastic free energy of the undamaged material. 
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Inequality of Clasius-Duhem [11] can be written in terms of free energy as follows 

1 a0 
.~ = m . ( -  qt __ nO ) + o- ~,, - ~ q, ~ >/0 (9) 

where r t is the entropy. 0 a measure of temperature, q the heat flow and x~ a set of spatial coordinates. 
Substituting the form proposed for the free energy (Eq. (1)) in Eq. (2) and splitting the total strain 

tensor in an elastic and a plastic part. the following inequality is obtained 

%i - -  I'1 o ~Ioe,,] e ,, - m .  \ ~  - ,n,. ~,;~, &, - ,n. ~ d - "~ q, ~ ~ 0 (7) 

The fulfi l lment of inequality of Clasius-Planck for a given thermodynamic state is guaranteed if the 
fol lowing equations, known as Coleman [12] relations, are satisfied 

aqt" aq~ 
~ r , / = m . ~  and n = - ~  (8) 

On the other hand. for uncoupled thermomechanical problems, the inequalities of Clasius-Planck 
must be independently satisfied 

(a) Mechanical dissipation 

E I',, : Plasllc dis,ipalinn E~I,, : Damage dl,,ip.lllon 

a~.l, 
~ 3  ~ 0 (9) ..=,, = cr ~ ~ - m.  - -  6~ - m,, 

q q c]o~ i l 

(b) Thermal dissipation 

1 O0 

Mechanical dissipation must satisfy first inequality of Clasius-Planck and can be decomposed in two 
parts: one part due to the plastic process E,v,, and the other due to the damage process --,d,,. 

3.  Plastic  process  

The plastic process is described by a generalization of classical plasticity theory that takes into 
account many aspects of geomaterials behaviour. 

Elastic threshold is defined by a yield function: 

F(o-,: ak) = f i e f , )  - K(cr,. o~k) <~ 0 (10) 

where f (cr ,)  is the equivalent tension defined in the damaged space. K(%; ak) is the equivalent yielding 
threshold and 6t~ a set of internal variables defined as follows 

ak = {KP;~;K} (11) 

where K v is the plastic damage variable [1.2] and ~ the angle of internal friction. 
The following rules are used for the evolution of plastic strains e~ and plastic internal variables o~ k 

~,~=i :JG(~r,,,,,, ~,) 
ao', (12) 

6~k = ,~H~(~u; a,,,) = .((hk)u aG(%,"  %) ao-,, (13) 

where ,~ is the plastic consistency factor. G the potential function and (hk)u a tensor to be defined for 
each plastic internal variable [1.2]. 
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The plastic damage variable r p is obtained normalizing energy dissipated by the plastic process to 
unity [7] and varies from 0, for the virgin material, to 1, when the maximum energy if plastically 
dissipated. 

C r (1 - r ) q  ~, 
~'= L ~ + ~ / % ~ , ,  (14) 

where 

~ . ,  1 1,,, + I",11 (15) r = ~  (,,,) =~- , 

Y~ I'~,1 
i - i  

try: principal stresses. 

g ~  - ~  , ~ = , = ~  g~ f(~,J) gO, g~ ~ , (16) 

R "v is the relation between the yielding threshold in uniaxial compression and that corresponding to 
uniaxial tension; g~ and g~ are the maximum energy densities dissipated by the plastic process in 
uniaxial tension and compression processes, respectively. In the case of a thermodynamic process with 
no damage dissipation, they can he evaluated as follows 

p Gf g~ G~ 
g, = "~f and = ~ c  (17) 

where Gf and G~ are the fracture and crushing energies, respectively, and I~, is an external parameter 
that depends on the characteristic size of the finite element mesh that is introduced in order to obtain 
objectivity of the solid response respect to the mesh size [13]. 

The following evolution equation is proposed for the equivalent yielding threshold [71: 

K ( % ,  K p) = rcr~(K p) + (1 + r)O'c(K p) (18) 

where o-~(K p) and @(K v) represent the evolution of the yielding threshold in uniaxial tension and 
compression tests, respectively. 

Loading/unloading conditions are derived from the Kuhn-Tucker relations formulated for problems 
with unilateral restrictions: 

(a) ,( >/0 

(b) F ~< 0 (19) 

(c) ; /F = 0 

4. Damage process 

The damage threshold is described by a damage flmction in the following way [7] 

GI '  = 6(%)  - L ( % ,  Kd) <~ 0 (20) 

where 6(o-,) is the equivalent tension defined in the damaged space, L(tr~r K d) is the equivalent damage 
threshold and a • . , K Is the degradation vanablc. 

