
D2.4 First Release of the mesh
generation/adaptation capabilities

Document information table

Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: INRIA
Deliverable Type: Report
Dissemination Level: Public
Related WP & Task: WP 2 Tasks 2.1, 2.2, 2.4
Status: Final Version

Deliverable 2.4

Authoring

Prepared by:
Authors Partner Modified Page/Sections Version Comments
Luca Cirrottola INRIA
Algiane Froehly INRIA
Brendan Keith TUM
Suneth Warnakulasuriya TUM

Change Log

Versions Modified Page/Sections Comments
V1.0 Created document, filling basic information

Approval

Aproved by:
Name Partner Date OK

WP leader Algiane Froehly INRIA 30.11.19 OK
Coordinator Riccardo Rossi CIMNE 30.11.19 OK

Page 2 of 38

Deliverable 2.4

Executive summary

This document presents a description of the parallel mesh adaptation library for the first
actual software release. Regarding the octree mesh-generation capabilities, the reader can
refers to Deliverable 2.2.
As it is discussed in Section 1.3.2 of part B of the project proposal there are two parallel
research lines aimed at developing scalable adaptive mesh refinement (AMR) algorithms
and implementations. The first one is based on using octree-based mesh generation and
adaptation for the whole simulation in combination with unfitted finite element methods
(FEMs) and the use of algebraic constraints to deal with non-conformity of spaces. On
the other hand the second strategy is based on the use of an initial octree mesh that, after
making it conformal through the addition of template-based tetrahedral refinements, is
adapted anisotropically during the calculation.

The core capabilities and kernel algorithms for both strategies were described in De-
liverable 2.2. This reports concerns:

• the improvements from month 12 to 18 and the actual software release (v1.2.0) of
the parallel mesh adaptation library (available on GitHub: https://github.com/

MmgTools/ParMmg/releases/tag/v1.2.0);

• the advancement of adjoint-based adaptive mesh refinement for fluids flows at high
Reynolds numbers.

Regarding the parallel mesh adaptation library, the following items are included:

• An outline of the anisotropic mesh adaptation algorithm.

• A description of the newly implemented algorithms from month 12 to 18.

• A presentation of current performances.

• An outline of the interfacing with the partner multiphysics solver Kratos.

Then, this deliverable describes the interfacing of CFD solvers with the parallel mesh
adaptation library.

The last section presents experiments demonstrating the limitations of the adjoint-
based mesh refinement in Navier-Stokes simulations at high Reynolds number.

Page 3 of 38

https://github.com/MmgTools/ParMmg/releases/tag/v1.2.0
https://github.com/MmgTools/ParMmg/releases/tag/v1.2.0

Deliverable 2.4

Table of contents

1 Introduction 9

2 Parallel unstructured mesh adaptation 10
2.1 Interface displacement by an advancing-front method 10
2.2 Groups sorting for interface advancement direction 11
2.3 Correcting disconnected partitions . 11

2.3.1 Examples of configurations leading to disconnected partitions . . . 11
2.3.2 A posteriori corrections . 14

2.4 Summary of the algorithm . 15
2.5 Open-source implementation . 15
2.6 Parallel weak-scaling of a uniform refinement test case 17

3 Interfacing of CFD solvers to newly developed capabilities 21

4 Adjoint-based adaptive mesh refinement 23
4.1 Set-up . 23
4.2 Finite Difference Sensitivities . 24

4.2.1 Overall results . 24
4.2.2 Results of Re = 0.1 . 24
4.2.3 Results of Re = 100 . 25
4.2.4 Results of Re = 10000 . 26

Page 4 of 38

Deliverable 2.4

List of Figures

1 Example of mesh repartitioning by interface displacement in a sphere. Left:
Initial partitioning. Right: Final partitioning. 12

2 Two-dimensional illustration of some configurations leading to disconnected
partitions. Right zoom: The extremity of a non-convex partition is cut
away from its main domain by front advancement. Left zoom: unordered
front advancement leading to an isolated bite (priority is red-blue-green-
yellow). 13

3 lstopo view of a miriel node . 18
4 Number of nodes in the input and output meshes for the weak scaling test. 20
5 Computational time in the weak scaling test. 20
6 Comparison case setup with boundary conditions 23
7 Node positions in the comparison case . 23
8 Velocity contours of primal solutions for different Reynold’s numbers at

t = 100.0 s . 25
9 Pressure contours of primal solutions for different Reynold’s numbers at

t = 100.0 s . 26
10 Effect on nodal perturbations with varying filter radius 27
11 Drag force variation w.r.t. perturbation step sizes in ”x” direction for node

293 with Re = 0.1 . 28
12 Time averaged drag sensitivity convergence for Re = 0.1 at Node=293 with

rfilter = 0.1mm . 29
13 Time averaged drag sensitivity filter radius varitaions for Re = 0.1 at

Node=293 with ∆x = 1× 10−8m . 30
14 Drag force variation w.r.t. perturbation step sizes in ”x” direction for node

293 with Re = 100 . 31
15 Time averaged drag sensitivity convergence for Re = 100 at Node=293

with rfilter = 0.1mm . 32
16 Drag force variation w.r.t. perturbation step sizes in radial direction for

node 293 with Re = 100 . 32
17 Time averaged drag sensitivity filter radius varitaions for Re = 100 at

Node=293 with ∆x = 1× 10−8m . 33
18 Time averaged drag sensitivity filter radius varitaions for Re = 100 at

Node=293 with ∆r = 1× 10−8m . 33
19 Drag force variation w.r.t. perturbation step sizes in ”x” direction for node

293 with Re = 10000 . 34
20 Time averaged drag sensitivity filter radius varitaions for Re = 10000 at

Node=293 with ∆x = 1× 10−8m . 34
21 Time averaged drag sensitivity filter radius varitaions for Re = 10000 at

Node=1595 with ∆x = 1× 10−8m . 35
22 Time averaged drag sensitivity convergence for Re = 10000 at Node=293

with rfilter = 8 cm . 35
23 Time averaged drag perturbation study for Re = 10000 at Node=293 with

rfilter = 8 cm in ”x” direction . 36
24 Time averaged drag perturbation study for Re = 10000 at Node=293 with

rfilter = 8 cm in radial direction . 37

Page 5 of 38

Deliverable 2.4

25 Finite difference time averaged drag sensitivity forRe = 10000 with rfilter =
8 cm in radial direction . 38

Page 6 of 38

Deliverable 2.4

List of Tables

1 Nomenclature / Acronym list . 8
2 Input mesh edge size with different number of cores. 19
3 Number of nodes and elements in the input and output meshes, with dif-

ferent number of cores. 19
4 Properties of the validation case . 24
5 Perturbation values used in finite difference validation 24
6 Nodal time averaged drag sensitivity reference values 28

Page 7 of 38

Deliverable 2.4

Nomenclature / Acronym list

Acronym Meaning
AMR Adaptive mesh refinement and coarsening
SFC Space-Filling curve
API Application Programming Interface
OOP Object Oriented Programming
BC Boundary Condition
MPI Message Passing Interface

Table 1: Nomenclature / Acronym list

Page 8 of 38

Deliverable 2.4

1 Introduction

This report describes the advancement at month 18 of the workpackage 2.
We recall that this WP aims to develop parallel mesh generation and mesh adapta-

tion tools to be used by solvers in the context of exascale computations. For this, two
complementary strategies are followed: an octree-based strategy and an anisotropic mesh
adaptation strategy.

