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_ Abstract

Efficiency and accuracy are vital for the acceptable simulation of large scale in-
" dustrial sheet stamping problems. Two aspects, implemented within, the explicit
' dynamic program STAMPACK, that effectively address this problem are described:
an anisotropic plasticity material model combined with a thin shell (element that con-

“tains only displacement degrees of freedom and an effective drawhead formulation -

.baseq on an elastic-plastic analogy. -

‘1 Intreduction

" The simulation of large scale industrial sheet stamping problems reguires the com-
- bination of many numerical methods in order to achieve an acceptable result. In-
dustrial problems tend to be geomctricéliy complex and the large deformation, large
strain, material plasticity, friction and contact’ properties of the problem must be
considered for even the simplest simulations. Due to the complexity of the analy-

" sis and the strain rates involved the use of explicit, dynamic technology has many
advantages, ' '

Explicit dynamic programs are more efficient and contain simpler algorithms than
their implicit counterparts but the analyses require an enormous numnber of time
steps, due in part to the conditional stability of the methods.

This aspect places
further emphasis on the efficiency of the methadologies utilised i

n these applications
% .
'The anthors wish to acknowledge the support of other members of the software development

and support tearm, Jose Duarte who kindly donated the experimental picture of the S-rail, and the
Buropean Cornmunity for their support grants. ' :
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" and many researchers have turned their attention sowards this aspeet since efficiency

without loss of accuracy is all-important. It shounld be noted that parallel processing

- techniques fall outside the range of this paper; this will be documented in other

publications (Duffett et al (1997)) but it is noted that any efficiency gained from
new atgorithms will generally aid parallel versions of the software,

The work described. in this paper addresses two new developments where efficiency

“and aceuracy are vital for the acceptable simulation of sheet stamping processes. A

generalised anisotropic plasticity material madel hag beer included within a newly
developed shell element, containing only displacement, degrees of freedom (Ofiate and
Zarate (1996), Cendoya (1996)), This couples a highly effective element for explicit
dynamic analyses with an efficient coding strategy to obtain accurate resu_l.ts_fpr |

- simulations of this type. - o

The action of drawbeads= is vital to the behaviour of the sheet during stamping
operations but the curvatures of these drawbeads are often very large coplpare'd to
the curvatures of the other tools and dies. This requires a very fine descretization of
the sheet mesh which, not only incresses the mesh size, but reduces the critical time
step that may be utilised with the resulting increase in computational cost. The
approach used here is to implement an eﬂ'éc!:ive drawbead_based on an elasto-plastic
.analogy to compuke the drawbead rest'raining force -as a function of the relative
displacement of the sheet across the drawbead line.

" Phe effectiveness of these techniques is shown by means of examples obtained from

‘the most recent NUMISHEET conferences (Makinouchi et ol (1993),_ Lee. et al
(1996)). S R

2 Numerical Methodo_log_y |

‘ 2.1 Explicit dynamic formulation

The dynamic equilibrium equations are written in terms of the principle of virtual

work using an updated Lagrangian formulation. The discretized form of eq_uilibriqxr_x
is obtained in the standard manner (Zienkiewicz and Taylor (1991)):

Mi* + Ci = R! —F! - F (w
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. where M is the mass matrix, C the damping matrix, ¥ the vector of nodal accelera-
“.tions, - the vector of nodal velocities, R. the vector of external loading, F the vector
Cof 1_nt_ern_al fo_;-ces and I, the vector of contact forces, all evaluated at time t.

CA diagonal mass matrix obtained by a lu‘mbing procedure applied to the element
consistent mass matrices is used and the damping matrix is assumed to be pro-
‘portional to this via O = ZaM, a being a damping parameter. The equations of
motion are integrated by the ceniral difference method and, using the assumption
that the M and C matrices'are diagonal, this gives rise to the explicit dynamic

formulation which allows the conﬁguratlon al time.t -+ Af to be computed from tl}e 4

known deformed configuration at time ¢,

Condit.ional stability of the explicit time integration requires that the time step
* - size must not exceed a critical time step size related to the lowest period of vi-

bration Atmg < % Using an approximation to the critical time step size for each.
) element Atcm allows a critical time st.ep size to be computed at each step (or at

