
Assessing maximum possible
damage for contaminant

release events
Fernando Camelli and Rainald Löhner

School of Computational Science and Informatics, George Mason University,
Fairfax, Virginia, USA

Keywords Programming and algorithm theory, Finite element analysis, Contamination,
Hazards, Fluid dynamics

Abstract The combined use of damage criteria, genetic algorithms and advanced CFD solvers
provides an effective strategy to identify locations of releases that produce maximum damage. The
implementation is simple and does not require any change to flow solvers. A rather general
criterion has been formulated to determine the damage inflicted by the intentional or unintentional
release of contaminants. Results of two typical cases show that damage can vary considerably as a
function of release location, implying that genetic algorithms are perhaps the only techniques suited
for this type of optimization problem.

1. Introduction
The intentional or unintentional release of hazardous materials can lead to devastating
consequences. In order to prepare effective countermeasures, place sensors, or legislate,
it is imperative to know the maximum possible damage a release in certain region can
have. This problem may be cast as the optimization problem: maximize the damage,
given a region of release locations. Damage in this context is defined as the number of
people and property affected by the release of a contaminant.

Assuming that the amount of contaminant is finite, and that the population density
in the region of interest is given, for any given meteorological condition the location of
the release becomes the main input variable. Damage as a function of space can have
many local extrema, as pockets of high concentration can linger in recirculation zones,
or diffuse slowly while being transported along street canyons. This implies that
traditional gradient-based approximation techniques will fail. For this reason, recourse
is taken to genetic optimization algorithms that can obtain the maxima of such
arbitrary functions.

Recent advances in CFD codes and hardware have made it possible to perform
large-scale, high-resolution 3D runs in a reasonable amount of time. The flowfields for
different meteorological conditions (wind direction, atmospheric conditions, humidity,
temperature of building walls, emissions of heat exchangers, etc.) are typically
calculated and stored on supercomputers. Given that in some cases up to an hour of
real time needs to be computed, these runs can consume a considerable amount of
computer time. The effects of different release scenarios (amount, locations, people
density) are then simulated for these pre-stored flowfields. It has become possible to

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

www.emeraldinsight.com/researchregister www.emeraldinsight.com/0264-4401.htm

This work was partially supported by DTRA under the auspices of CAMP.

EC
21,7

748

Received August 2003
Revised March 2004
Accepted March 2004

Engineering Computations
Vol. 21 No. 7, 2004
pp. 748-760
q Emerald Group Publishing Limited
0264-4401
DOI 10.1108/02644400410548387

perform each one of the release scenarios in a matter of minutes on PC platforms,
even for grids in excess of a million elements. This implies that on networks of PCs,
or PC clusters, hundreds of release scenarios can be simulated per day.

The remainder of the paper is organized as follows: Section 2 defines the damage
criterion used. Sections 3 and 4 describe the genetic optimization algorithm and solver
employed. In Section 5 two examples are presented. Finally, in Section 6 some
conclusions are drawn and an outlook for future work is given.

2. Damage criterion
Assessing the damage to people and property is difficult. For the present study, the
damage to property was not considered. Damage to health was assumed to occur above
a certain threshold concentration c0 in regions occupied by pedestrians. In order to
monitor the total damage in a given time-interval [0, T], the following damage criterion
was used:

I ðx0Þ ¼

Z T

0

Z
V

c*r dV dt; ð1Þ

where r, V, x0 denote the population density, volume of interest and location of source,
respectively, and c * is given by the Heaviside function:

c* ¼ 1 if c $ c0; c* ¼ 0 if c , c0: ð2Þ

The population density was assumed to be given for the geometry, time of day, and
meteorological conditions considered. Obviously, the higher the population density, the
higher the damage, meaning that rush-hour densities were favoured for “worst-case”
scenarios.

3. Genetic optimization algorithm
Suppose we are given the optimization problem:

I ðbÞ! max: ð3Þ

In order to norm the input variables (i.e. the release scenarios), a range b i
min # b i #

b i
max is set for each variable defining a release scenario. In the simplest case, this can be

the spatial coordinate of the release point. An instantiation is then given by:

b i ¼ ð1 2 a iÞb i
min þ a ib i

max; ð4Þ

implying I ðbÞ ¼ I ðbðaÞÞ: By working only with the a i, an abstract, non-dimensional,
bounded ([0, 1]) setting is achieved, that allows for a large degree of commonality
among various optimization algorithms.