The octree-based strategy
An octree mesh (so a non-conforming grid) is generated during a preprocessing step.

This octree mesh is also adapted to limit errors during the solution computation.

• Advantages of octree meshes are obvious, a given cell may be subdivided into 8
children following a unique pattern and without impacting its neighbours so the
refinement/unrefinement stencil is minimal and the methods can be efficiently par-
allelized.

• The price to pay is that the complexity is deported onto the solver and the way
it manages the hanging nodes and edges. A second drawback is that elements
can’t be streched (squared cells) and that the number of cells is increased by the
need to control the octree balancing (one need a maximal gap between the level
of subdivision of two adjacent cells which is equivalent to control the maximum
number of hanging nodes per cell face).

The anisotropic mesh adaptation strategy
A tetrahedral conforming mesh (previously generated using an external mesh tool) is

adapted based on an a posteriori error estimator during the solution computation.

• Advantages of tetrahedral meshes is that they are very flexible and impose a unique
constraint, the mesh conformity. Thus, we can produce anisotropic meshes (meshes
streched in a given direction) with very high ratio of anisotropy as well as “optimal”
meshes in term of the number of elements (the size of a tetrahedron doesn’t impact
the size of its neighbour).

• The main drawback of this method is due to the preservation of the mesh conformity:
the modification of a given edge of a tetrahedra may impact all the tetrahedron that
contains one of the extremity of the edge. It introduces lot of dependencies between
the remeshing operators and make it very hard to parallelize.

Note that one can refer to the Deliverable 2.2 for a more detailed presentation of
both strategies, but as conclusion of this recall, both approaches are worth to explore
because they place the difficulties on different parts of the software stack and because
solving efficiently this difficulties remains a challenge.

Page 9 of 38

Deliverable 2.4

2 Parallel unstructured mesh adaptation

The aim of the ParMmg software package is to build parallel mesh adaptation capabilities
on top of the sequential open-source remesher Mmg [8] [3], while preserving the open-source
spirit and the support for general-purpose applications through the library application-
programming interface (API). The core of the algorithm has been detailed in the report for
Deliverable 2.2, and it will be only briefly summarized here before focusing on the main
developments achieved between month 12 and month 18. This last developpements are
available on the master branch of the https://github.com/MmgTools/ParMmg repository.

The core idea of parallel iterative mesh adaptation over constrained interfaces is to
employ sequential remeshing techniques in the domains interior, while parallel interfaces
are constrained (i.e. adaptation is forbidden on the interface), then the interface is moved
by a repartitioning method, mesh migration is performed and the process is iterated until
an overall good mesh quality is reached.

Following previous works on the parallel usage of Mmg [16] [6], we focus on a two-levels
partitioning scheme where the mesh is first partitioned on the parallel computer. Then,
local data are further partitioned into mesh groups, which can be remeshed sequentially
by the local process one after the other. The size of the mesh group is targeted to an
optimal size for the Mmg remeshing process. Both interfaces between partitions and mesh
groups are kept unchanged during the remeshing step.

After the remeshing step, the mesh is repartitioned in order to change the parallel
interface and to allow a new remeshing step. This can be accomplished through several
strategies. In [16] [6], a load balancing step is applied to the partitioning of the parallel
mesh group graph rather, than of the parallel mesh element graph, in order to ease the
partitioning task for the Metis library. To do that, the size of the mesh groups is recal-
ibrated for the repartitiong task. A high weight is placed on graph edges proportionally
to old parallel interfaces, so to penalize the occurrence of these edges in new partition
interiors. ParMmg supports the same algorithm.

A certain compromise between an optimal load balancing and the number or remeshing-
repartitioning iterations needs to be sought. We have found that load balancing algorithms
can be difficult to tune for an effective interface displacement that limits the number of
total iterations performed, as their primary aim is that of minimizing a communication
cost function, without directly targeting mesh displacement. For this reason, we have im-
plemented the support of direct interface displacement methods for mesh repartitioning.
This constitute the main new development for month 18, and it will be detailed in the
following.

2.1 Interface displacement by an advancing-front method

We follow the same idea employed in [10] [7] to move the interface by an advancing-front
algorithm. We adopt an element-based partitioning scheme, thus we aim at propagating
the front of parallel nodes by walking on edge connectivity, in order to mark the visited
tetrahedra with the color brought by the front.

To this purpose, a front direction needs to be chosen. This operation allows to give
each front node a unique color, based on the colors of the tetrahedra in its ball, and a
logical operator to decide whether this color should be passed to the tetrahedra visited
by the front, or not. This operation also allows to handle the case of colliding fronts.

Page 10 of 38

https://github.com/MmgTools/ParMmg

Deliverable 2.4

Once a direction is chosen for the propagation of the interface, the front nodes visit all
the tetrahedra in their ball and mark them for repartitioning, if it is compatible with the
front direction. Then, the color is passed to the outer points of the ball, and a new front
is created. By performing this process N times, an N−layer mesh subgroup is built just
beside the old parallel interfaces. This process is reminiscent of a parallel version of the
greedy algorithm for sequential mesh partitioning [11], where the seeds are not chosen
independently but only the current node interfaces are allowed to grow their ball by N
new layers. At the end of each step, a parallel update is performed for the color of the
nodes on current parallel interfaces.

This algorithm effectively produces a new mesh partitioning that can be directly used
for any already available mesh migration routines. An example of front advancement on 4
partitions in a sphere is given in figure 1. From the practical point of view, this algorithm
needs to be complemented with: 1) the choice of the front advancement direction, and
2) handling of disconnected partitions, i.e. partitions where all elements cannot be reached
by face adjacency, which are very likely to be produced by the advancing front [11][17].

2.2 Groups sorting for interface advancement direction

For every interface, a propagation direction needs to be chosen. In [14] and [9], processors
are paired in order to balance the computational load. Since optimal load balancing is
not the main aim of the remeshing phase, we have preferred to sort the current groups
by the number of elements, and move the interface in the direction of the bigger mesh
group. This näıve global sorting allows to effectively handling the case of colliding fronts,
as each of them continues to propagate into the bigger partition found, without the need
to form new pairings.

2.3 Correcting disconnected partitions

As already hinted in [11, 14], experience shows that any advancing-front mesh partitioning
algorithm is likely to produce disconnected partitions in given conditions. Although Mmg

is capable of handling disconnected partitions, and it could be argued that a solver should
be capable of handling generic mesh partitions, this is often not an optimal situation to
perform computations. For example, in mesh adaptation over constrained interfaces one
should aim at keeping the ratio between surface and volume elements as high as possible,
which is not the case when disconnected mesh parts appear in a partition. Disconnected
partitions also require special treatments for the localization step for metrics interpolation
from the old to the new mesh (like tree-searches), which are not needed for connected
partitions.