_ pre-determmed antelva,ls) whlch therefore prowdes an automatic txme—steppmg pro-
: cedure :

2.2 Contact and Friction

Contact plays a vital role in sheet stamping since the sheet is in contact with all

the tools (punch, blankholder and dies), “Fhis contact is treated by using a standaxd
- penalty formulation with friction conditions governed by a Coulomb model. To
-, improve the efficiency of solution selective node to segment and node to patch search
i s$1ateg1es have been 1mplemented (leggers (1995))

3 - Anisotropic elasto-plastic material model
- A general elasto-plastic material model is considered where the elastic behaviour is
assumed to be isotropic and an amsotloplc plane stress mode] based on Hill’s theory

' g (Hill {1979)} is assumed for the plastic part. The partlculal explesswn of the yield
. Tunction used is (Dodd and Oaddeil (1984)) '

Novt oo 4 (1+2R)|oy - o™ =200 + R)oM . ' (2)
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whese the Lankford coefficient is given by :
 R=(Roe+2RstBa)/L )

From equation {2} the standard quadratic yield function of Hill’s is recovered for -

M= 2 and the ssotropu: von Mises yield function is obtained for R=1 and M = 2.

This matemal is highly desirable for sheet stamping operations but it is computa-
tionaily expensive, In the current implementation an efficient coding strategy 1s

“used but its power is based on the 1mplementat.10n within a thm shell element that

itgelf is highly efﬁment

. 3.1 Basic Shell Triangle (B.ST) Element

"“The BST shell element ﬂe\'eloped is suitable for the analysis of shells allowing for

large displacements and large strains. The shell deformation is described in terms
of the deformation of its midsurface \Vhich is decomposed infto the membrane and
bending states. Thus, with the assumptlun of the Kirchhoff hypothesis, the rate of

. defonnatmn tensor at any pomt of,' the sheli é={é, eyy y _ezy} can be wutten as -

e-—€+zn N (]

where & = {£za, £y, E,,;y} is the rate of membrane deformatlon of the midsurface,
ko= {fuzs Ryys nzy} is the rate of bendmg deformation of the midsurface with
,

" z being the normal distance of the material point from the shell midsurface. The

eflectiveness of this element arises from the fact that & is written only in terms of
dxsplacement degrees of freedom related to a patch of elements as shuwn in Figure 1.

Usmg standard finite element mterpolatlon the rate of membr:n)le deformatwn can
£,
be related to the element nodal velocltses i = {x(e) (g) }r[ via

ZS—Bme R

- where T3, is an operator matrix. Linear interpolation of the element nodal velocities

%(®) leads to a constant rate of membrane deformation tensor within an element; the

" operator matrix B, is then equivalent to the standard plane stress Cons&ant St1a1n.
| Triangle element (Zienkiewice and Taylor (1991)). :

“The approach developed by Ofiate and Cervera {1993) enables the constant element
curvainre to be written in terms of the edge rotations which are, in turn, writ-
ten in terms of the displacements of the nodes belonging to the patch of elements
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Figu_re 1: Element. patch smrounding a shell element () with vertices ijk
sumoundmg the element und91 Lonssdezamon This 1mphes

o= Bba{ﬁ) o S (6)

-where By, is the operator matrix and a® = {)'((e) x4, &®, % T is the vector of *

nodal velocities of a certain patch of elements (a) (b) and {c) suuoundmg the (e) th
: element as seen in Figure 1.

'Comb]mng relations (3) and {6) in equation (4) enables the rate of deformation
" tensor at any point of the shell é to be expressed in terms of nodal translational
velocities only. More details and the explicit form of the matrices B, and Bb can
' ] be found in Onate and Zarate (1996) and Cendoya (19986).