Given the optimization problem (equation (1)), a simple and very general way to
proceed is by copying evolution in nature: try variations of b, and keep the ones that
maximize (i.e. improve) the cost function I(b). This class of optimization techniques are
denoted as genetic algorithms (Goldberg, 1989). Although costly, many function
evaluations are required, genetic algorithms offer important advantages: they
represent a completely general technique, able to go beyond local minima and hence
suitable for “rough” cost functions I with multiple local minima, and only require

Assessing
maximum

possible damage

749

function evaluations (i.e. no gradient). Genetic algorithms have been used on many
occasions in many fields (Goldberg, 1989; Quagliarella et al., 1998; Winter et al., 1995).
The key elements of genetic algorithms are:

. a fitness measure, given by I(b), to measure different release scenarios against
each other;

. chromosome coding, to parametrize the release locations given by b;

. population size required to achieve robust optimization;

. selection, to decide which members of the present/next generation are to be
kept/used for reproductive purpose; and

. mutation to obtain “offspring” not present in the current population.

The most straightforward way to code the release locations into chromosomes is by
defining them to be the parameters 0 # a i # 1: An instantiation is then given by
equation (2). The population required for a robust selection needs to be sufficiently
large. A typical choice for the number of individuals in the population M as compared
to the number of chromosomes (release locations) N is: M . Oð2N Þ for large N. Given a
population and a fitness measure associated with each individual, the next generation
has to be determined. In order to achieve a monotonic improvement in release
scenarios, a percentage of “best individuals” ck of each generation is kept (value used
here: ck ¼ O (10 percent)). Furthermore, a percentage of “worst individuals” cc are not
admitted for reproductive purposes (value used here: cc ¼ O (75 percent)). Each new
individual is generated by selecting randomly a pair i, j from the allowed list of
individuals, and combining the chromosomes randomly. Many possible ways have
been proposed to combine chromosomes, such as chromosome splicing, arithmetic and
random pairing, etc. (Goldberg, 1989). In the present case, arithmetic pairing was
chosen. A random pairing factor 2j , g , 1 þ j is selected and applied to all
variables of the chromosomes in a uniform way. The chromosomes for the new
individuals are given by:

a ¼ ð1 2 gÞa i þ ga j: ð5Þ

We remark that g lies outside [0, 1] (a typical value is j ¼ 0:2). This is required, as
otherwise the only way to reach locally outside the chromosome interval given by the
pair i, j (or the present population) is via mutation, a slow and therefore expensive
process. On the other hand, a population that is not modified continuously by
mutations tends to become uniform, implying that the optimization may end in a local
minimum. Therefore, a mutation frequency: cm ¼ Oð0:25=N Þ has to be applied to the
new generation, modifying chromosomes randomly. Summarizing, the basic steps
required per generation for generic algorithms are the following:

Ga1 Evaluate the fitness function I(b(a)) for all individuals;

Ga2 Sort the population in ascending (descending) order of I;

Ga3 Retain the ck best individuals for the next generation;

Ga4 while: Population incomplete

Select randomly a pair i, j from cc list

Obtain random pairing factors 2j , gk , 1 þ j

EC
21,7

750

Obtain the chromosomes for the new individual: a ¼ ð1 2 gÞa i þ ga j

Limit the values of a to be in admissible range: a ¼ maxð0;minð1;aÞÞ

end while.