In the following, some examples of common problems are presented, together with the
a posteriori correction implemented in ParMmg.

2.3.1 Examples of configurations leading to disconnected partitions

The next paragraph focuses on the presentation of the most common geometrical and
partitioning configurations leading to disconnected meshes. For sake of simplicity, we use
two-dimensional examples to illustrate this configurations.

Page 11 of 38

Deliverable 2.4

;

(a) Initial groups.

;

(b) Groups after front advancement.

;

(c) Initial groups (volumic cut).

;

(d) Groups after front advancement (volumic
cut).

Figure 1: Example of mesh repartitioning by interface displacement in a sphere. Left:
Initial partitioning. Right: Final partitioning.

Page 12 of 38

Deliverable 2.4

(a) Initial groups and interface front.

(b) Groups after one level of front advancement.

Figure 2: Two-dimensional illustration of some configurations leading to disconnected
partitions. Right zoom: The extremity of a non-convex partition is cut away from its
main domain by front advancement. Left zoom: unordered front advancement leading to
an isolated bite (priority is red-blue-green-yellow).

Page 13 of 38

Deliverable 2.4

Eaten non-convex partitions If the original partition is not convex, the interfaces
could move inward so to cut away some partition extremities when the interface hits
a boundary or when several interface fronts collide. This issue can be easily solved by
checking and fixing the contiguity of the interior partition at the end of the interface
displacement step. This configuration is illustrated in the right zoom in figure 2.

Isolated bites If care is not given to the order by which each node grows and marks
its ball, it can happen that the color of a partition is propagated when it should not have
been in the first place, and the following propagation of a higher-priority front takes some
isolated bites [11] that disconnect the previously grown ball from its main partition. This
configuration is illustrated in the left zoom in figure 2.

Parallel star configurations In the same way, if the front reaches an interface on a
local partition and this information is not communicated to the remote processor, at the
next propagation step the layer that propagated on the remote partition could not be
reachable anymore by its original partition. This behavior is easily corrected by always
performing a parallel update after one level of front advancement.

2.3.2 A posteriori corrections

From the practical point of view, it is difficult to predict all the situations that could
lead to a disconnected partition in three dimensions. A more robust approach is that of
a posteriori correcting partition connection after the front advancement step. This can
be achieved by means of two kinds of checks, one on the contiguity of the local partition,
one on the reachability of all layers that have propagated in the local partition by means
of their remote counterpart. An a posteriori correction also allows for a generic choice of
the interface propagation algorithm.

Contiguity fix for the local partition

1. Similarly to greedy algorithms, we choose a color and start from an element of this
color: we attempt at touching all elements of this color by adjacency (through the
element faces). Elements that we are able to reach by adjacency are stored in a list
(main list).

2. While we are able to find an element of the same color outside of main list :

• we build by adjacency a second list of elements of this color (next list);

• If next list is not empty, we compare the lengths of next list and main list and
we merge the smaller list of elements into an adjacent color. The biggest list
is stored as main list and we go back to step 2.

3. Go back to step 1 (choice of a color and construction of main list) until all the colors
have been treated.

Page 14 of 38

Deliverable 2.4

Reachability fix for the inward-propagating remote partitions As hinted in [17],
the front advancement can create subgroups cut away from any interface, or subgroups
connected only to an interface of different color than their remote counterpart. These
subgroups are not reachable by their remote partition anymore. To fix this problem, after
a parallel exchange of remote colors on the current interface, for each interface face we
attempt at building a list of elements of the same remote color which can be touched by
adjacency, and we mark them as reachable. At the end of this process, we iteratively look
for a list of adjacent elements which have not been reached by remote colors, and merge
them into an adjacent color (reachable or not).

The current implementation is conceived in order to leave the interface displacement
and the contiguity/reachability correction independent. This allows for a certain freedom
in the experimentation of different advancing-front methods (for example, advancing on
element adjacency instead of node adjacency) and interface sorting methods. Although
a partition could be a priori split into an arbitrary number of disconnected parts, the
contiguity correction algorithm only uses two lists to immediately compare two parts
and merge the smallest into another color, thus limiting the memory usage. Similarly,
the reachability correction algorithm only uses one list to store the current subgroup
of unreachable elements. At the end of the two correction steps, all mesh elements are
guaranteed to having been touched by a list only once, if the counter is decremented every
time an element is merged in a different color.

2.4 Summary of the algorithm

The key features of the parallel remeshing algorithm can be summarized as follows:

• Two-level parallelization scheme (distributed mesh partitions and local mesh groups);

• Sequential remeshing of mesh groups over constrained parallel interfaces.;

• Mesh repartitioning by interface displacement.

A pseudocode for the ParMmg workflow is presented in algorithm 1. Mesh migration
directly exploits the two-level parallelization schemes, as mesh parts to be sent to other
processors are assembled into mesh groups to be used for parallel communication, while
mesh repartitioning acts as an independent step which can be further tailored to ensure
a more robust load balancing. A pseudocode for mesh repartitioning is presented in
algorithm 2

2.5 Open-source implementation

The presented algorithm is implemented into the ParMmg software package for parallel
unstructured mesh adaptation, released under the GNU Lesser General Public License
(LGPL). The implementation is targeted to provide:

• Reusage of existing sequential remeshing libraries;

• Non-intrusive linkage with third-party solvers;

• Improvable parallel performances by means of dynamic load balancing.

Page 15 of 38

Deliverable 2.4

Algorithm 1 ParMmg algorithm pseudocode.

1: Input(mesh,metrics); /* Initialization (sequential or parallel) */
2: Group split; /* Split partitions into groups */
3: for i = 0, . . . , imax − 1 do /* Iterative remeshing-repartitioning */
4: Update old groups; /* Set background mesh for metrics interpolation */
5: for igrp = 0, . . . , ngrp− 1 do /* Loop on mesh groups */
6: Mmg call; /* Remeshing */
7: end for
8: Interpolate metrics; /* Recompute metrics */
9: Mesh repartitioning; /* Interface displacement and mesh migration */

10: end for
11: Output(mesh,metrics); /* Return the adapted mesh */

Algorithm 2 Mesh repartitioning pseudocode.

