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Abstract. In this work, we propose a nonlinear stabilization technique for scalar conservation laws
with implicit time stepping. The method relies on an artificial diffusion method, based on a graph-
Laplacian operator. It is nonlinear, since it depends on a shock detector. Further, the resulting
method is linearity preserving. The same shock detector is used to gradually lump the mass matrix.
The resulting method is LED, positivity preserving, and also satisfies a global DMP. Lipschitz conti-
nuity has also been proved. However, the resulting scheme is highly nonlinear, leading to very poor
nonlinear convergence rates. We propose a smooth version of the scheme, which leads to twice dif-
ferentiable nonlinear stabilization schemes. It allows one to straightforwardly use Newton’s method
and obtain quadratic convergence. In the numerical experiments, steady and transient linear trans-
port, and transient Burgers’ equation have been considered in 2D. Using the Newton method with
a smooth version of the scheme we can reduce 10 to 20 times the number of iterations of Anderson
acceleration with the original non-smooth scheme. In any case, these properties are only true for the
converged solution, but not for iterates. In this sense, we have also proposed the concept of projected
nonlinear solvers, where a projection step is performed at the end of every nonlinear iterations onto
a FE space of admissible solutions. The space of admissible solutions is the one that satisfies the
desired monotonic properties (maximum principle or positivity).

Keywords: Finite elements, discrete maximum principle, monotonicity, nonlinear solvers, shock cap-
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1. Introduction

Many partial differential equations (PDEs) satisfy some sort of maximum principle or positivity
property. However, numerical discretizations usually violate these structural properties at the discrete
level, with implications in terms of accuracy and stability, e.g., leading to non-physical local oscillations.

It is well-understood now how to build methods that satisfy some sort of discrete maximum principle
(DMP) based on explicit time integration combined with finite volume or discontinuous Galerkin
schemes [9, 27]. However, implicit time integration is preferred in problems with multiple scales in
time when the fastest scales are not relevant. E.g., under-resolved simulations of multi-scale problems
in time are essential in plasma physics [20]. Unfortunately, implicit DMP-preserving hyperbolic solvers
are scarce and not so well developed.

In the frame of finite element (FE) discretizations, the local instabilities present in the solution of
hyperbolic problems have motivated the use of so-called shock capturing schemes based on artificial
diffusion (see, e.g., [18]). These methods introduce nonlinear stabilization, in contrast with classical
SUPG-type linear stabilization techniques [16, 17]. Since linear schemes are at most first-order accurate
and highly dissipative [11], recent research on FE techniques for conservation laws has focused on the
development of less dissipative nonlinear schemes. Many of these ideas come from the numerical
approximation of convection dominated convection-diffusion-reaction (CDR), where one encounters
similar issues. The cornerstone of these methods is the design of a nonlinear artificial diffusion that
vanishes in smooth regions and works on discontinuities or sharp layers. Many residual-based diffusion
methods have been considered so far (see, e.g., [10] and references therein). Most of these approaches
have failed to reach DMP-preserving methods. A salient exception is the method by Burman and Ern
[7], which satisfies a DMP under mesh restrictions. Recently, due to some interesting novel approaches
in the field, the state-of-the-art in nonlinear stabilization has certainly advanced [1–3, 6, 8, 23, 24].

Implicit FE schemes for hyperbolic problems rely on four key ingredients:
(1) The first ingredient is the definition of the shock detector that only activates the nonlinear

diffusion around shocks/discontinuities. Recent nonlinear stabilization techniques have been
developed based on shock detectors driven by gradient jumps [1, 5] or edge differences [3, 23,
24]. The use of such schemes was proposed in [5] for 1D problems and extended to multiple
dimensions in [1]. A salient property of the scheme in [1] is that it is DMP-preserving, but it
relies on the DMP of the Poisson operator, which is only true under stringent constraints on
the mesh. Another salient feature of the gradient-jump diffusion approach in [1] is the fact that
it leads to so-called linearity preserving methods, i.e., the artificial diffusion vanishes for first
order polynomials. This property is related to high-order convergence on smooth regions [25].
A modification of the nonlinear diffusion in [23] that also satisfies this property is proposed in
[24].

(2) The second ingredient is the amount of diffusion to be introduced on shocks, which is the
amount of diffusion introduced in a first order linear scheme. In this sense, one can consider
flux-corrected transport techniques [26].

(3) The third ingredient is the form of the discrete viscous operator. In order to keep the DMP
on arbitrary meshes, Guermond and Nazarov have proposed to use graph-theoretic, instead of
PDE-based, operators for the artificial diffusion terms. This approach has been used in [3, 29]
(for the steady-state convection-diffusion-reaction problem) and in [12] (for linear conservation
laws) combined with artificial diffusion definitions similar to the one in [13].
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(4) The fourth ingredient is the perturbation of the mass matrix, in order to satisfy a DMP. Full
mass lumping is one choice, but it introduces an unacceptable phase error. For continuous FE
methods, improved techniques can be found in [14]. Alternatively, limiting-type strategies are
used, e.g., in [23, 24].

(5) The method in [3] is Lipschitz continuous, which is needed for the well-posedness of the result-
ing nonlinear scheme. However, in practice, all the methods presented above are still highly
nonlinear, and nonlinear convergence becomes very hard and expensive. It leads to a fifth
additional ingredient that has not been considered so far in much detail. In order to reduce
the computational cost of these schemes, we consider the smoothing of the nonlinear artificial
diffusion, to make it differentiable up to some fixed order. The possibility to define smooth
nonlinear schemes can improve the nonlinear convergence of the methods and make them
practical for realistic applications. Further, the smoothing step enables advanced linearization
strategies based on Newton’s method. It also involves the development of efficient nonlinear
solvers, e.g., based on the combination of Newton, line search, and/or Anderson acceleration
techniques.

All the results commented above are restricted to linear (or bilinear) FEs. We are not aware of
the existence of high-order implicit DMP-preserving FE schemes. For explicit time integration and
limiters, second order methods can be found in [12]. The use of hp-adaptive schemes that keep first
order schemes around shocks has been proposed in [15].

In this work, we propose a novel nonlinear stabilization method that satisfies a DMP, positivity,
and local extremum diminishing (LED) properties at the discrete level. It combines: (1) a novel shock
detector related to the one in [1], which is simple and linearity preserving; (2) the graph-Laplacian
artificial viscous term proposed in [13]; (3) an edge FCT-type definition of the amount of diffusion
(see [23]); (4) a novel gradual mass lumping technique that exploits the same shock detector used
for the artificial diffusion. We prove that the resulting method ticks all the boxes, i.e., it is total
variation diminishing (TVD), DMP, positivity-preserving, linearity preserving, Lipschitz continuous,
and introduces low dissipation. With regard to the last point, we prove that the amount of diffusion
is the minimum needed in our analysis to prove the DMP. Further, we consider a novel approach to
design a smoothed version of the resulting scheme that is twice differentiable. We prove that linear
preservation is weakly enforced in this case, but all the other properties remain unchanged. Finally,
we analyze the effect of the smoothing in the computational cost, and observe a clear reduction in the
CPU cost of the nonlinear solver when using the smooth version of the method proposed herein while
keeping almost unchanged the sharp layers of the non-smooth version. Future work will be focused on
the entropy stability analysis of these schemes for nonlinear scalar conservation laws. A partial result
in this direction is the proof of entropy stability for a related method when applied to the 1D Burger’s
equations (see [5]).