- The element stresses are computed in the local element system af, each time incre-

ment using the condition of plane stress. Objectivity is preserved and the use of_

;-smaii time mc;ement:, in exphmt dyna,mm analysls allows the use of

't+m - a-f—DAe"+1/2 '_ o . G

notmg that the stresses ' must be rotated to the ¢+At configuration before the sum
~ (7} is performed. Constant volume of the element in the plastic range is pleservecl
: -by updatmg the element tluckness at each tlme mcrement

4 '.Drawbea_d_ Methodology -

.. Drawbeads are used in sheet stamping in order to restrain the sheet between the
" biankholder and the dies. This restricts the movement of the sheet in the drawing
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.F'sgu.w 2: Geometry of stamping tools showing real and effective drawbe_adg

. direction and, since the final result is greatly altered, this needs to be accurately

modelled, However, drawbead curvatures tend to be very large compared to the
curvatures of the other tools, and this requires a very fine descretization of the sheet

' thereby mcreasmg the cnmputa.tmnal cost (note t.hat the sheet passes t;hmug;h the
- drawbead) : :

“To avercome these ploblems an effective drawbead formulation has been nnple—
- . mented making use of an _e]aStO-pl&St-lC analogy to compute the drawbead force.

: "Thls formulation replaces the geomcuical representation of the drawbead with a
- line fixed on the tool surface and passmg through the drawbead centres as shown in

Figure 2..

'I‘his restraining force fynaws, which acts tangential to the sheet and normal to the

: 'drawbead line is a function of the amount of drawing Ugraw, defined as the relative
dlsplacement of the sheet with respect to the drawbead in the dlrectlon normal to

the dra\vbead hne ’I‘helefore we have

Cdrmvbudl'aw -1. . 1f chrawbudl‘ﬂ“‘l < fdrawb

= (830" . : (
foemt fé?ﬁ@h'i'(;ifibﬁmﬁ (ot > S8
drawh Ydraw . L

o where 8l 18 called the elastic modulus of the drawbead and fiv, is the maximuom
* force the drawbead can sustain. These characteristic parameters have been referred
" -to the unit length, so the total restraining force acting on the drawbead segment

needs to be integrated over the length lsrays. The function in equation (8) for the

" drawbead force is analogous to an elasto-plastic materigl model and henc_e similar



) l40 DPEVELOPMENTS IN COMPUTATIONAL AND APPLIED MECHANICS

'

p__rpceduree may be usecl to compute this force, )

‘However, before the correct forces can be determined, the intersection of the sheet
.elements withthe drawbead line must be found. Simpler forms of the search algo-

.. tithms used for tlre contact algorithms are used for this and the incremental drawing -
~can be determined for each element on the drawhead line. The plastic refurn al- |

. gorithm can then be used to compute the drawbead force and distribute it to the
: segment nodes of the sheet elements, thereby 1estrammg the motion of the sheet,

‘ 41 ’_ 'E_last:q-pl‘astic analegy

Tlre computation of the drawbead restrammg force can be carried out using the
" following elasto-plastic ana,logy .The drawing velocity vgray is decomposed into a
- -reversible (* elasttc”) part vdmw ancl an rrreversrhie (¢ plastm") part Ud,aw

ludra-“’ : ’vdraw +Udraw S B (9) )

i allewmg the constrtutlve equatmn fer a drawbead to be wrrtten a8 e

fdrawh Gdrawb(vdraw Udra\\) - _. . : B \ 10)

: where fdmwb is am objective rate of the restra,mmg force, The 1rrevers1ble relative . - R

. Cow” js governed by the followmg 1ule

S vdraw . @ fd o (fmax. )2 e : (11)
- 3f drawb ;- raw d_ra\\_b ARt

\vhe;e ¢ is a drawbead “yield concht:on and the Parameter A obeys the classical

. Kuhn—'l‘ucl{er _complementary conditions A > 0, & < 0, Ad=0, summarazmg

‘the possible loadmg/unload;ng srtuatmns and the consrstency requrrement AtIJ = 0 i

:ﬂﬂe_o R ST

_The formuletzons descubed have been implemented within the S’I‘AMPACK software

- code {Stampack User Manual (1598)) developed by the authors and to illustrate their
potentlal two exemples f10m recent NUMISHEET conferenees h&ve been exammed
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5.1." Deep drawing of a square cup

Tllis exarnple reproduces one of the benchmark tests of NUMISHEET'93 (Maki-

T

-nouchi et el {1993}). This is a deep drawing simulation of a square cup where
~drawbeads have been added to the original test allowmg rmmerlcai comparlsons to
be made with the work of Kawka et al. (1994). .
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' Figure 3: Geometrical definition of the square <cup deep drawing problem