The equivalent tension 6"(or#) can be evaluated using known yielding functions (Tresca, Von-Mises, 
Mohr-Coulomb or Drucker-Prager) or any function specially developed for damage. 
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The degradation variable varies from 0, for the virgin material, to 1, for the completely damaged 
material and is obtained normalizing energy dissipated by damage to unity [7]. 

,~,, = r r ( l - r ) ]  . 
1"--77 + - - - - ;a ' -  Im , ,q r"d  (21) 
Lgt g,. J 

where 

g~,l = i i *d , i ,1 
6- g;' g ,  = ~ g '  " (22) 

R °d is the relation between the damage threshold in uniaxial compression and that corresponding to 
uniaxial tension and g~ and g~ are maximum energy densities dissipated by damage in uniaxial tension 
and compression processes, respectively. 

The following evolution equation is proposed for the equivalent damage threshold: 

L(o'#, K d) = ro't(K a) + (1 - r )~(K a ) (23) 

where o-,(K d) and ~ (K  a) represent  the evolution of the damage threshold in uniaxial tension and 
compression tests, respectively. 

The loading/unloading conditions are derived from the Kuhn-Tuckcr  relations and are analogous to 
the ones corresponding to the plastic process: 

(a) d-~0 
(b) GD~<0 (24) 

(c) d G D = O  

5. Coupled plastic-damaged response 

Evolution of permanent  strains and damage is obtained from the simultaneous solution of  the 
following equations called the consis tency  condi t ions  of the problem [7] 

F = 0  
o = 0 (25) 

Eqs.  (25) are two linear equations in ,~ and d that can bc easily solved. 
The secant constitutive law can be written as follows 

= - -  = " = d)C,,k,(e~ - ok,) (26) o',l m,, Oe[~ C~l#<le~l ( 1 -  " P 

% = (1 - d)cr',} (27)  

where  o-~i~i is the stress tensor of  a fictitious undamaged solid. Eq. (27) can be interpreted as a 
transformation between the real damaged space an a fictitious undamaged space. 

Tangent  constitutive law can be obtained from Eqs. (25) and (26) and results 

6-ij = C',ikt~t (28) 

where 

, oG tgF ,. 
Ci,,,~,~, ~m,  C ....... 

Cii't  = C;)k' - OF OG OF OG (29) 
0 %  (hp),,,"~-~, + - - C '  - -  
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and 

c;;,, = c ; , , ,  
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oF 06- / aF aG OF 
0o,,J, ,,c., 

/ OF OG OF OG \ [ Of,. 06- ) / OF , aG \ OF . 
- -  ( h )  - -  + - -  C' - -  ~ o-',',, - ~ C;,,,,. ~ )  3~r,,, "' 

(3o) 

6. Algorithm for the numerical implementation of  the plastic-damaged model 

Capacity of a constitutive model to predict solid response not only depends on the model itself but 
also on the numerical integration of the model. The precision with which constitutive equations are 
integrated has a direct impact on the accuracy of the results [14, 15]. 

For the proposed model, yielding and damage equations must bc integrated simultaneously. An 
Euler-Backward algorithm [7, 16, 17] is presented for this purpose. Solution of plane stress problems 
with this type of methods is straightforward. Between two equilibrium configurations n and n - 1 the 
variables of the problem are updated as follows 

(G),, = (~,~) . . . .  + \-~¢,,./,, (31) 

(%). = (%),,_, + AA(H,),, (32) 

d,, = d._ I + Ad,, (33) 

(o,i),, = (1 - d,,)C'i~jkt[(e~t). - (eP,),,] (34) 

Replacing this equation in Eqs. (10) and (20). corresponding to yielding and damage conditions, the 
following non-linear system of equations is obtained 

HP(aa.,  ad  D = F[(c.,j),,; (c~k),, ] = 0 

d D d (aa, , ,  aa , , )  = G [(o,j),,; ( I , ) , , ]  = 0 (35) 

This system can be solved, for example, by the Newton-Raphson method 

F ( " " " )  ( 0 H " )  -I ~ - ' - '  

taa, ,J  taa, ,J  | ( a l l  a] (0,,.31 t"°(aa"'aa")J (36)  

L \  aA~.)'. \ a&x/._1 

The algorithm is summarized in Table 1. 
Some recent publications [16-19] pointed out the advantage of using a consistent stiffness matrix 

when solving elastoplastic problems. It has been proved that the quadratic rate of convergence of an 
incremental solution based on a Newton-Raphson procedure can only be ensured if the tangent 
modulus is derived in a way consistent with the constitutive integration algorithm. 

The consistent tangent modulus corresponding to the plastic-damaged model and the algorithm 
proposed is developed below. 