1: Input(mesh groups);
2: Sort interfaces; /* Choose interface propagation direction */
3: Parallel update of interface colors;
4: for ilayer = 0, . . . , nlayer − 1 do /* Loop on mesh groups */
5: Propagate node front;
6: end for
7: Correct contiguity;
8: Correct reachability;
9: Mesh migration;

10: Output(mesh groups); /* Return repartitioned groups */

Page 16 of 38

Deliverable 2.4

Open-source software packages are used for every step in the computing chain, from mesh
partitioning, remeshing, node renumbering, mesh visualization. The remeshing kernel is
the sequential Mmg library [8] [3]. Parallelization is performed through Message Passing
Interface (MPI) libraries. Partitioning of a centralized input mesh is performed by means
of the Metis library [15] [2], and the Scotch library [5] is employed for nodes renumbering
to reduce cache misses. Finally, mesh files can be saved for visualization in the Medit
format (readable by Medit [12] [1] and Gmsh [13]) and in VTK format [18][4]. Finally,
version control is performed with Git and continuous integration testing with Jenkins.

All the needed modules have been implemented in C99 and all the parallel mesh
adaptation kernel functions benefits from the updates available in the last release of the
Mmg remesher.

The implemented API functions aim to provide the project partner with the tools to
couple their computational mechanics solvers with the parallel mesh adaptation library.
The requirements for these API functions can be found in the Deliverable 2.1 As such,
the API functions fall into the three main categories described in the following para-
graphs. Basic tutorials are available with the source code, and a complete documentation
is underway on the project webpage.

Functions to initialize and recover a sequential or distributed mesh
These functions closely match the analogous API functions available in the Mmg

remeshing library to initialize pointers to Mmg data structures and to set/get mesh enti-
ties (nodes, elements, boundary triangles) one-by-one or by arrays. The user is required
to set mesh elements (tetrahedra) and nodes, together with boundary triangles on each
local mesh.

Functions to set and get the interface entities of a distributed mesh
In order to be able to work both with node-centered and element-centered computa-

tional mechanics solvers, two separate sets of API functions are available to initialize
either interface faces or nodes (if both are provided, nodes information are discarded).
The user is asked to provide an array with the indices of interface faces/nodes in the local
input mesh, together with an array with the global indices of the same entities (provided
in the same order). This information is internally used to reconstruct the communication
graph among processes.

Functions to check the correctness of the set interface entities against input data are
also provided.

Main parallel mesh adaptation function
Two library functions are provided in order to run the parallel mesh algorithm starting

from a sequential or a distributed mesh.

2.6 Parallel weak-scaling of a uniform refinement test case

For a preliminary evaluation of the parallel performances of the algorithm, we test its
weak scalability for an uniform refinement case. The aim is that of distributing the work
load on each mesh group as uniformly as possible.

The geometry is a sphere of radius 10. Input meshes have been generated with Gmsh,
and their size grows with the number of processors (the input edge size is shown in table 2).

Page 17 of 38

Deliverable 2.4

Figure 3: lstopo view of a miriel node

The assigned target mesh size is about 1/6 the original edge size. The size of the
output adapted meshes are shown in table , compared with the sizes of the corresponding
input meshes. The same results are visualized in figure 4, in order to check that the load
is maintained approximately constant in the weak scaling test.

Tests have been performed on the Miriel nodes of PlaFRIM cluster1, equipped with 2
Dodeca-core Haswell Intel Xeon E5-2680 v3 (2.5 GHz) and 128 GB of RAM (see figure 3 for
the lstopo view), connected through Infiniband QDR TrueScale (40 Gb/s) and Omnipath
(100 Gb/s).

The computational time in the weak scaling test is shown in figure 5. The total time
is split into the time spent in the remesher and the time spent in mesh repartitioning.
In this phase, the time spent in migrating the mesh (MPI communication) is explicitly
highlighted. It can be seen that the remeshing time is kept approximately constant with
the number of cores, while the time for mesh migration constitute a bottleneck on more
than 64 cores. The reasons for this behavior are currently under investigation. Even if
performances can clearly still be optimized, parallel remeshing is able to generate billion-
element meshes over 128 cores (table 3).

1Supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil
Régional d’Aquitaine (see https://www.plafrim.fr/)

Page 18 of 38

Deliverable 2.4

Cores h(in)

1 0.16667
2 0.13228
4 0.10499
8 0.08333
16 0.066142
32 0.052497
64 0.041667
128 0.033071
256 0.026248

Table 2: Input mesh edge size with different number of cores.

Cores Nodes (in) Nodes (out) Elements (in) Elements (out)
1 3842 1591657 18990 9418375
2 7251 2645804 37752 15893278
4 13871 5439170 75195 32688539
8 26772 11147795 149329 67019257
16 52235 22703159 297586 136515675
32 102101 46023487 593845 276849115
64 205737 77677606 1192034 552962469
128 411553 164118099 2416482 1115114432
256 856547 328668480 5044573 2260289909

Table 3: Number of nodes and elements in the input and output meshes, with different
number of cores.

Page 19 of 38

Deliverable 2.4

Figure 4: Number of nodes in the input and output meshes for the weak scaling test.

Figure 5: Computational time in the weak scaling test.

Page 20 of 38

Deliverable 2.4

3 Interfacing of CFD solvers to newly developed ca-

pabilities

This release of ParMmg has been interfaced with the open-source Kratos multiphysics
solver in collaboration with the Kratos team at CIMNE. Kratos was already interfacing
the sequential Mmg library. Thus, the new software coupling only needs minor modifica-
tions in order to handle the parallel version.

From the ParMmg side, the main difference with the Mmg API functions is the presence
of additional functions to set and get the nodes or faces on the parallel interfaces. The
following code snippet illustrates an example interface to ParMmg in C. Parameters and
functions related to parallel interfaces are highlighted in blue (in the example, we are
passing parallel nodes).

1 /* Initialize ParMmg */

2 PMMG_Init_parMesh (PMMG_ARG_start, /* ... */, PMMG_ARG_end);

3

4 PMMG_Set_meshSize (parmesh,nVerts,nTets,nPrisms,nTris,nQuads,nEdges);

5 PMMG_Set_vertices (parmesh,verts_tab,verts_refs);

6

7 /* Set mesh entities: */

8 /* Nodes... */

9 /* Tetrahedra... */

10

11 /* Communicators : construction through interface nodes or faces */

12 PMMG_Set_iparameter(parmesh, PMMG_IPARAM_APImode,PMMG_APIDISTRIB_nodes);

13 PMMG_Set_numberOfNodeCommunicators(parmesh, nNodeComm);

14 for(icomm = 0; icomm < nNodeComm; icomm++) {
15 /* Set nb. of entities on interface and rank of the outward proc */

16 PMMG_Set_ithNodeCommunicatorSize(parmesh,icomm,color_node[icomm],

17 nitem_node_comm[icomm]);

18 /* Set local and global index for each entity on the interface */

19 PMMG_Set_ithNodeCommunicator_nodes(parmesh,icomm,

20 idx_loc[icomm],idx_glo[icomm],

21 nitems);

22 }
23

24 /* Main function : Parallel remeshing (distributed memory) */

25 PMMG_parmmglib_distributed (parmesh);

26

27 /* Get mesh entities: */

28 /* Nodes... */

29 /* Tetrahedra... */

30

31 /* Free structures */

32 PMMG_Free_all(PMMG_ARG_start,/*...*/,PMMG_ARG_end);

From the Kratos side, the interfacing with Mmg is handled by a class MmgProcess

Page 21 of 38

Deliverable 2.4

which had to be generalized to a new ParMmgProcess class, capable of setting and getting
parallel entities in the Kratos parallel data structures.