This work is structured as follows. In Sect. 2 the continuous problem and its discretization using the
FE method are presented. Sect. 3 contains the formulation of a novel nonlinear stabilization method.
Sect. 4 is devoted to the monotonicity analysis of the proposed method. An alternative approach
is presented in Sect. 5. Lipschitz continuity of the methods is proved in Sect. 6. A differentiable
version the previous method is presented in Sect. 7. Sect. 8 is devoted to nonlinear solvers. Different
numerical experiments are introduced in Sect. 9. Finally, in Sect. 10 we draw some conclusions.

2. Preliminaries

2.1. The continuous problem. Let Ω ⊂ Rd be a bounded domain, where d is the space dimension,
and (0, T ] the time interval. The scalar conservation equation reads: find u(x, t) such that

∂tu+ ∇ · f(u) = g, on Ω× (0, T ],
where f ∈ Lip(R;Rd) is the flux. It is also subject to the initial condition u(x, 0) = u0 ∈ L∞(Ω) and
boundary condition u(x, t) = uD(x, t) on the inflow Γin

.= {(x, t) ∈ ∂Ω× (0, T ] | f(x, t) ·n(x, t) < 0}.
There exist a unique entropy solution u of the above problem that satisfies the entropy inequalities
∂tE(u) + ∇ · F (u) ≤ 0 for all convex entropies E ∈ Lip(R;R) with its associated entropy fluxes
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F i(u) =
∫ u

0 E′(v)f ′i(v) dv, 1 ≤ i ≤ d (see Kružkov [21]). Let us consider the weak form of this
problem consists in seeking u such that u = uD on Γin × (0, T ] and

(∂tu, v) + (f ′(u) ·∇u, v) = (g, v) ∀v ∈ L2(Ω), (1)
almost everywhere in (0, T ], with g ∈ L2(Ω).

2.2. Finite element spaces and meshes. Let Th be a conforming partition of Ω into elements, K.
Elements can be triangles or quadrilaterals for d = 2, or tetrahedrals or hexahedra for d = 3. The set
of interpolation nodes of Th is represented by Nh, whereas Nh(K) denotes the set of nodes belonging
to element K ∈ Th. Moreover, Ωi is the macroelement composed by the union of the elements K ∈ Th
such that i ∈ Nh(K). Nh(Ωi) denotes the set of nodes in that macroelement. The continuous linear
FE space is defined as

Vh
.=
{
vh ∈ C0(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
for triangular or tetrahedral elements (replacing P1(K) by Q1(K) for quadrilateral or hexahedral
elements). P1(K) (resp., Q1(K)) is the space of polynomials with total (resp., partial) degree less
or equal to 1. The nodal basis of Vh is written {ϕi}i∈Nh , and the FE functions can be expressed as
vh =

∑
i∈Nh ϕivi, where vi is the value of vh at node i.

2.3. The semi-discrete problem. The semi-discrete Galerkin FE approximation of (1) reads: find
uh ∈ Vh such that uh(Γin, t) = πh(uD) and

(∂tuh, vh) + (f ′(uh) ·∇uh, vh) = (g, vh) ∀vh ∈ Vh, (2)
for t ∈ (0, T ], with initial conditions uh(·, 0) = πh(u0). πh denotes a FE interpolation, e.g., the
Scott-Zhang projector [28].

Using the notation Muh
.= (uh, ·) and F(wh)uh

.= (f ′(wh) ·∇uh, ·) we can write problem (2) in
compact form as

M∂tuh + F(uh)uh = g (3)
in V ′h, i.e., the dual space of Vh. Further, we define Mij

.= (ϕj , ϕi), Fij(uh) .= (f ′(uh) ·∇ϕj , ϕi), and
gi

.= (g, ϕi).
In order to carry out the time discretization of (3), let us consider a partition of the time domain

(0, T ] into sub-intervals (tn, tn+1], with 0 .= t0 < t1 < . . . < tN
.= T . We consider the Backward-

Euler (BE) implicit time integrator to keep at the time-discrete level the monotonicity properties of
the semi-discrete problem, leading to the discrete problem: given u0

h
.= πh(u0) ∈ Vh, compute for

n = 1, . . . , N − 1
Mδtun+1

h + F(un+1
h )un+1

h = g in V ′h, (4)
where δtun+1

h

.= ∆t−1
n+1(un+1

h − unh), and ∆tn+1
.= |tn+1 − tn|. Implicit strong stability preserving

Runge-Kutta methods [19] also preserve the monotonic properties at the discrete level [19], under
some restrictions on the time step size. For the sake of brevity we consider the BE scheme.

Systems (3) and (4) will be supplemented with additional stabilization terms to minimize the oscil-
lations generated by the Galerkin FE approximation. Of particular interest are methods which provide
solutions that satisfy the following property for all nodes, for zero forcing terms.

Definition 2.1 (Local DMP). A solution u ∈ Vh satisfies the local DMP if
umin
i ≤ ui ≤ umax

i , where umax
i

.= max
j∈Nh(Ωi)\{i}

uj , umin
i

.= min
j∈Nh(Ωi)\{i}

uj .

Actually, for steady problems, if this is satisfied for all i ∈ Nh, then the extrema will be at the
boundary and there exist no local extrema.

Furthermore, it is useful to define local extremum diminishing (LED) methods for transient problems.

Definition 2.2 (LED). A method is called LED if for g = 0 and any time in (0, T ], the solution
satisfies

dtui ≤ 0 if ui is a maximum and dtui ≥ 0 if ui is a minimum.
For time-discrete methods, the same definition applies, replacing dt by δt.
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3. Nonlinear stabilization

We want to design a linearity preserving LED method for stabilizing the scalar semi-discrete hyper-
bolic problem (3) (or the discrete problem (4)), described in the previous section. As written above,
this method is based on a graph-theoretic approach. Let us consider a nonlinear stabilization operator
B(uh) : Vh → V ′h and denote Bij(uh) .= 〈B(uh)ϕj , ϕi〉. Particularly, we require that the stabilization
term will satisfy the following properties (see also [13]):

(1) compact support: Bij(uh) = 0 if j /∈ Nh(Ωi) for any uh ∈ Vh,
(2) symmetry: Bij(uh) = Bji(uh) for any uh ∈ Vh,
(3) conservation:

∑
j 6=i Bij(uh) = −Bii(uh) for any uh ∈ Vh,

(4) linear preservation: B(uh) = 0 for any uh ∈ P1(Ω).
To achieve this properties we define the nonlinear stabilization term

〈B(wh)uh, vh〉
.=
∑
i∈Nh

∑
j∈Nh(Ωi)

νij(wh)viuj`(i, j), uh, vh ∈ Vh, (5)

where the graph-theoretic Laplacian is defined as `(i, j) .= 2δij−1, and the artificial diffusion computed
as

νij(wh) .= max {αi(wh)Fij(wh), αj(wh)Fji(wh), 0} for i 6= j,

νii(wh) .=
∑

j∈Nh(Ωi)
j 6=i

νij(wh), (6)

where αi(·) is the shock detector. We note that this choice leads to a symmetric stabilization operator
B(wh). In order to define the shock detector, let us introduce some notation. Let i ∈ Nh be a node of
the mesh, v a vector field, and w a scalar field. Let rij = xj − xi be the vector pointing from nodes
i to j in Nh and r̂ij

.= rij
|rij | . Let xsym

ij be the point at the intersection between the line that passes
through xi and xj and ∂Ωi that is not xj (see Fig. 1). The set of all symmetric nodes with respect to
node i is represented with N sym

h (Ωi). We define rsym
ij

.= xsym
ij − xi, and usym

j
.= uh(xsym

ij ). Then, one
can define the jump and the mean of the unknown gradient at node i in direction rij as

J∇uhKij
.= uj − ui
|rij |

+
usym
j − ui
|rsym
ij |

,

{{|∇uh · r̂ij |}}ij
.= 1

2

(
|uj − ui|
|rij |

+
|usym
j − ui|
|rsym
ij |

)
.