Differentiating Eq. (34) and taking into account Eqs. (31)-(33), it results 

[ 
(do,j). = - a(a,.)c',',~,l(e~,). - ( G ) . - ,  - 

OG O2G 
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Table  1 
Algor i thm for the numerical  integration t)t constitutive cqtt;|tions 

( 1 ) Initialization: k - 0: ..XA~, ~, = O: A,17 ,  - 0 

(2) Plastic strain updating: (~',,)~, = (r,,),, , + "~A~'( ij(;~r),,' ' 

(3) D a m a g e  variable updating: d~ = d,, , + ~d), 

(4)  N o n - d a m a g e d  stress updating: (¢r];)~ = (" , ; t , [ (" , , ) , , -  (r['t)~] 

(5) D a m a g e d  stress updating: (,r,,)~ = ( 1 - d~ )(,r" )~, 

(6)  Updat ing  of  the other  internal variables: (e,)~ = (,~,),. , ~ 5h~( l t )~  

I- -I r ( I - r )  
k g ,  g,  j ,, ,, , i 

(7) Yielding and damage  conditions: I f l / tP )~ , '=0  and 111")~, "- () go lo (131  

(8 )  If (HV)~ ,~ ( l  go to  (10)  

(9) (illlViiJ_kd)~, ( I  golt) ( 121 

(10 )  If (H")~,~>0 goto  (12)  

(11) (;~H"/iJa,q~, = 0 

(12) a h ~ "  = 5A~ - (H"(.hA~,. Ad~,))(iJlJai,)ad)~, - (H't(2th?,. &t~,))(i*/l"/&~d)~, 

( aHr'l  aaA ) ~ ( ilHa / &hd )~, - ( ;~Hd / &ha )~,( oll , '  l iLhd )~, 

A,l~' ' = &t~ - (H"( 'Wt ~,. &l'))(iJH",'i~..~a)~, - (H"(5.A~,...~d~))(i*tta!i,3,a)~ 

( aHP / oXA )~,( ;JH" / aad  ) ~, - ( iJH" / O2~h )~ ( l~tt" / iJad )~, 

k = k + 1 Go to  (2) 

0 3 )  d .  = ,t~,: (,~,,),. = (,~,)'o: (,,").. = (,,")~.: (L),,  = (f,)~.: (,];),. = (d;)~.: (,,,),. = (,~,)~, 

(14) E N D  

E q .  (37) can be written as 

~. / \ 0 G  
(de , , ) , ,  = - ) , ,  ( 3 8 )  

where 
= + , 02 G I 

+ O2G 

The consistent tangent modulus results 

~, r~G OF ,,, 

e* = ( )  ( )  (,.:. ,,0o (eO~¢)" (C"k')" OF OG / \ ) / \  (41) 
- ~ ,, [(hp)'',l', ~ Z  + ,, \ ,q ] , ,  " .... . . .  \0or,+/,,  

7 .  A p p l i c a t i o n  e x a m p l e s  

7.1. Concrete under biaxial compression 

In this example tile behavior of concrete under biaxial compression [20] is studied. Concrete was  
modeled as an elasto-plastic-damaged material. Mechanical properties of concrete are summarized in 
Table 2. finite element mesh and loading conditions are represented in Fig. 1. The problem was solved 
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~ lo.oo 

* * ~  EXPERIM~/~L RESUL'I~ 5.0O 
- -  NUMERICAL R~SULTS 

$'i~N N ( - )  

o'22 

_ ~ _  o'n= o'~3 = o 

~ i  - - -  Lrs 

Fig. 1. Concrete under cyclic biaxial compression. 

Fig. 2. Concrete under uniaxial compression. 

w i t h  a 2D finite e l e m e n t  p r o g r a m  a n d  the  a l g o r i t h m  p rev ious ly  desc r ibed .  A c o n s i s t e n t  t a n g e n t  m o d u l u s  

w a s  u s e d  a n d  no  m o r e  t h a n  two  i t e r a t i ons  w e r e  n e e d e d  for  e a c h  l o a d i n g  s tep .  
S t r e s s - s t r a i n  cu rves  c o r r e s p o n d i n g  to  the  l o a d i n g  p l a n e  a n d  the  d i r e c t i o n  n o r m a l  to  the  p l a n e  a re  

r e p r e s e n t e d  in Fig.  1. I t  can  be seen  tha t  a g o o d  a g r e e m e n t  b e t w e e n  n u m e r i c a l  a n d  e x p e r i m e n t a l  r e su l t s  
is a c h i e v e d  wi th  the  e l a s t o - p l a s t i c - d a m a g e d  m o d e l .  

7.2. Concre te  under  cyclic uniaxia l  compress ion  

T h i s  e x a m p l e  was  used  to  p rove  the  ab i l i ty  of  the  m o d e l  a n d  the  a l g o r i t h m  p r o p o s e d  to  r e p r o d u c e  
cycl ic  b e h a v i o r  of  an  e l a s t o - p l a s t i c - d a m a g e  m a t e r i a l  l ike  conc re t e .  T h e  b e h a v i o u r  of  c o n c r e t e  u n d e r  
cycl ic  u n i a x i a l  c o m p r e s s i o n  [21] was  s tud ied .  