The following code snippets illustrates an example of Python script for a simulation
setup. The same parameters controlling the Mmg library can be used. ParMmg specific
parameters and Kratos functions for parallel communicators and the ParMmgProcess

object are highlighted in blue.

1 # Call the parallel fill communicator to assign the nodes to the right

2 # mesh containers

3 pfc=KratosMultiphysics.mpi.ParallelFillCommunicator(mainModelPart.GetRootModelPart())

4 pfc.Execute()

5

6 # ... Compute adaptation metrics ...

7

8 # We create the remeshing process

9 remesh_param = KratosMultiphysics.Parameters("""

10 {{
11 "filename" : "{filename}",
12 "save_external_files" : true

13 "advanced_parameters" :

14 {{
15 "force_hausdorff_value" : false,

16 "hausdorff_value" : 0.0001,

17 "no_move_mesh" : true,

18 "no_surf_mesh" : true,

19 "no_insert_mesh" : true,

20 "no_swap_mesh" : true,

21 "deactivate_detect_angle" : false,

22 "force_gradation_value" : false,

23 "gradation_value" : 1.3

24 "niter" : 4

25 "meshSize" : 30000

26 "metisRatio" : 82

27 "hgradreq" : 5.0

28 "APImode" : 0

29 }}
30 }}
31 """.format(filename="parts_"+ str(mpi.size)+"/in_"+str(mpi.rank)))

32

33

34 # Call a ParMmg process: ParMmg Set_* functions + parallel communicators

35 ParMmgProcess = MeshingApplication.ParMmgProcess3D(mainModelPart, remesh_param)

36 ParMmgProcess.Execute()

Page 22 of 38

Deliverable 2.4

4 Adjoint-based adaptive mesh refinement

In this section, we report on the advancement of adjoint-based adaptive mesh refinement
for fluids flows at high Reynolds numbers. As remarked previously, in Deliverable 2.3,
adjoint-based (i.e., goal-oriented) adaptive mesh refinement in Navier–Stokes simulations
has only been successfully demonstrated in a very limited number of studies with low
Reynolds numbers. The main purpose of this section is to present a number of experiments
performed by Suneth Warnakulasuriya at the chair of Structural Analysis at TUM which
demonstrate some of the practical limitations of such applying such capabilities at high
Reynolds numbers.

The upshot is that accurate computation of time-averaged sensitives becomes ex-
tremely difficult and expensive as the Reynolds number grows, even with a finite differ-
ence strategy. Compounded with the established fact that the adjoint problem is ill-posed
over long time intervals, for high Reynolds numbers [?], this has greatly inhibited the
incorporation of adjoint-based adaptive mesh refinement in the ExaQUte project.

4.1 Set-up

A comparison of drag sensitivities on mesh nodes for a flow over a cylinder is studied
under finite difference method and adjoint method in this section. Figure 6 illustrates
simulation setup. Figure 7 illustrates positions of the nodes which is considered in this
comparison process. The properties of the comparison case is given in the Table 4.

Wall

Wall

Outlet
Inlet Cylinder

Figure 6: Comparison case setup with boundary conditions

319

293

1654
1595

699

1091

Figure 7: Node positions in the comparison case

Page 23 of 38

Deliverable 2.4

Table 4: Properties of the validation case

Property Symbol Value

Cylinder diameter 0.1m
Density ρ 1.0 kgm−3

Dynamic viscosity µ 1× 10−5 Pas
Time step ∆t 0.01 s

Different Reynold’s numbers are simulated using this 2D comparison case by varying
the dynamic viscosity. Inlet is assigned with a parabolic constant inlet velocity.

4.2 Finite Difference Sensitivities

Finite difference sensitivities are calculated by perturbing nodal positions of the nodes
shown in Figure 7. Table 5 depicts value ranges used in this section for comparison. Filter
radius (i.e. rfilter) with 1 × 10−4m is used to illustrate the finite difference sensitivities
without vertex morphing, since there is only one node within that radius for all chosen
nodes in the mesh used for simulations.

Figure 10 depicts the effect on neighboring nodes of node 293 when filter radius
is varying. Vertex morphing is applied on the cylinder surface for control point (i.e.
design space) perturbations, ensuring maximum perturbation in the particular mesh node
(i.e. geometry space) is the perturbation which is expected. Therefore, the maximum
perturbation illustrated in Figure 10 has maximum perturbation of 1×10−8m. Therefore,
perturbations in the design space may differ.

This finite difference sensitivity study is carried out for different Reynolds numbers, the
Reynolds numbers are varied by varying the dynamic viscosity of the fluid while keeping
a constant parabolic inlet velocity field which is having maximum velocity of 1.0ms−1.

Table 5: Perturbation values used in finite difference validation

Property Units Values

Reynolds number 0.1, 102, 104

Perturbations m 1× 10−4, 1× 10−5, 3× 10−6, 2× 10−6,
1× 10−6, 3× 10−7, 1× 10−7, 1× 10−8

Filter radius m 8× 10−2, 4× 10−2, 2× 10−2, 1× 10−2, 1× 10−4

4.2.1 Overall results

Figure 8 and Figure 9 depicts the velocity and pressure variations of the primal solu-
tions for different Reynold’s numbers. The Reynold’s numbers are varied by varying the
dynamic viscosity, while keeping the velocity inlet profile a constant.

4.2.2 Results of Re = 0.1

The raw drag forces for different perturbation step sizes with rfilter = 1 × 10−4m is
illustrated in Figure 11. The drag force illustrates a deterministic behaviour.

Page 24 of 38

Deliverable 2.4

Re = 0.1

Re = 100

Re = 10000

Figure 8: Velocity contours of primal solutions for different Reynold’s numbers at t =
100.0 s

Then, finite difference sensitivities with rfilter = 1× 10−4m is calculated for different
perturbations since this only involves nodal perturbations (no vertex morphing since filter
radius is too smaller than the minimum distance between adjacent nodes in the mesh).
Figure 12 depicts variations in the drag force with respect to variations in the pertur-
bation. It is evident that, perturbations in the range of [1× 10−8m, 3× 10−7m] doesn’t
change the calculated time averaged drag sensitivity, hence the convergence is achieved.

Then simulations with perturbations of ∆x = 1×10−8m is chosen for the filter radius
study as depicted in Figure 13 for node 293 in ”x” direction. It is evident that, for Re =
0.1, finite difference sensitivity for different filter radius agrees with their corresponding
adjoint sensitivity calculations.

4.2.3 Results of Re = 100

The raw drag forces for different perturbation step sizes with rfilter = 1 × 10−4m is
illustrated in Figure 14. The drag force illustrates a deterministic behaviour.