4. Dispersion solver
Any contaminant transport or release simulation solves the classic advection-diffusion
equation

c; t þ v ·7c ¼ 7k7c þ S: ð6Þ

Here c, v, k denote the concentration, velocity and diffusivity of the medium, and S the
source-term. The (in most cases unsteady) velocity field v is assumed to be divergence
free ð7 · v ¼ 0Þ and precomputed, i.e. given as an input. The spatial discretization of the
computational domain is performed with linear tetrahedral elements. Denoting by N i

the shape-function of point i, the Galerkin weighted residual method for equation (6)
results in:

M · c;t þ A · c ¼ 2K · c þ S; ð7Þ

with

M ¼

Z
N iN j dV; A ¼

Z
N iv ·7N j dV; K ¼

Z
7N ik7N j dV;

S ¼

Z
N iS dV:

ð8Þ

In most instances, the Galerkin weighted residual method will not yield (physically
correct) monotone results for advection dominated cases. A number of schemes have
been devised to replace the “Galerkin fluxes” by so-called “numerically consistent
fluxes”. Upwinding (van Leer, 1974; Sweby, 1984; Hirsch, 1991), anisotrophic balancing
dissipation (Kelly et al., 1980; Brookes and Hughes, 1982) and flux-corrected transport
(FCT) (Parrott and Christie, 1986; Löhner et al., 1987) are examples of such schemes.
In the present case, edge-based limiting (Löhner, 2001) is employed.

Given that one is interested in high temporal fidelity, and that the diffusive terms
are typically very small, explicit time integration schemes are used for equation (7).
Without loss of generality, consider the following m-stage Runge-Kutta scheme to go
from timestep n to n + 1:

M · c i ¼ r i ¼ M · c 0 þ a iðS 2 ðA þ KÞ · c i21Þ; i ¼ 1;m; ð9Þ

where, c0 ¼ cn; a i ¼ 1=ðm þ 1 2 iÞ and cnþ1 ¼ cm: The bulk of the CPU requirements
for a scheme of this kind is in the evaluation of the right-hand sides r i. These required
matrix-vector multiplications can be performed in a variety of ways. The simplest is by
performing loops over the elements, evaluating all matrix-vector products at the
element level (Bathe, 1995; Zienkiewicz and Taylor, 2000; Löhner, 2001). A more
efficient way to accomplish this for low-order elements can be achieved by switching to
an edge-based data structure (Löhner, 2001), and this option is employed here.

Assessing
maximum

possible damage

751

5. Examples
The evaluation of maximum possible damage using the genetic algorithm is presented
for two cases:

(1) An urban area composed of several buildings;

(2) A generic subway station.

The finite element code FEFLO, a general-purpose flow solver code, has been used for
these two cases. This particular code has been repeatedly benchmarked and compared
to experiments (Camelli and Löhner, 2000; Hanna et al., 2002; Camelli et al., 2003, 2004)
and is routinely used for production runs. However, we emphasize that any other CFD
tool capable of accurate dispersion calculations could have been used instead. The flow
field was precalculated and stored in both cases in order to speed up the time for each
of the evaluations of the fitness measure. These cases were run on PC and workstation
platforms. Some of the results obtained are counter-intuitive, revealing interesting
worst-case scenarios which would not have been presumed at first hand.

5.1 Urban area
The first example considers the intentional release in an area representative of an inner
city composed of three by two blocks. The geometry definition and the surface mesh
are shown in Figure 1. The incompressible Navier-Stokes equations were solved with
Smagorinsky (1963) turbulence model. A logarithmic profile was applied as inflow
boundary condition with a mean velocity of 2 m/s at a height of 10 m:

u ¼
u*
k

ln
z

z0

� �
ð10Þ

where u* is the friction velocity, k the von Karman constant, z the vertical height and z0

the roughness coefficient. The slip velocity condition with Law of the Wall was used
for all walls. The release time was assumed to be 10 s, and the simulations were carried
out for at least 800 s of real time. Each of the fitness evaluations (i.e. dispersion
simulation runs) took approximately 80 min using a PC with Intel P4 chip running at
2.53 GHz with 1 GB RAM, Linux OS and Intel compiler.

Three areas of release have been studied (Figure 2): the upwind zone of the complex
of buildings, the street level, and the core of one of the blocks. In all cases, the height of
release was set to z ¼ 1:5 m: The fitness/cost function as defined in Section 2 requires a
volume of integration, as well as a population density. The volume of integration is the
area shown in Figure 2 with a height of 3 m above the ground. The population density
was assumed to be constant. The genetic optimization was carried out for 20
generations, with two chromosomes (x/y location of release point) and ten individuals
in the population. The fitness/cost function evaluations for each of the zones of interest
are shown in Figure 3(a)-(c). In all the areas a rapid convergence to maxima is reached.