Table 3 
Table 2 Mechanical properties of concrete 
Mechanical properties of concrete E = 19324A MPa 

E = 3(I 0~X) MPa v = (I.24 
v = (I.24 ~,, = 22.(I MPa 
~,, = 22,9 MPa ~ro~, ~ = 26.5 MPa 
trp~,, k = 32.8 MPa 

~'--= 10 
°'°'---- = I l l  ~r., 
o'., ~¢ ~.,k = l).12 
K~,~.,, k = 11.38 O ~' = 0.118 N / mm 
G~' = 0.08 N / mm G ~ = 30,0 N / mm 
G~ = 8.0 N/mm Lubliner-Oller Yielding Critcria[ 11 
Lubliner-Oller Yielding Criteria It] (or = l).12; y = 3.1); p = (I.I)) 
(or = 0.12; Y = 3.11; p = 0.0) Associated flaw 
Mohr-Coulomb Potential Function: ~ = 15 ° K~,k = 0.12 
G~ = 0.08 N/ram G'I t = 0.08 N/ram 
G~ = 8.0 N/mm GI! = 10.0 N/ram 
Lubliner-Oller Damage Criteria [1] Lubliner-Oller Damage Criteria [1] 
(ct = II. 12; 3' = 3.0; p = 0,Ill (ct = 0,12; Y = 3.0; p = I).0) 
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T h e  finite e l e m e n t  mesh  and  load ing  cond i t i ons  are  r e p r e s e n t e d  in Fig. 2. C o n c r e t e  w a s  m o d e l e d  as 
an  e l a s t o - p l a s t i c - d a m a g c d  m a t e r i a l  wi th  the  m e c h a n i c a l  p r o p e r t i e s  s u m m a r i z e d  in T a b l e  3. 

E x p e r i m e n t a l  a n d  n u m e r i c a l  s t r e s s - s t r a i n  cu rves  are r e p r e s e n t e d  in Fig. 2. I t  can  be  s e e n  t h a t  the  
m o d e l  accu ra t e ly  r e p r o d u c e s  the  b e h a v i o r  of  concre te .  U n l o a d i n g  b r a n c h e s  h a v e  a l m o s t  the  s a m e  
a v e r a g e  m o d u l u s .  O b v i o u s l y ,  the  m o d e l  is no t  ab le  to r e p r o d u c e  hys t e re s i s  loops  a p p e a r i n g  in 
e x p e r i m e n t a l  resu l t s  because  l inea r  e las t ic  b e h a v i o u r  was  a s s u m e d  for u n l o a d i n g  cases .  

8. Concluding remarks 

T h e  cons t i t u t i ve  m o d e l  p r e s e n t e d ,  s i m u l t a n e o u s l y  so lves  the  p r o b l e m  of  e v o l u t i o n  of  p e r m a n e n t  
s t r a ins  a n d  s t i f fness  d e g r a d a t i o n .  Y i e l d i n g  and  d a m a g e  cons i s t cn l  c o n d i t i o n s  are  b o t h  sa t i s f ied  in e a c h  

l o a d i n g  s tep .  In this  way ,  us ing  h a r d e n i n g  v a r i a b l e s  r e l a t e d  to e n e r g y  d i s s ipa t ion  in e a c h  p r o b l e m ,  
c o r r e c t  e n e r g y  d i s s ipa t ion  of  the  who le  p r o b l e m  is ach ieved .  

T h e  m o d e l  is s i m p l e  and  p r e s e n t s  a to ta l  a n a l o g y  wi th  o t h e r  elastIc-plast ic  m o d e l s  u sed  to  r e p r o d u c e  
the  b e h a v i o u r  of  f r i c t iona l  ma te r i a l s .  

T h e  a l g o r i t h m  p r e s e n t e d  for the n u m e r i c a l  i m p l e m e n t a t i o n  of the  m o d e l  p r o p o s e d  is a g e n e r a l i z a t i o n  
of  E u l e r - B a c k w a r d  a l g o r i t h m s  c o m m o n l y  used  in p las t i c i ty  to  the  case of  p las t i c i ty  c o u p l e d  w i t h  
d a m a g e .  It  is pa r t i cu l a r ly  su i t ab l e  for  p l a n e  s t ress  p r o b l e m s .  T h e  cons i s t en t  t a n g e n t  m o d u l u s  d e v e l o p e d  
p r e s e r v e s  q u a d r a t i c  ra te  of  c o n v e r g e n c e  of  N e w t o n - R a p h s o n  m e t h o d .  
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