Then, finite difference sensitivities with rfilter = 1× 10−4m is calculated for different
perturbations since this only involves nodal perturbations (no vertex morphing since filter
radius is too smaller than the minimum distance between adjacent nodes in the mesh).
Figure 15 and Figure 16 depict variations in the drag force with respect to variations in the
perturbation. It is evident that, perturbations in the range of [1× 10−8m, 3× 10−7m]
doesn’t change the calculated time averaged drag sensitivity, hence the convergence is
achieved.

Page 25 of 38

Deliverable 2.4

Re = 0.1

Re = 100

Re = 10000

Figure 9: Pressure contours of primal solutions for different Reynold’s numbers at t =
100.0 s

Then simulations with perturbations of ∆x = 1 × 10−8m and ∆r = 1 × 10−8m are
chosen for the filter radii study as depicted in Figure 17 for node 293 in ”x” direction
and Figure 18 for the same node in radial direction. It is evident that, for Re = 100,
finite difference sensitivity for different filter radius agrees with their corresponding adjoint
sensitivity calculations.

4.2.4 Results of Re = 10000

The raw drag forces for different perturbation step sizes with rfilter = 1 × 10−4m is
illustrated in Figure 19. The drag force illustrates a chaotic behaviour.

Due to the chaotic behaviour at Re = 10000, filter radius study was carried out for the
chosen perturbation of 1× 10−8m in both x, and y directions. The Figure 20 depicts the
results of this study. It is evident from this, the chaotic behaviour at Re = 10000 makes
finite difference sensitivity calculation to have an exponential growth due to ”butter fly”
effect. But, it shows less exponential growth with the increase of the rfilter radius. The
node 293 is located in the attached region of the cylinder for this case. Further, a node
at detached region of the cylinder (i.e. node 1595) is also analysed for time averaged
drag force sensitivity as depicted in Figure 21. This node also describes less exponential
growth when the rfilter radius is increased.

Results of the perturbation step size convergence study for rfilter = 8 × 10−2m is
illustrated in Figure 22. This

Figure 22 depicts that, if the perturbation step size is too small, then the noise

Page 26 of 38

Deliverable 2.4

rfilter = 4 cm rfilter = 2 cm

rfilter = 1 cm rfilter = 0.1mm

Figure 10: Effect on nodal perturbations with varying filter radius

dominates the finite difference solution for the case of the highest rfilter = 8 cm done
in this numerical experiment. This is further elaborated in Figure 23. The range from
1mm to 5mm illustrate a constant gradient in the Figure 23, indicating a constant time
averaged drag force sensitivity. These are large perturbations (i.e. in the range of [1%, 5%]
of the cylinder diameter), therefore mesh deformations may make some elements to have
low quality. Therefore, in order to minimize the low quality elements in the mesh, radial
perturbations are studied for the case of Re = 10000 and depicted in Figure 24 (Nodal
perturbations are done in the inverse radial direction).

Linear approximation shown in Figure 24 illustrates a good fit for the data set in
the range where max perturbation lies in between [3mm, 6.5mm] for time averaged drag
sensitivity in the radial direction at node 293. The negative value of the gradient of
the linear approximation is taken as the reference time averaged drag sensitivity since
perturbations are done in the inverse radial direction.

Page 27 of 38

Deliverable 2.4

t 1 × 10 2 s
dyn 1.00
Re 1 × 10 1

Tend 100.00 s
rfilter 1 × 10 4 m

Node 0293

0 5 10 15 20 25
Time [s]

0

5

10

15

20

Dr
ag

 fo
rc

e
[N

]
Compare Perturbations

Unperturbed
x = 1 × 10 4

x = 1 × 10 5

x = 1 × 10 6

x = 1 × 10 7

x = 1 × 10 8

x = 2 × 10 6

x = 3 × 10 6

x = 3 × 10 7

Figure 11: Drag force variation w.r.t. perturbation step sizes in ”x” direction for node
293 with Re = 0.1

Table 6: Nodal time averaged drag sensitivity reference values

Node id Direction Time averaged drag sensitivity [Nm−1] R2 error N

293 Radial −5.279× 10−2 0.9800 8
1595 Radial +1.963× 10−1 0.9796 12
1091 Radial −1.629× 10−1 0.9953 5
319 Radial −6.719× 10−2 0.9314 6
699 Radial −6.444× 10−2 0.9304 6
1654 Radial −7.698× 10−2 0.9578 5
855 Radial +1.283× 10−1 0.9601 15
2029 Radial +1.677× 10−1 0.9576 15

References

[1] Medit software package for scientific visualization on unstructured meshes. URL
https://github.com/ISCDtoolbox/Medit.

[2] Metis software package for graph partitioning. URL https://glaros.dtc.umn.

edu/gkhome/metis/metis/overview.

[3] Mmg software package for simplicial remeshing. URL https://www.mmgtools.org/.

[4] VTK software package for scientific visualization. URL https://vtk.org/.

Page 28 of 38

https://github.com/ISCDtoolbox/Medit
https://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://www.mmgtools.org/
https://vtk.org/

Deliverable 2.4

0 20 40 60 80 100
Time window [s]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Ti
m

e
av

er
ag

ed
 d

ra
g

fo
rc

e
se

ns
iti

vi
ty

 [N
/m

]
Finite Difference Sensitivity Convergence Study for Re = 1 × 10 1, Node=293, Direction=X, rfilter = 1 × 10 4 m

x = 1.0 × 10 8 m
x = 1.0 × 10 7 m
x = 3.0 × 10 7 m
x = 1.0 × 10 6 m
x = 2.0 × 10 6 m
x = 3.0 × 10 6 m
x = 1.0 × 10 5 m
x = 1.0 × 10 4 m

Adjoint

Figure 12: Time averaged drag sensitivity convergence for Re = 0.1 at Node=293 with
rfilter = 0.1mm

[5] Scotch software package for graph partitioning. URL https://gitlab.inria.fr/

scotch/scotch.

[6] P. Benard, G. Balarac, V. Moureau, C. Dobrzynski, G. Lartigue, and Y. D’Angelo.
Mesh adaptation for large-eddy simulations in complex geometries. International
Journal for Numerical Methods in Fluids, 81(12):719–740, 2016. doi:10.1002/fld.4204.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4204.

[7] P. A. Cavallo, N. Sinha, and G. M. Feldman. Parallel unstructured mesh adapta-
tion method for moving body applications. AIAA Journal, 43(9):1937–1945, 2005.
doi:10.2514/1.7818. URL https://doi.org/10.2514/1.7818.

[8] C. Dapogny, C. Dobrzynski, and P. Frey. Three-dimensional adaptive domain remesh-
ing, implicit domain meshing, and applications to free and moving boundary prob-
lems. Journal of Computational Physics, 262:358 – 378, 2014. ISSN 0021-9991.
doi:https://doi.org/10.1016/j.jcp.2014.01.005. URL http://www.sciencedirect.

com/science/article/pii/S0021999114000266.