The location and associated damage function for each of the releases computed
during the optimization process are shown in Figure 4(a)-(d). Interestingly, the
maximum damage is produced in the street area close to one of the side corners of the
blocks. The cloud (Figure 5(a)-(f)) shows the suction effect produced by the streets that
are in the direction of the wind, allowing for a very long residence time of contaminants
close to the ground for this particular release location.

EC
21,7

752

Figure 1.
Problem definition and
detail of surface mesh

Figure 2.
Zones considered for

release

Assessing
maximum

possible damage

753

Figure 3.
Fitness/cost function
evaluation

EC
21,7

754

5.2 Generic subway station
The second example studies the release of contaminants in a generic subway
station. The geometry definition is shown in Figure 6. As before, the incompressible
Navier-Stokes equations were solved with the Smagorinsky turbulence model with
Law of the Wall. On one of the end sides a time dependent inflow of the following form:

uðtÞ ¼ bðt 2 60Þ3 e2aðt260Þ þ u0 ð11Þ

is applied. Here, b ¼ 0:46 m=s; a ¼ 0:5 1=s; and u0 ¼ 0:4 m=s: This inflow velocity,
shown in Figure 7, corresponds approximately to the velocities measured at a New
York City subway station (Pflitsch et al., 2000), and simulates the incoming subway to
the station platform without modeling the actual train. A puff release of 10 s was
assumed. The real time modeled was of 450 s. All the runs were performed on a
workstation with DEC Alpha chip running at 666 MHz, with 1 GB of RAM, Linux OS
and Compaq compiler. Each run lasted between 60 and 90 min. The strategy for the
genetic algorithm was the same as for the urban area example: 20 generations and
a population of ten individuals. Two areas of release were studied: platform and

Figure 4.
Release positions coloured

according to damage

Assessing
maximum

possible damage

755

Figure 5.
Evolution of maximum
damage cloud

EC
21,7

756

mezzanine. The volume of integration for the damage evaluation comprised both
platforms, the mezzanine level, and the exit stars. The convergence of the fitness/cost
function is shown in Figure 8(a) and (b). The convergence is slower in the platform than
in the mezzanine. The position of the releases and the associated damage function
is shown in Figure 9(a) and (b). Note that the maximum damage is produced by
a release in the platform, whose contaminant cloud at T ¼ 450 s is shown in
Figure 10(a) and (b).

Figure 6.
Generic subway station:

geometry definition

Figure 7.
Prescribed inflow velocity

as a function of time

Assessing
maximum

possible damage

757

Figure 8.
Fitness/cost function
evaluation in the platform
and mezzanine

Figure 9.
Release positions coloured
according to damage

EC
21,7

758

6. Conclusions and outlook
The use of damage criteria, genetic algorithms and advanced CFD solvers has been
proven to be effective to identify locations of releases that produce maximum damage.
The implementation is simple and does not require any changes to flow solvers. The
main difficulty is the design of proper damage (fitness/cost) functions to account for
the different toxic agents, their effect on health, the particular circumstances of the
release location and time, people density and atmospheric conditions. The locations of
the releases in both examples show a function with multiple local maxima and minima,
making this a difficult optimization problem if treated with more conventional gradient
methods. The use of precomputed flow fields, as well as recent advances in flow
solvers, has resulted in a considerable reduction of runtime, making genetic
optimization possible on networks of PCs.

Future work will focus on:
. further refinement of the damage (fitness/cost) functions;
. added realism for geometries as well as boundary conditions (in particular

heated walls and HVAC exhaust and intake vents);
. added realism in the dispersion physics, such as deposition, vegetation effect,

evaporation, chemical reactions in the atmosphere, etc.
. the use of grid computing to harness the maximum number of resources possible

at any given time.

References

Bathe, K.J. (1995), Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ.

Brooks, A.N. and Hughes, T.J.R. (1982), “Streamline upwind/Petrov Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations”, Comp. Meth. Appl. Mech. Eng., Vol. 32, pp. 199-259.

Camelli, F. and Löhner, R. (2000), “Flow and dispersion around buildings: an application with
FEFLO”, Proc. of ECCOMAS 2000 Conf., September, Barcelona.