We note that the symmetric nodes and their corresponding values usym
j are used in the proof of the

following results, Lemma 3.2, and Theorem 6.1, but not required in the implementation of (11). For
triangular or tetrahedral meshes, since ∇uh is constant, usym

j can be computed easily as

usym
j = uh(xi) + ∇uh(xi) · rsym

ij .

For quadrilateral or hexahedral structured (possibly adapted and nonconforming) meshes, usym
j is also

easy to obtain since jsym is already in Nh(Ωi). It also applies for symmetric meshes, when a mesh
is said to be symmetric with respect to its internal nodes if for any i ∈ Nh all symmetric nodes
jsym ∈ N sym

h (Ωi) already belong to Nh(Ωi).
Making use of these definitions, the proposed shock detector at node i ∈ Nh for a FE solution uh

reads:

αi(uh) .=




∣∣∣∑
j∈Nh(Ωi)

J∇uhKij

∣∣∣∑
j∈Nh(Ωi)

2{{|∇uh·r̂ij |}}ij

q if
∑
j∈Nh(Ωi){{|∇uh · r̂ij |}}ij 6= 0,

0 otherwise,

(7)

for some q ∈ R+. We note that this shock detector is motivated from [1], where the directional nodal-
wise jumps and mean values are first used for such purposes. For triangular or tetrahedral meshes, the
only difference strives in the fact that the supremum over all j ∈ Nh(Ωi) in both the numerator and
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Figure 1. Representation of the symmetric node jsym of j with respect to i.

denominator was used in [1] instead of the sum. In the next lemma we show that in fact (7) detects
extrema.

Lemma 3.1. The shock detector αi(uh) defined in (7) is equal to 1 if uh has an extremum at point
xi. Otherwise, αi(uh) < 1 in general, and αi(uh) = 0 for q =∞.

Proof. Using the fact that uh has an extremum at xi,∣∣∣∣∣∣
∑

j∈Nh(Ωi)

J∇uhKij

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

j∈Nh(Ωi)

uj − ui
|rij |

+
usym
j − ui
|rsym
ij |

∣∣∣∣∣∣
=

∑
j∈Nh(Ωi)

|uj − ui|
|rij |

+
∣∣usym
j − ui

∣∣
|rsym
ij |

=
∑

j∈Nh(Ωi)

2{{|∇uh · r̂ij |}},

since uj − ui has the same sign (or it is equal to zero) in all directions. It proves that αi(uh) = 1 on
an extremum. In fact, if the solution does not have an extremum, these quantities neither can have
the same sign nor be zero in all cases, and we only have∣∣∣∣∣∣

∑
j∈Nh(Ωi)

J∇uhKij

∣∣∣∣∣∣ <
∑

j∈Nh(Ωi)

|uj − ui|
|rij |

+
∣∣usym
j − ui

∣∣
|rsym
ij |

=
∑

j∈Nh(Ωi)

2{{|∇uh · r̂ij |}}. (8)

Hence, αi(uh) < 1 when there is no extremum at xi. Moreover, for q =∞, the shock detector vanishes
in all the nodes that are not extrema. �

In addition to the nonlinear stabilization term B(uh), it is necessary to do a mass matrix lumping
to prove that the LED property is satisfied. In the numerical analysis, it is enough to make this
approximation when testing against the shape functions corresponding to nodes related to extrema,
which is identified by the shock detector. Therefore, we propose the following stabilized semi-discrete
version of (2):

(1− αi(uh))(∂tuh, ϕi) + αi(uh)(∂tui, ϕi) + (f ′(uh) ·∇uh, ϕi)
+

∑
j∈Nh(Ωi)

νij(uh)viuj l(i, j) = (g, ϕi) for any i ∈ Nh, (9)

with the definition of the shock detector (7) and the nonlinear artificial diffusion (6). Thus, the
definition of the mass matrix is nonlinear

Mij(uh) .= (1− αi(uh))(ϕj , ϕi) + αi(uh)(δij , ϕi). (10)
It can be understood as a mass matrix with gradual lumping. Full lumping is only attained at extrema.
Denoting K(uh) .= F(uh) + B(uh), the stabilized problem (9) can be expressed in compact form as

M(uh)dtuh + K(uh)uh = g in V ′h. (11)
Analogously for the discrete problem (4),

M(un+1
h )δtun+1

h + K(un+1
h )un+1

h = gn+1 in V ′h. (12)
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Finally, let us note that the shock detector (7) leads to the one of Barrenechea and co-workers [3],

α̃i
.=



∣∣∣∑

j∈Nh(Ωi)
ui−uj

∣∣∣∑
j∈Nh(Ωi)

|ui−uj |

q

if
∑
j∈Nh(Ωi) |ui − uj | 6= 0,

0 otherwise,

(13)

when restricted to symmetric meshes of equilateral triangles.

Lemma 3.2. For a symmetric triangular mesh where all the edges have the same length, αi in (7) is
identical to α̃i in (13).

Proof. For symmetric meshes, for every j ∈ Nh(Ωi), jsym ∈ Nh(Ωi). So, we can group nodes in Nh(Ωi)
in pairs, getting

2
∑

j∈Nh(Ωi)

(ui − uj) =
∑

j∈Nh(Ωi)

(ui − uj + ui − usym
ij ).

We proceed analogously for the mean value. Further, since rij is identical for all j ∈ Nh(Ωi) by
assumption, we get ∣∣∣∑j∈Nh(Ωi) J∇uhKij

∣∣∣
2
∑
j∈Nh(Ωi){{|∇uh · r̂ij |}}ij

=

∣∣∣∑j∈Nh(Ωi) ui − uj
∣∣∣∑

j∈Nh(Ωi) |ui − uj |
.

�

For arbitrary symmetric meshes the methods only differ on the weights of the terms in the sums in
(7) and all the required properties stated in (14) are readily satisfied for the use of the shock detector
in (13). In general meshes, the shock detectors are different, and the one in (13) is not linearity
preserving.

4. Monotonicity properties

In the sequel, we prove that the scheme (9) is LED. First, we define a set of necessary conditions on
the nonlinear discrete operators that lead to LED schemes. They are the nonlinear extension of the
ones for linear systems (see, e.g., [23]).

Theorem 4.1. The semi-discrete problem (11) is LED if g(x) = 0 in Ω and, for every node i ∈ Nh
such that ui is a local extremum, it holds:

Mij(uh) .= δijmi, with mi > 0, (14)

Kij(uh) ≤ 0 ∀i 6= j, and
∑

j∈Nh(Ωi)

Kij(uh) = 0.

Moreover, for g(x) ≤ 0 (resp. g(x) ≥ 0) in Ω and for all i ∈ Nh such that ui is a local maximum
(resp. minimum), if (14) holds the maximum (resp. minimum) is diminishing (resp. increasing).
These results are also true for the discrete problem (12). Furthermore, the discrete problem (12) is
positivity-preserving for g = 0 and u0 ≥ 0.

Proof. Let us start proving the LED property. If ui is a maximum, from (11), conditions in (14), and
the fact that αi(uh) = 1, we have:

gi = midtui +
∑

j∈Nh(Ωi)

Kij(uh)uj ≥ midtui +
∑

j∈Nh(Ωi)

Kij(uh)ui = midtui,

for mi
.=
∫

Ω ϕidΩ. As a result, dtui ≤ 0 and thus LED. We proceed analogously for the minimum.
The proof is analogous for the discrete problem with BE time integration.