[9] H. Digonnet, T. Coupez, P. Laure, and L. Silva. Massively parallel anisotropic
mesh adaptation. International Journal of High Performance Computing Ap-
plications, Mar. 2017. doi:10.1177/1094342017693906. URL https://hal.

archives-ouvertes.fr/hal-01487424.

[10] C. Dobrzynski and J.-F. Remacle. Parallel mesh adaptation. Poster,

Page 29 of 38

https://gitlab.inria.fr/scotch/scotch
https://gitlab.inria.fr/scotch/scotch
http://dx.doi.org/10.1002/fld.4204
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4204
http://dx.doi.org/10.2514/1.7818
https://doi.org/10.2514/1.7818
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2014.01.005
http://www.sciencedirect.com/science/article/pii/S0021999114000266
http://www.sciencedirect.com/science/article/pii/S0021999114000266
http://dx.doi.org/10.1177/1094342017693906
https://hal.archives-ouvertes.fr/hal-01487424
https://hal.archives-ouvertes.fr/hal-01487424

Deliverable 2.4

0 20 40 60 80 100
Time window [s]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Ti
m

e
av

er
ag

ed
 d

ra
g

fo
rc

e
se

ns
iti

vi
ty

 [N
/m

]
Filter Radius Study for Re = 1 × 10 1, Node=293, x = 1 × 10 8 m

FD rfilter = 1.0 × 10 4 m
FD rfilter = 1.0 × 10 2 m
FD rfilter = 2.0 × 10 2 m
FD rfilter = 4.0 × 10 2 m
FD rfilter = 8.0 × 10 2 m
AD rfilter = 1.0 × 10 4 m
AD rfilter = 1.0 × 10 2 m
AD rfilter = 2.0 × 10 2 m
AD rfilter = 4.0 × 10 2 m
AD rfilter = 8.0 × 10 2 m

Figure 13: Time averaged drag sensitivity filter radius varitaions for Re = 0.1 at
Node=293 with ∆x = 1× 10−8m

2007. URL https://www.math.u-bordeaux.fr/~dobrzyns/telechargement/

parallmeshposter.pdf.

[11] C. Farhat. A simple and efficient automatic fem domain decomposer. Computers &
Structures, 28(5):579 – 602, 1988. ISSN 0045-7949. doi:https://doi.org/10.1016/0045-
7949(88)90004-1. URL http://www.sciencedirect.com/science/article/pii/

0045794988900041.

[12] P. Frey. MEDIT : An interactive Mesh visualization Software. Technical Report
RT-0253, INRIA, Dec. 2001. URL https://hal.inria.fr/inria-00069921.

[13] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator
with built-in pre- and post-processing facilities. International Journal for Numer-
ical Methods in Engineering, 79(11):1309–1331, 2009. doi:10.1002/nme.2579. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579.

[14] S. W. Hammond. Mapping Unstructured Grid Computations to Massively Parallel
Computers. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 1992. UMI
Order No. GAX93-02685.

[15] G. Karypis. METIS 5.1.x Manual. URL https://glaros.dtc.umn.edu/gkhome/

fetch/sw/metis/manual.pdf.

[16] V. Moureau, P. Domingo, and L. Vervisch. Design of a massively parallel cfd
code for complex geometries. Comptes Rendus Mécanique, 339(2):141 – 148, 2011.

Page 30 of 38

https://www.math.u-bordeaux.fr/~dobrzyns/telechargement/parallmeshposter.pdf
https://www.math.u-bordeaux.fr/~dobrzyns/telechargement/parallmeshposter.pdf
http://dx.doi.org/https://doi.org/10.1016/0045-7949(88)90004-1
http://dx.doi.org/https://doi.org/10.1016/0045-7949(88)90004-1
http://www.sciencedirect.com/science/article/pii/0045794988900041
http://www.sciencedirect.com/science/article/pii/0045794988900041
https://hal.inria.fr/inria-00069921
http://dx.doi.org/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579
https://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
https://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf

Deliverable 2.4

t 1 × 10 2 s
dyn 1.00
Re 1 × 10+2

Tend 100.00 s
rfilter 1 × 10 4 m

Node 0293

0 5 10 15 20 25
Time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Dr
ag

 fo
rc

e
[N

]
Compare Perturbations

Unperturbed
x = 1 × 10 4

x = 1 × 10 5

x = 1 × 10 6

x = 1 × 10 7

x = 1 × 10 8

x = 2 × 10 6

x = 3 × 10 6

x = 3 × 10 7

Figure 14: Drag force variation w.r.t. perturbation step sizes in ”x” direction for node
293 with Re = 100

ISSN 1631-0721. doi:https://doi.org/10.1016/j.crme.2010.12.001. URL http://

www.sciencedirect.com/science/article/pii/S1631072110002111. High Per-
formance Computing.

[17] C. Ozturan. Distributed Environment and Load Balancing for Adaptive Unstructured
Meshes. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 1995. UMI
Order No. GAX96-22925.

[18] W. Schroeder, K. Martin, B. Lorensen, and I. Kitware. The Visualization Toolkit:
An Object-oriented Approach to 3D Graphics. Kitware, 2006. ISBN 9781930934191.

Page 31 of 38

http://dx.doi.org/https://doi.org/10.1016/j.crme.2010.12.001
http://www.sciencedirect.com/science/article/pii/S1631072110002111
http://www.sciencedirect.com/science/article/pii/S1631072110002111

Deliverable 2.4

0 20 40 60 80 100
Time window [s]

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Ti

m
e

av
er

ag
ed

 d
ra

g
fo

rc
e

se
ns

iti
vi

ty
 [N

/m
]

Finite Difference Sensitivity Convergence Study for Re = 1 × 10+2, Node=293, Direction=X, rfilter = 1 × 10 4 m

x = 1.0 × 10 8 m
x = 1.0 × 10 7 m
x = 3.0 × 10 7 m
x = 1.0 × 10 6 m
x = 2.0 × 10 6 m
x = 3.0 × 10 6 m
x = 1.0 × 10 5 m
x = 1.0 × 10 4 m

Adjoint

Figure 15: Time averaged drag sensitivity convergence for Re = 100 at Node=293 with
rfilter = 0.1mm

0 20 40 60 80 100
Time window [s]

0.04

0.03

0.02

0.01

0.00

0.01

Ti
m

e
av

er
ag

ed
 d

ra
g

fo
rc

e
se

ns
iti

vi
ty

 [N
/m

]

Finite Difference Sensitivity Convergence Study for Re = 1 × 10+2, Node=293, Direction=R, rfilter = 1 × 10 4 m

r = 1.0 × 10 8 m
r = 1.0 × 10 7 m
r = 3.0 × 10 7 m
r = 1.0 × 10 6 m
r = 2.0 × 10 6 m
r = 3.0 × 10 6 m
r = 1.0 × 10 5 m
r = 1.0 × 10 4 m

Adjoint

Figure 16: Drag force variation w.r.t. perturbation step sizes in radial direction for node
293 with Re = 100