Camelli, F., Löhner, R., Sandberg, W.C. and Ramamurti, R. (2004), “VLES study of ship stack gas
dynamics”, AIAA-04-0072.

Camelli, F., Soto, O., Löhner, R., Sandberg, W. and Ramamurti, R. (2003), “Topside LPD17 flow
and temperature study with an implicit monolithic scheme”, AIAA-03-0969.

Figure 10.
“Maximum damage” cloud

at T ¼ 450 s

Assessing
maximum

possible damage

759

Goldberg, D.E. (1989), Genetic algorithms in search, Optimization and Machine Learning,
Addisonn-Wesley, Reading, MA.

Hanna, S.R., Tehranian, S., Carissimo, B., Macdonald, R.W. and Löhner, R. (2002), “Comparisons
of model simulations with observations of mean flow and turbulence within simple
obstacle arrays”, Atmospheric Environment, Vol. 36, pp. 5067-79.

Hirsch, C. (1991), Numerical Computation of Internal and External Flow, Wiley, New York, NY.

Kelly, D.W., Nakazawa, S., Zienkiewicz, O.C. and Heinrich, J.C. (1980), “A note on anisotropic
balancing dissipation in finite element approximation to convection diffusion problems”,
Int. J. Num. Meth. Eng., Vol. 15, pp. 1705-11.

Löhner, R. (2001), Applied CFD Techniques, Wiley, New York, NY.

Löhner, R., Morgan, K., Peraire, J. and Vahdati, M. (1987), “Finite element flux-corrected transport
(FEM-FCT) for the Euler and Navier-Stokes equations”, Int. J. Num. Meth. Fluids, Vol. 7,
pp. 1093-109.

Parrott, A.K. and Christie, M.A. (1986), “FCT applied to the 2-D finite element solution of tracer
transport by single phase flow in a porous medium”, in Morton, K.W. and Baines, M.J.
(Eds), Proc. ICFD-Conf. Num. Meth. in Fluid Dyn., Academic Press, Reading, MA.

Pflitsch, A., Kleeberger, M. and Küsel, H. (2000), “On the vertical structure of air flow in the
subway New York city and Dortmund (Germany)”, Proc. 4th Annual George Mason Univ.
Transport and Dispersion Modeling Workshop, July, Fairfax, VA.

Quagliarella, D. et al. (Eds) (1998), Genetic Algorithms in Engineering and Computer Science,
Wiley, New York, NY.

Smagorinsky, J. (1963), “General circulation experiments with the primitive equations, I. The basic
experiment”, Mon. Weather Rev., Vol. 91, pp. 99-164.

Sweby, P.K. (1984), “High resolution schemes using flux limiters for hyperbolic conservation
laws”, SIAM J. Num. Anal., Vol. 21, pp. 995-1011.

van Leer, B. (1974), “Towards the ultimate conservative scheme. II. Monotonicity and
conservation combined in a second order scheme”, J. Comp. Phys., Vol. 14, pp. 361-70.

Winter, G., Periaux, J., Galan, M. and Cuesta, P. (Eds) (1995), Genetic Algorithms in Engineering
and Computer Science, Wiley, New York, NY.

Zienkiewicz, O.C. and Taylor, R. (2000), The Finite Element Method, 5th ed., Elsevier,
Amsterdam.

Further reading

Arya, S.P. (1998), Introduction to Micrometeorology, Academic Press, New York, NY.

Arya, S.P. (1999), Air Pollution Meteorology and Dispersion, Oxford University Press, Oxford.

Hanna, S.R., Briggs, G.A. and Hosker, R.P. (1982), Handbook on Atmospheric Diffusion, NOAA
DOE/TIC-11223.

Löhner, R., Chi, Y., Cebral, J.R., Soto, O., Camelli, F. and Waltz, J. (2003), “Improving the speed
and accuracy of projection-type incompressible flow solvers”, AIAA-03-3991-CP.

Stern, A.C., Boudel, R.W., Turner, D.B. and Fox, D.L. (1984), Fundamentals of Air Pollution,
Academic Press, New York, NY.

EC
21,7

760