Next, we prove positivity. Let us consider that at some time step m the solution becomes negative,
and consider the node i in which the minimum value is attained. Using the previous result for a
minimum at the discrete level, we have that δtumi ≥ 0 and thus umi ≥ um−1

i . It leads to a contradiction,
since um−1

i ≥ 0. Thus, the solution must be positive at all times. �
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Theorem 4.2 (LED). The semi-discrete (resp., discrete) problem (11) (resp., (12)) leads to solutions
uh ∈ Vh that enjoy the LED property in Def. 2.2 for any q ∈ R+.

Proof. Assume uh reaches an extremum on i ∈ Nh. Then αi(uh) = 1 and Mij(uh)dtuj = midtui with
mi =

∫
Ω ϕi. On the other hand, taking into account the definition of νij(uh) in (6), the convective

term for j 6= i reads

Kij(uh) = Fij(uh)−max {Fij(uh), αj(uh)Fji(uh), 0} ≤ 0.

Using the fact that
∑
j∈Nh(Ωi) Fij(uh) = (f ′(uh) ·∇1, ϕi) = 0, the definition of νii(uh), and (5), we

have

Kii(uh) = Fii(uh) +
∑

j∈Nh(Ωi)\{i}

max {Fij(uh), αj(uh)Fji(uh), 0}

=
∑

j∈Nh(Ωi)\{i}

−Fij(uh) +
∑

j∈Nh(Ωi)\{i}

max {Fij(uh), αj(uh)Fji(uh), 0}

= −
∑

j∈Nh(Ωi)\{i}

Kij(uh).

Therefore it is clear that the conditions stated in Theorem 4.1 hold, thus the method is LED. The
discrete case is proved analogously. �

Corollary 4.3 (DMP). The discrete problem (12) leads to solutions that satisfy the local DMP property
in Def. 2.1 at every tn, for n = 1, . . . , N .

Proof. If the maximum (resp., minimum) at time tn is on a node whose value is not on the Dirichlet
boundary, it is known from the LED property in Theorem 4.2 that it is bounded above (resp., below)
by the maximum (resp., minimum) at the previous time step value. By induction, it will be bounded
by the maximum (resp., minimum) at t = 0. Alternatively, the maximum or minimum is on the
Dirichlet boundary. It proves the result. �

Theorem 4.4. The diffusion defined in (6) is the one that introduces the minimum amount of nu-
merical dissipation 〈B(uh)uh, uh〉 required to satisfy (14) when q =∞.

Proof. Using the definition of the graph-Laplacian, the amount of dissipation introduced by the non-
linear stabilization is

〈B(uh)uh, uh〉 =
∑
i∈Nh

∑
j∈Nh(Ω)

νij(uh)(ui − uj)2.

Let us consider two connected nodes, i.e., i, j ∈ Nh and j ∈ Nh(Ωi). If neither i nor j are extrema, then
αi(uh) = αj(uh) = 0 and νij = 0. Let us assume (without loss of generality) that uh has an extremum
at i. If ui = uj , the dissipation is independent of the expression for νij . If ui > uj , αj = 0 (since
q = ∞). Thus, νij = −max{Fij(uh), 0}. If Fij(uh) ≤ 0, no dissipation is introduced. If Fij(uh) > 0,
then the diffusion introduced by the method is −Fij(uh) and Kij(uh) = 0.

Let us assume that we have a method that is less dissipative than the one proposed herein. Based
on the previous analysis, there exists a pair of connected nodes such that ui > uj and the dissipation
introduced is smaller than −Fij(uh), for Fij(uh) > 0. As a result, Kij(uh) > 0. Thus, the properties
in (4.1) do not hold. It proves the theorem. �

Furthermore, it can be proved that the above method (11) (also (12)) is linearly preserving. In
addition, using (13) instead, the method is still linearly preserving for symmetric meshes.

Theorem 4.5 (Linearity preservation). Let uh be a continuous first order FE approximation of u ∈
P1(Ω), then the semi-discrete and discrete problems (11) and (12), respectively, are linearity preserving,
in the sense that the Galerkin problem and the stabilized one are identical.
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Proof. If uh ∈ P1(Ω), then it is obvious that ∇uh is constant. Thus, J∇uhKij = 0 for any direction
rij , and αi(uh) = 0 for any i ∈ Nh. Therefore, recalling (6), it is easy to see that νij = 0 for any
i, j ∈ Nh. Thus, the nonlinear stabilization and gradual lumping terms vanish and the Galerkin scheme
is recovered. �

5. Symmetric mass matrix stabilization

The nonlinear mass matrix that has been considered in (10) is nonsymmetric by construction. In
any case, we can easily consider a symmetric version of the method.

Another alternative strategy to the nonlinear mass matrix definition in (10) is to consider the fully
discrete problem (12), keeping the mass matrix at the current time step as a reaction term, leading to
the following expression of the artificial diffusion

ν̃ij(wh) .= νij(wh) + 1
∆t max {αiMij , 0, αjMji} for i 6= j,

ν̃ii(wh) .=
∑

j∈Nh(Ωi)
j 6=i

ν̃ij .
(15)

Let us consider another notion of DMP property.

Definition 5.1 (Global DMP). A solution satisfies the global DMP if given (x, t) in Ω× (0, T ]
min

(y,t)∈Γ
u(y, t) ≤ u(x, t) ≤ max

(y,t)∈Γ
u(y, t)

where Γ .= Ω× {0} ∪ Γin.

It is easy to check that the global DMP is a consequence of the local DMP and LED properties.
It is possible to prove that the modified method with BE time integration satisfies the global DMP

in Def. 5.1. Linear preservation can also be easily checked.

Theorem 5.2 (Global DMP). Let uh be a continuous first order FE approximation of u. Then, the
BE time discretization of problem (2) with g = 0, stabilized with (5), and using (15) as artificial
diffusion, satisfies the global DMP property in Def. (5.1) for any q ∈ R+.

Proof. Let us denote by K(u) and K̃(u) the stabilized matrix with the artificial diffusion computed
with (6) and (15), respectively. Assume uh reaches a maximum on xi ∈ Ω\Γin. Then αi = 1, and we
have:

Mij(uh)uj + K̃ij(uh)uj = miui + Kij(uh)uj ,
where we have used the fact that max {αiMij , 0, αjMji} = Mij . Thus, the equation related to the test
function ϕi leads to∑

j∈Nh(Ωi)

Mij

mi
unj = un+1

i +
∑

j∈Nh(Ωi)

Kij(uh)
mi

un+1
j ≥ un+1

i +
∑

j∈Nh(Ωi)

Kij(uh)
mi

un+1
i = un+1

i .

Note that Mij

mi
> 0, and

∑
j∈Nh(Ωi)

Mij

mi
= 1. Hence un+1

i is smaller or equal to a convex combination
of unj , for j ∈ Nh(Ωi), and thus it is bounded above by the largest of these values. As a result,
un+1
h (x) ≤ max{maxy∈Ω u

n
h(y),max(y,tn+1)∈Γin uD(y, tn+1)}. Using a recursion argument, we prove

the upper bound. We proceed analogously for the case lower bound. It proves the theorem. �

6. Lipschitz continuity

In the next, we want to prove the Lipschitz continuity of the nonlinear operator at every time step,
i.e., T : Vh → V ′h defined as

T(uh) .= ∆t−1
n+1M(uh)uh + K(uh)uh − g −∆t−1

n+1M(uh)unh.
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In order to prove the Lipschitz continuity of T(·), we must deal with the nonlinear stabilization and
gradual mass lumping terms. The Galerkin terms can be handled using the fact that f ∈ Lip(R;Rd).