Page 32 of 38

Deliverable 2.4

0 20 40 60 80 100
Time window [s]

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Ti

m
e

av
er

ag
ed

 d
ra

g
fo

rc
e

se
ns

iti
vi

ty
 [N

/m
]

Filter Radius Study for Re = 1 × 10+2, Node=293, x = 1 × 10 8 m

FD rfilter = 1.0 × 10 4 m
FD rfilter = 1.0 × 10 2 m
FD rfilter = 2.0 × 10 2 m
FD rfilter = 4.0 × 10 2 m
FD rfilter = 8.0 × 10 2 m
AD rfilter = 1.0 × 10 4 m
AD rfilter = 1.0 × 10 2 m
AD rfilter = 2.0 × 10 2 m
AD rfilter = 4.0 × 10 2 m
AD rfilter = 8.0 × 10 2 m

Figure 17: Time averaged drag sensitivity filter radius varitaions for Re = 100 at
Node=293 with ∆x = 1× 10−8m

0 20 40 60 80 100
Time window [s]

0.04

0.03

0.02

0.01

0.00

0.01

Ti
m

e
av

er
ag

ed
 d

ra
g

fo
rc

e
se

ns
iti

vi
ty

 [N
/m

]

Filter Radius Study for Re = 1 × 10+2, Node=293, r = 1.00 × 10 8 m

FD rfilter = 1.0 × 10 4 m
FD rfilter = 1.0 × 10 2 m
FD rfilter = 2.0 × 10 2 m
FD rfilter = 4.0 × 10 2 m
FD rfilter = 8.0 × 10 2 m
AD rfilter = 1.0 × 10 4 m
AD rfilter = 1.0 × 10 2 m
AD rfilter = 2.0 × 10 2 m
AD rfilter = 4.0 × 10 2 m
AD rfilter = 8.0 × 10 2 m

Figure 18: Time averaged drag sensitivity filter radius varitaions for Re = 100 at
Node=293 with ∆r = 1× 10−8m

Page 33 of 38

Deliverable 2.4

t 1 × 10 2 s
dyn 1.00
Re 1 × 10+4

Tend 100.00 s
rfilter 1 × 10 4 m

Node 0293

0 5 10 15 20 25
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Dr
ag

 fo
rc

e
[N

]
Compare Perturbations

Unperturbed
x = 1 × 10 4

x = 1 × 10 5

x = 1 × 10 6

x = 1 × 10 7

x = 1 × 10 8

x = 2 × 10 6

x = 3 × 10 6

x = 3 × 10 7

Figure 19: Drag force variation w.r.t. perturbation step sizes in ”x” direction for node
293 with Re = 10000

0 20 40 60 80 100
Time window [s]

100000

50000

0

50000

100000

150000

200000

250000

Ti
m

e
av

er
ag

ed
 d

ra
g

fo
rc

e
se

ns
iti

vi
ty

 [N
/m

]

Filter Radius Study for Re = 1 × 10+4, Node=293, x = 1 × 10 8 m

FD rfilter = 1.0 × 10 4 m
FD rfilter = 1.0 × 10 2 m
FD rfilter = 2.0 × 10 2 m
FD rfilter = 4.0 × 10 2 m
FD rfilter = 8.0 × 10 2 m

Figure 20: Time averaged drag sensitivity filter radius varitaions for Re = 10000 at
Node=293 with ∆x = 1× 10−8m

Page 34 of 38

Deliverable 2.4

0 20 40 60 80 100
Time window [s]

100000

50000

0

50000

100000

150000

200000

Ti
m

e
av

er
ag

ed
 d

ra
g

fo
rc

e
se

ns
iti

vi
ty

 [N
/m

]
Filter Radius Study for Re = 1 × 10+4, Node=1595, x = 1 × 10 8 m

FD rfilter = 1.0 × 10 4 m
FD rfilter = 1.0 × 10 2 m
FD rfilter = 2.0 × 10 2 m
FD rfilter = 4.0 × 10 2 m
FD rfilter = 8.0 × 10 2 m

Figure 21: Time averaged drag sensitivity filter radius varitaions for Re = 10000 at
Node=1595 with ∆x = 1× 10−8m

0 20 40 60 80 100
Time window [s]

4000

2000

0

2000

4000

6000

8000

10000

Ti
m

e
av

er
ag

ed
 d

ra
g

fo
rc

e
se

ns
iti

vi
ty

 [N
/m

]

Finite Difference Sensitivity Convergence Study for Re = 1 × 10+4, Node=293, Direction=X, rfilter = 8 × 10 2 m

x = 1.0 × 10 8 m
x = 1.0 × 10 7 m
x = 3.0 × 10 7 m
x = 1.0 × 10 6 m
x = 2.0 × 10 6 m
x = 3.0 × 10 6 m
x = 1.0 × 10 5 m
x = 1.0 × 10 4 m

Figure 22: Time averaged drag sensitivity convergence for Re = 10000 at Node=293 with
rfilter = 8 cm

Page 35 of 38

Deliverable 2.4

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Max perturbation [m]

0.0875

0.0900

0.0925

0.0950

0.0975

0.1000

0.1025

0.1050

Ti
m

e
av

er
ag

ed
 d

ra
g

fo
rc

e
[N

]

0.0000 0.0337 0.0674 0.1011 0.1348 0.1685 0.2022 0.2359
Control point perturbation [m]

Finite Difference Perturbation Study for Node=293, Direction=x, Re=10000, rfilter = 0.08 m

Figure 23: Time averaged drag perturbation study for Re = 10000 at Node=293 with
rfilter = 8 cm in ”x” direction

Page 36 of 38

Deliverable 2.4

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Max perturbation [m]

0.088

0.090

0.092

0.094

0.096

Ti
m

e
av

er
ag

ed
 d

ra
g

fo
rc

e
[N

]

0.0000 0.0337 0.0674 0.1011 0.1348 0.1685 0.2022 0.2359
Control point perturbation [m]

Finite Difference Perturbation Study for Node=293, Direction=r, Re=10000, rfilter = 0.08 m

Data
Linear approx.

Figure 24: Time averaged drag perturbation study for Re = 10000 at Node=293 with
rfilter = 8 cm in radial direction

Page 37 of 38

Deliverable 2.4

Figure 25: Finite difference time averaged drag sensitivity for Re = 10000 with rfilter =
8 cm in radial direction

Page 38 of 38

	Introduction
	Parallel unstructured mesh adaptation
	Interface displacement by an advancing-front method
	Groups sorting for interface advancement direction
	Correcting disconnected partitions
	Examples of configurations leading to disconnected partitions
	A posteriori corrections

	Summary of the algorithm
	Open-source implementation
	Parallel weak-scaling of a uniform refinement test case

	Interfacing of CFD solvers to newly developed capabilities
	Adjoint-based adaptive mesh refinement
	Set-up
	Finite Difference Sensitivities
	Overall results
	Results of Re = 0.1
	Results of Re = 100
	Results of Re = 10000