The geometrical deseription of the test i_ncluding.the drawbeads is shown in Figure 3.
" Because of symmetry only one quarter of the cup was analyzed using a regular -
- mesh for the sheet of 1800 BST elements and the anisotropic material modet with

.llardenirrg. Prablem details can be obtained in the NUMISHEET’93 reference, but
the effective drawbead parameters are given as: “elastic modulus” of the dra.wbe&d
Cdm,b =217 N/mm maximum drawbead force fd,mh = 82 5 N/mm

Comparison of the thrckrress strain when no d_rawbeads are present is given in Fig-
ure 4 where an average of the experimental results presented at NUMISHEET"93 is

- ‘also shown. Figure 5 shows the fully deformed shape of the sheet after the drawing

process. These results show favoural)ie agreement wrth othels presented

“With drawbee,ds present the behaviour of the sheet alters somewhat, In Flgure 6a
comparrson of the final shest outline-with and without drawbeads shows that the
~sheet draws in less with the drawbeads (shown as straight lines in the figure). The

anticipated evolution of the restraining force in the drawbeads considered is shown .

in Figure 7 where the elasto-plastic anology can be clearly seen. The value of the

_ fully developed drawhead force obtained in the simulation is 1856 N and is in per fect ‘
. ag1 eement w1th the expected value of 1856 25 N predlcteci analytacally

Elank holder
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Figure 6: Comparison of shest Figure 7: Evolution of the réstaining

outline with and without drawheads forces in the drawbeads

These results compare very well with the NUMISHEET 93 results {no drawbeads) ag

well as with those presented by Kawka ef af (1994) whete drawbeads were considered.-
The increase of CPU when the drawbeads were included was practically insignificant,

s0 the efficiency and accuracy goals of the algorithm were both achieved.

5.2 Deep drawing of a S-rail

The second example considered is the deep drawing of a steel S-rail defined in
the NUMISHEET 96. conference (Lee ef af (1096)), This problem simulates the
stamping and elastic springback of the rail {wrinkling and springback cause many
manufacturing problems). '
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The geometry of the rail, the problem description and the problem details can be
found in the NUMISHEET'96 reference. The eomplete sheet was modelled with a
mesh of 12000 BST elements using Hill's plasticity model; the complete mesh for

sheet and tools is shown in Figure 8 (note that the stamping direction is upwards).

Figure 8; Initial setup for S-rail benchmark problem showing,.
from top to bottom, the die, sheet (fine mesh), blankholders and punch

' 'Fhe analysis was run in two stages: (1) stamping, where tle results agree very
7 favourably with those presented in NUMISHEET'96 (see Cendoya (1996)) and 2
springhack, where the tools were removed and the rail was allowed to recover. The
final deformed shape after the springback stage is shown in Figure 9. The buckling
of the surfaces is clearly seen and a cotnparison with experimental results, given in
Figure 10, indicates the good agreement that was obtained. Various cross-sections

of the rail were also compared with excellent agreement.

Figure 9; Deformed shape after Springback {front view)
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L Figure_.ll}: Final def_ormec_i shapes obtained by e}q')eriment and simulation .

The results presented here show good agreement with the numerical and experimen- -

tal resuits presented at NUMISHEET"96. This problem contains both bending and
: .. dra,wmg zones and th_efef_ore_ validates the effectiveness of the current methodologies.

6 Conclusions.

- ‘This paper presénted two highly successful aspects for improving the efficiency while
- meintaining the accuracy of sheet stamping analyses bdseé on the exphmt dynarmc
~methodology: i .
(1) a generalised anisotropic material model has been implemented within the Basic
. Shell Triangle (BST) element which incorporates bending and membrane effects and
- requires only translational displacements as the final nodal variables. The computa-
tional cost of this element is marginally higher than that for a membrane formulation.

"(2) an effective drawbead formulation based on an elasto- pif(stk analogy has proved

to be very simple to utilise, accurate and i incuss onfy minimal addltlonal computa«
tional cost,

I‘hese_aspects havé both been proved via examples to be simple, efficient and ae-
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" curate. They are therefore excellent for use in explicit dynamic programs for the

simulation of large scale industrial sheet stamping problems.
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