Let us introduce the following semi-norm generated by the graph-Laplacian operator

|w|`
.=

√√√√1
2
∑
i∈Nh

∑
j∈Nh(Ωi)

(wi − wj)2.

Further, we define |β| as the supremum of |f(v)| for v ∈ V adm
h , where V adm

h ⊂ Vh is the subspace of
functions that satisfy the global DMP in Def. 5.1.

Theorem 6.1. Let us consider a non-degenerate partition Th. Given unh ∈ Vh and g ∈ V ′h, the
nonlinear operators B(·) : Vh → V ′h and M(·) : Vh → V ′h are Lipschitz continuous in V adm

h for q ∈ N+,
since they satisfy

〈B(u)− B(v), z〉 ≤ qhd−1|β||u− v|`|z|`, for any z ∈ Vh,

〈M(u)−M(v), z〉 ≤ C(qh d2 |u− v|` + ‖u− v‖)‖z‖, for any z ∈ Vh.

Proof. The proof of the theorem is included in Appendix A. �

7. Differentiable stabilization

The previous nonlinear system is Lipschitz continuous, which improves the convergence of the
nonlinear iterations. In fact, assuming that we supplement (1) with a diffusive term, existence and
uniqueness can be proved in the diffusive regime (see [3]). However, even using Anderson acceleration
nonlinear convergence can be very hard (see [23, 24] and Sect. 9).

Based on these observations, we want to develop methods that lead to at least twice differentiable
operators, i.e., ∂2T(uh)

∂2uh
∈ C0, using the previous framework. This allows the usage of the Newton

method to linearize the system, and reduces the required number of nonlinear iterations. Smoothness
is achieved by substituting the non-differentiable functions of the previous formulation with smooth
approximations.

In order to end up with a twice differentiable method, we propose to use the following artificial
diffusion:

νij
.= max σ {max σ {αε,i(Fij(wh)), αε,jFji(wh)} , 0} , for i 6= j,

νii
.=

∑
j∈Nh(Ωi)

j 6=i

νij . (16)

The function max σ(·) is a regularized maximum function

max σ{x, y}
.=
|x− y|1,σ

2 + x+ y

2 , (17)

where |x|1,σ
.=
√
x2 + σ is a smooth approximation of the absolute value. In order to keep dimensional

consistency, σ should be a small parameter of order O
(
|β|2`2(d−1)), where ` is a characteristic length

of the problem. Let us define the smooth limiter function f(x) ∈ C2 that will be used in the definition
of αε,

f(x) .=
{

2x4 − 5x3 + 3x2 + x if x < 1
1 if x ≥ 1 .

This function is used to smoothly limit the value of x up to 1. Further, let us define another smooth
approximation of the absolute value, namely

|x|2,ε
.= x2
√
x2 + ε

.
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Finally, the shock detector is defined as

αε,i(uh) .=

f


∣∣∣∑j∈Nh(Ωi) J∇uhKij
∣∣∣
1,ε

+ γ∑
j∈Nh(Ωi) 2

{{
|∇uh · r̂ij |2,ε

}}
ij

+ γ



q

, (18)

where γ is a small parameter that prevents division by zero.
It has been proved in Lemma 3.1 that αi equals 1 when i is an extremum in Ωi. Let us prove that

this is still true for αε,i.

Lemma 7.1. If uh has an extremum on i ∈ Nh then αε,i(uh) = 1.

Proof. It is clear that f(x) equals 1 for x ≥ 1, then the proof reduces to check that∣∣∣∣∣∣
∑

j∈Nh(Ωi)

J∇uhKij

∣∣∣∣∣∣
1,ε

+ γ ≥
∑

j∈Nh(Ωi)

2
{{
|∇uh · r̂ij |2,ε

}}
ij

+ γ.

Taking into account that √
x2 + ε = |x|1,ε > |x| ≥ |x|2,ε = x2

√
x2 + ε

,

and the fact that uj − ui has the same sign (or it is equal to zero) in all directions, it is easy to see
that ∣∣∣∣∣∣

∑
j∈Nh(Ωi)

J∇uhKij

∣∣∣∣∣∣
1,ε

=

∣∣∣∣∣∣
∑

j∈Nh(Ωi)

uj − ui
|rij |

+
usym
j − ui
|rsym
ij |

∣∣∣∣∣∣
1,ε

≥

∣∣∣∣∣∣
∑

j∈Nh(Ωi)

uj − ui
|rij |

+
usym
j − ui
|rsym
ij |

∣∣∣∣∣∣
=

∑
j∈Nh(Ωi)

|uj − ui|
|rij |

+
∣∣usym
j − ui

∣∣
|rsym
ij |

≥
∑

j∈Nh(Ωi)

2{{|∇uh · r̂ij |}}

≥
∑

j∈Nh(Ωi)

2
{{
|∇uh · r̂ij |2,ε

}}
.

It proves that αε,i(uh) = 1 on an extremum. In fact, if the solution does not have an extremum, these
quantities neither can have the same sign nor be zero in all cases. Since∣∣∣∣∣∣

∑
j∈Nh(Ωi)

J∇uhKij

∣∣∣∣∣∣ = lim
ε→0

∣∣∣∣∣∣
∑

j∈Nh(Ωi)

J∇uhKij

∣∣∣∣∣∣
1,ε

and ∑
j∈Nh(Ωi)

2{{|∇uh · r̂ij |}} = lim
ε→0

∑
j∈Nh(Ωi)

2
{{
|∇uh · r̂ij |2,ε

}}
,

bound (8) leads to the fact that limε→0 αε,i(uh) < 1 when there is no extremum on i. �

It is straightforward to check the following results.

Corollary 7.2. System (11) with the definition of the shock detector (18) and artificial diffusion (16)
is LED and satisfies the local DMP. The method tends to a linearly preserving scheme as γ → 0.

Proof. From lemma 7.1 and the definition of the regularized maximum (17) it is easy to see that
artificial diffusion in (16) is greater or equal to the one in (6). Hence, Theorem 4.2 still holds. The
linearity preservation is straighforward. �



MONOTONICITY-PRESERVING DIFFERENTIABLE NONLINEAR STABILIZATION 12

Remark 7.3. Note that the smoothed shock detector is not linearly preserving because αε,i will never
be zero. However, for regions where uh is constant the gradient is zero, thus the solution is not affected.
In the case of uh ∈ P1(Ω), but not constant, αε,i goes to zero with γ. Values of γ of order 10−8 (or even
smaller) have been considered in the numerical experiments section with good nonlinear convergence
properties. Thus, the linearity preservation is virtually preserved in practice.

As in the previous section, when restricted to symmetric meshes, the following approximation
(similar to the one in Barrenechea et al. [3]) of (18) maintains the same properties

α̃ε,i
.=

f

∣∣∣∑j∈Nh(Ωi) ui − uj

∣∣∣
1,ε∗

+ γ∗∑
j∈Nh(Ωi) |ui − uj |2,ε∗ + γ∗



q

,

with ε∗ ∼ O(h2ε) and γ∗ ∼ O(hγ).

8. Nonlinear Solvers

In this section the methods used for solving the system of nonlinear equations resulting from the
above formulation (12) with the artificial diffusion defined in (16) is discussed. Taking advantage
of the differentiability of the stabilization described in Sect. 7, Newton’s method is used for the
smooth version of the method. In addition, we use fixed point iterations with Anderson acceleration
to compare against Newton’s method performance. In order to define the schemes, it is useful to write
the time-discrete problem (12) as

A(un+1
h )un+1

h = G

where G is the force vector. Let J(un+1
h ) .= ∂T(un+1

h
)

∂un+1
h

be the Jacobian.

Since the above problem is nonlinear we will solve it iteratively. We denote by uk,n+1
h the k-th

iteration of uh at time step n + 1. Let us define some auxiliary variables used in the definition of
the algorithms: m denotes the number of previous nonlinear iterations used in Anderson acceleration,
s is the slope resulting form fitting the last m nonlinear errors, smin is the minimum slope allowed
before increasing the relaxation, ω is the relaxation parameter, ωmin is its allowed minimum, kmax is
the maximum nonlinear iterations allowed, tol is the nonlinear tolerance, and nlerr is the nonlinear
error.

For the non-differentiable methods in Sect. 3 we use Picard linearization with Anderson acceleration
(see Alg. 1). Our particular implementation also includes a simple convergence rate test, where it is
decided if the relaxation parameter should be reduced or not. This improves the global convergence
rate and the robustness of the method. Moreover, we add a projection onto V adm

h to ensure that the
global DMP in Def. 5.1 is satisfied at all nonlinear iterations. This step is of special interest in the
case of solving for variables that cannot become negative, e.g., the density. In this case, the projection
onto the space of admissible solutions is performed truncating the obtained solution. However, more
sophisticated methodologies can be also applied but at a higher computational cost.

For the differentiable method, Newton’s linearization is used (see Alg. 2). In addition, we supple-
ment it with the line search method to improve robustness. We use numerical 1D minimization of the
residual norm up to a tolerance of 10−4 for the line search method. Following the same approach in
Alg. 1, a projection to the FE space of admissible solutions can be performed in Alg. 2. As said before,
this step ensures that for all nonlinear iterations the solution satisfies the global DMP. The numerical
experiments in the next section show that the modified method keeps quadratic convergence, even
though we do not have a theoretical analysis.
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Algorithm 1: Fixed point iterations with relaxed Anderson acceleration
Input: u0,n+1

h , m, smin, ωmin, tol, A, G, kmax

Output: uk,n+1
h ,k

k = 1, nlerr1 = tol
while (nlerrk ≥ tol) and (k < kmax) do

Set mk = min(k,m)
Solve A(uk,n+1

h )ũk,n+1
h = G

Compute rk,n+1 = ũk,n+1
h − uk,n+1

h

Minimize ‖
∑mk

i=1 ξ
k
i r
k−mk+i,n+1‖ with respect to ξki subject to

∑mk

i=1 ξ
k
i = 1

Set uk+1,n+1
h = (1− ωk)

∑mk

i=1 ξ
k
i u

k−m+i,n+1
h + ωk

∑mk

i=1 ξ
k
i ũ

k−mk+i,n+1
h

Project uk+1,n+1
h to V adm

h

Set nlerrk = ‖uk+1,n+1
h

−uk,n+1
h

‖
‖uk+1,n+1
h

‖

Compute the slope (s) of {nlerri} with k ≥ i ≥ k −mk

if (s < smin) and (ω > ωmin) then
Set ωk+1 = ωk − 0.1

else
Set ωk+1 = ωk

Update k = k + 1

Algorithm 2: Newton’s method + Line search
Input: u0,n+1

h ,unh, tol, J, R, kmax

Output: uk,n+1
h ,k

k = 1, nlerr1 = tol
while (nlerrk ≥ tol) and (k < kmax) do

Solve J(uk,n+1
h )∆uk,n+1

h = −T(uk,n+1
h )

Minimize ‖T(uk,n+1
h + ξk∆uk,n+1

h )‖ with respect to ξ ∈ [0, 1]
Set uk+1,n+1

h = uk,n+1
h + ξk∆uk,n+1

h

Project uk+1,n+1
h to V adm

h

Set nlerrk = ‖ξk∆uk,n+1
h

‖
‖uk+1,n+1
h

‖
Update k = k + 1

9. Numerical Experiments

9.1. Steady problems. First, in order to test the previous formulation, the convergence to a smooth
solution is analyzed. For this purpose, the following equation is solved

∇ · (vu) = 0 in Ω = [0, 1]× [0, 1],
u = uD on Γin,

(19)

with v(x, y) .= (1, 0), and inflow boundary conditions uD = y − y2 on ∂Ω\{x = 1}. This problem
consists in the transport of the parabolic profile along the x direction, which has the analytical solution
u(x, y) = y − y2.

Fig. 2 shows the convergence rates using the previously defined formulation ((12) with (16)), and
the Galerkin formulation. To perform this test, an initial mesh of 12 × 12Q1 has been considered,
then successive refinements have been performed up to a 96 × 96Q1 mesh. Analogous meshes has
been also used for P1 FE. Newton’s method has been used with q = 4, ε = 10−7, σ = |β|h410−8 and
γ = 10−10. In this case, σ has been scaled as |β|2L2(d−3)h4 in order to recover optimal convergence,
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where L denotes a characteristic length of the physical domain Ω. As desired, the convergence rates
are not affected by the stabilization, while (as expected) the stabilized solutions have higher errors.

nx = ny

20 30 40 50 60 70 80 90

ku
h
!

u
k 2

10 -5

10 -4

10 -3

10 -2

P1 Galerkin

Q1 Galerkin

P1 Stabilized

Q1 Stabilized

Figure 2. Convergence test, L2(Ω) error versus size of the mesh. For P1 and Q1 FE
meshes ranging from h = 1/12 to h = 1/96. Newton’s method has been used with
parameters q = 4, ε = 10−7, σ = |β|h410−8 and γ = 10−10.

A typical linear test to assess the performance of a shock capturing method is the propagation of
a discontinuity. Consider now the previous hyperbolic PDE (19) with v(x, y) .= (1/2, sin−π/3), and
inflow boundary conditions uD = 1 on {x = 0} ∩ {y > 0.7} and y = 1, while uD = 0 at the rest of the
inflow boundary. This problem has the following analytical solution

u(x, y) =
{

1 if y > 0.7 + 2x sin−π/3,
0 otherwise.

At Fig. 3(a), the numerical solution using the stabilization in (16) is shown. A 48 × 48Q1 mesh
have been used. The values chosen for the parameters in (16) are q = 25, ε = 10−4, σ = |β|10−9,
and γ = 10−10. This parameter choice makes the solution at the outflow sharp while the DMP is
always satisfied. Furthermore, convergence is not jeopardized thanks to the smoothed stabilization.
Particularly, it took 18 iterations for the Newton’s method to converge to a nonlinear tolerance of 10−6.
The non-smooth version in Fig. 3(b) ((11) with (6)) did not converge using Anderson acceleration,
adding a fixed relaxation parameter of ω = 0.5 took 392 iterations, and 117 with Alg. 1. In any
case, observing Fig. 4, where the outflow profile is depicted, no apparent improvement on accuracy is
observed when using the non-smooth version.

Fig. 5 shows the solution for several combinations of q and ε, with σ = |β|ε10−5 and γ = 10−10,
solved with the two nonlinear solvers presented in the previous section over a 48 × 48Q1 mesh. Fur-
thermore, the ‖u − uh‖L1 and ‖u − uh‖ errors, computed at the whole domain and restricted to the
outflow boundary, are listed in Table 1. These results show that, as expected, either increasing q or
reducing ε the L1 error diminishes. Nevertheless, the computational cost also increases at a higher
rate. The same can be observed for the L2 error. It is slightly reduced after increasing q or diminishing
ε, while this makes nonlinear convergence much harder. Moreover, comparing both nonlinear solvers
in Sect. 8, it is important to note that using Newton’s method the number of nonlinear iterations is
reduced between 10 to 15 times.
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(a) Smooth stabilization (18), with parameters
q = 25, ε = 10−4, σ = |β|10−9, and γ = 10−10.

(b) Non-smooth version (7) with q = 25.

Figure 3. Stabilized solution of the straight propagation of a discontinuity test using
the steady version of discrete problem (12) with two stabilization choices (18) or (7).

x
0 0.2 0.4 0.6 0.8 1

u

0

0.2

0.4

0.6

0.8

1

Non-smooth version

Smoothed stabilization

Figure 4. Stabilized solution of the straight propagation of a discontinuity test using
the steady version of discrete problem (12) with two stabilization choices (18) and
(7). The stabilization parameters used for the smoothed version are q = 25, ε = 10−4,
σ = |β|10−9, and γ = 10−10.

It is important to analyze the solution at each nonlinear iteration. If the projection to the space
of admissible solutions is not performed, it is possible that the solution does neither satisfy the local
nor the global DMP (Def. 2.1 or 5.1, resp.) at some nonlinear iterations. The DMP is only proved
when convergence is attained. We denote by global DMP violation the difference between the global
extremum of the analytical solution and the actual global extremum of the numerical solution. Fig. 6
shows the global DMP violation of the maximum and the minimum values produced at each nonlinear
iteration for different values of q, ε, and σ. For q = 25, the global DMP is clearly not satisfied at
the beginning of the iterative process. In this particular case, this does not destroy the nonlinear
convergence, but this is not the case in some other problems, e.g. Euler’s equations. Therefore, adding
a projection step to V adm

h is highly recommended. Further, it can be observed in Table 1 that in
practice the projection step almost does not affect Newton convergence rate.

Finally, it is worth to test the nonlinear convergence of the method as the mesh is refined for a
problem with a discontinuity. For this purpose, we have solved the previous benchmark with q = 4,
ε = 10−2, σ = |β|h410−6, and γ = 10−10. The used meshes range form 12× 12Q1 to 96× 96Q1.

At Fig. 7, the number of nonlinear iterations for each mesh size is depicted. For Alg. 1 it can
be observed that the number of iterations is increasing. On the contrary, this behavior is much less
pronounced for Alg. 2; the number of iterations slightly increases and remains constant in the last
interval.



MONOTONICITY-PRESERVING DIFFERENTIABLE NONLINEAR STABILIZATION 16

Table 1. Straight propagation test errors and iterations, using the steady version
of discrete problem (12) and nonlinear diffusion (16), for different values of q and ε,
σ = |β|ε10−5, γ = 10−10, and both nonlinear solvers in Sect. 8.

q ε
Iterations

L1 error L1 error
L2 error L2 error

A Ap N Np at Γout at Γout
1 10−1 42 42 9 9 2.77e-02 5.57e-02 8.65e-02 1.23e-01
1 10−2 43 42 8 8 2.61e-02 5.16e-02 8.40e-02 1.18e-01
1 10−3 50 58 7 7 2.59e-02 5.09e-02 8.37e-02 1.17e-01
1 10−4 50 57 7 7 2.58e-02 5.08e-02 8.37e-02 1.17e-01
1 0 56 47 2.59e-02 5.10e-02 8.37e-02 1.17e-01
4 10−1 51 64 8 8 2.20e-02 4.43e-02 7.79e-02 1.12e-01
4 10−2 58 61 11 11 1.83e-02 3.45e-02 6.97e-02 9.70e-02
4 10−3 60 68 10 10 1.77e-02 3.28e-02 6.83e-02 9.44e-02
4 10−4 66 85 11 11 1.76e-02 3.25e-02 6.82e-02 9.40e-02
4 0 70 73 1.76e-02 3.24e-02 6.81e-02 9.39e-02
8 10−1 62 70 9 9 2.10e-02 4.27e-02 7.68e-02 1.11e-01
8 10−2 71 63 11 11 1.62e-02 3.04e-02 6.63e-02 9.23e-02
8 10−3 82 67 13 13 1.51e-02 2.75e-02 6.33e-02 8.74e-02
8 10−4 70 77 12 12 1.49e-02 2.69e-02 6.27e-02 8.66e-02
8 0 94 60 1.48e-02 2.68e-02 6.26e-02 8.64e-02
25 10−1 39 58 11 12 2.03e-02 4.18e-02 7.63e-02 1.11e-01
25 10−2 57 62 19 20 1.46e-02 2.78e-02 6.39e-02 8.95e-02
25 10−3 154 66 15 15 1.28e-02 2.35e-02 5.90e-02 8.24e-02
25 10−4 116 82 17 18 1.25e-02 2.27e-02 5.79e-02 8.18e-02
25 0 86 163 1.23e-02 2.25e-02 5.75e-02 8.15e-02

A: Alg. 1 without projecting to V adm
h , Ap: Alg. 1.

N: Alg. 2 without projecting to V adm
h , Np: Alg. 2.

Consider now the hyperbolic PDE (19) on Ω = [0, 1] × [−1, 1] with v(x, y) .= (y,−x), and inflow
boundary conditions

uD =
{

1 if 0.35 < x < 0.65,
0 otherwise.

This particular configuration has the following analytical solution

u(x, y) =
{

1 if 0.35 <
√
x2 + y2 < 0.65,

0 otherwise.
At Fig. 8 the solutions at the outflow boundary are depicted for several combinations of q and ε, with
σ = |β|ε10−5 and γ = 10−10. In all cases, we have considered the two schemes presented in Sect.
8 using a 64 × 128Q1 FE mesh. As for the previous numerical experiment, we collect the number
of iterations and the errors in Table 2. We observe that it is particularly difficult to converge to
the solution for q = 1 and small values of ε. In any case, for q equal to 4 or greater, the number
of iterations increase with q, as naturally expected. We also observe in this test that the number of
nonlinear iterations can be highly reduced using Newton’s method. Particularly, it reduces the number
of nonlinear iterations up to 20 times. 3D plots of the smoothest and the sharpest solutions in Fig. 8
(respectively top-left and bottom-right subfigures) are shown in Fig. 9 .

Fig. 10 shows that in this second test, as in the previous one, if the projection step is not performed
the global DMP (Def. 5.1) is not satisfied at all nonlinear iterations. This is specially evident for the
combination shown in the figure, i.e., high values of q and low values of ε and σ.

9.2. Transient transport problems. Let us test the performance of the stabilization method in
Sect. 7 for transient problems. For this purpose we will consider the 3 body rotation benchmark that
reads as:

∂tu+ ∇ · (vu) = 0 in Ω = [0, 1]× [0, 1],
u = 0 on Γin,
u = u0 at t = 0,

(20)
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Figure 5. Straight propagation test solution at the outflow boundary ∂Ω\Γin. Using
the steady version of discrete problem (12) and nonlinear diffusion (16), for different
values of q and ε, σ = |β|ε10−5, γ = 10−10, and both nonlinear solvers in Sect. 8. The
result in brackets shows the number of iterations if no projection to V adm

h is done.

where v .= (1/2− y, x− 1/2) and

u0(x, y) .=


1
4 + cos

(
π
√

(x−0.25)2+(y−0.5)2
0.15

)
/4 if

√
(x−0.25)2+(y−0.5)2/0.15 ≤ 1

1−
√

(x−0.5)2+(y−0.25)2/0.15 if
√

(x−0.5)2+(y−0.25)2/0.15 ≤ 1

1 if
{ √

(x−0.5)2+(y−0.75)2/0.15 ≤ 1
0.55 < x < 0.45, y > 0.85

.

The above problem is solved in a 150× 150 Q1 FE mesh, with solver parameters q = 25, γ = 10−8,
σ = |β|10−10, and ε = 10−4. The discretization in time is performed using the BE method with a time
step of 10−3. At Fig. 11(a), the initial solution is depicted. Figs. 11(b) to 11(d) show the solution
after one revolution (at time t = 2π).

The solution obtained with the stabilization in (16), (15), and (6) are depicted in Figs. 11(b),
11(c), and 11(d), respectively. It is observed that the symmetric mass matrix method yields slightly
more diffusive solutions than the LED method. This can be better observed in Fig. 12, where a
cross-section of each of the figures rotated is depicted at t = 0 and after one revolution (t = 2π) for
all three methods. As naturally expected, regularizing the stabilization makes the method faster to
converge but the solution becomes smoother. Nevertheless, the regularization parameters (σ and ε)
allow one to take the choice that better fits the requirements, either a faster but smoother method or
the opposite. In any case, all schemes satisfy the DMP at all time steps.
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Figure 6. Evolution of global DMP violation during nonlinear iterations when avoid-
ing the projection step in Algs. 1 and 2 for the straight propagation of a discontinuity
test.

9.3. Burgers’ equation. Finally, let us test our stabilization with a nonlinear transient problem.
Particularly the 2D Burgers’ equation, i.e. equation (20) with v .= (1, 1)u/2, is solved on Ω = [0, 1]×[0, 1]
using a 150× 150Q1 mesh. The discretization in time is performed using the BE method with a time
step of 10−2. The initial conditions at t = 0 are

u0(x, y) .=


−0.2 if x < 0.5 and y > 0.5
−1 if x > 0.5 and y > 0.5
0.5 if x < 0.5 and y < 0.5
0.8 if x > 0.5 and y < 0.5

,

and the solution is advanced until t = 0.5.
The following stabilization parameters have been used for obtaining the results in Fig. 13(a):

q = 1, ε = 10−3, σ = |β|10−6, and γ = 10−8. Although the parameters used are not enforcing a
particularly sharp solution (see Figs. 5 and 8), Fig. 13(a) shows properly transported and minimally
smeared shocks. Only in the lower right region the method appears to be more diffusive than desired.
Notice that in that region the gradient in the x direction spreads as y increases, while it should not.
Nevertheless, in Fig. 13(b), that shows the solution for q = 4, ε = 10−4, σ = |β|10−7, and γ = 10−8.
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Figure 7. Straight propagation test nonlinear iterations as mesh refined from 12 ×
12Q1 to 96 × 96Q1, for both Alg. 1 and Alg. 2. The shock capturing parameters
used are q = 4, ε = 10−2, σ = |β|h410−6, and γ = 10−10.

Table 2. Circular propagation test errors and iterations, using the steady version
of discrete problem (12) and nonlinear diffusion (16), for different values of q and ε,
σ = |β|ε10−5, γ = 10−10, and both nonlinear solvers in Sect. 8.

q ε
Iterations

L1 error L1 error
L2 error L2 error

A Ap N Np at Γout at Γout
1 10−1 30 30 9 9 1.42e-01 1.93e-01 2.01e-01 2.36e-01
1 10−2 – 54 10 10 1.11e-01 1.50e-01 1.74e-01 2.05e-01
1 10−3 – – 11 11 1.05e-01 1.42e-01 1.68e-01 1.99e-01
1 10−4 196 – 19 19 1.04e-01 1.40e-01 1.68e-01 1.98e-01
1 0 – – – – – –
4 10−1 23 23 10 10 1.33e-01 1.82e-01 1.97e-01 2.31e-01
4 10−2 64 64 15 15 8.47e-02 1.15e-01 1.55e-01 1.84e-01
4 10−3 105 111 22 22 6.74e-02 9.31e-02 1.34e-01 1.64e-01
4 10−4 – 139 24 24 6.38e-02 8.88e-02 1.29e-01 1.60e-01
4 0 198 194 6.31e-02 8.80e-02 1.28e-01 1.59e-01
8 10−1 23 22 11 11 1.32e-01 1.81e-01 1.97e-01 2.31e-01
8 10−2 73 68 15 15 8.10e-02 1.10e-01 1.53e-01 1.82e-01
8 10−3 95 96 19 19 5.91e-02 8.18e-02 1.28e-01 1.57e-01
8 10−4 100 109 22 22 5.28e-02 7.46e-02 1.18e-01 1.50e-01
8 0 256 231 5.12e-02 7.28e-02 1.16e-01 1.48e-01
25 10−1 22 22 14 14 1.32e-01 1.80e-01 1.97e-01 2.31e-01
25 10−2 45 49 16 15 7.82e-02 1.07e-01 1.51e-01 1.80e-01
25 10−3 77 70 20 20 5.37e-02 7.50e-02 1.24e-01 1.54e-01
25 10−4 131 109 23 24 4.51e-02 6.49e-02 1.11e-01 1.44e-01
25 0 180 289 4.22e-02 6.14e-02 1.06e-01 1.39e-01

A: Alg. 1 without projecting to V adm
h , Ap: Alg. 1.

N: Alg. 2 without projecting to V adm
h , Np: Alg. 2.

the method is less diffusive and the obtained shocks are even sharper. In any case, both choices satisfy
the DMP for all time steps.

10. Conclusions

In this work, we have considered a nonlinear stabilization technique for the FE approximation
of scalar conservation laws with implicit time stepping. The method relies on an artificial diffusion
method, based on a graph-Laplacian operator. The artificial diffusion is judiciously chosen in order to
satisfy a local DMP for steady problems. It is nonlinear, since it depends on a shock detector. Further,
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Figure 8. Circular propagation test solution at the outflow boundary ∂Ω\Γin. Using
the steady version of discrete problem (12) and nonlinear diffusion (16), for different
values of q and ε, σ = |β|ε10−5, γ = 10−10 and both nonlinear solvers in Sect. 8. The
result in brackets shows the number of iterations if no projection to V adm

h is done.

the resulting method is linearity preserving. The same shock detector is used to gradually lump the
mass matrix. The resulting method is LED, positivity preserving, and also satisfies a global DMP.
Lipschitz continuity has also been proved.

However, the resulting scheme is highly nonlinear, leading to very poor nonlinear convergence rates,
even using Anderson acceleration techniques. It is due to the fact that the nonlinear operator to
be inverted at every time step is non-differentiable. The critical problem of nonlinear convergence
of implicit monotonic methods based on nonlinear artificial diffusion have already been previously
reported in the literature (see [22]). As a result, we propose a smooth version of the scheme. It
leads to twice differentiable nonlinear stabilization schemes, which allows one to straightforwardly use
Newton’s method using the exact Jacobian. Twice differentiability ensures quadratic convergence.

We have considered two nonlinear solvers, namely Anderson acceleration and Newton’s method.
We have observed numerically that the effect of the smoothness has a positive impact in the reduction
of the computational cost. The impact of using Newton’s method versus Anderson acceleration is also
very positive. In general, using the Newton method with a smooth version of the method we can
reduce 10 to 20 times the number of iterations of Anderson acceleration with the original non-smooth
algorithms.

All the monotonic properties are satisfied (as theoretically proved) in the numerical experiments.
Steady and transient linear transport, and transient Burgers’ equation have been considered in 2D.
In any case, these properties are only true for the converged solution, but not for iterates. In this
sense, we have also proposed the concept of projected nonlinear solvers, where a projection step is
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(a) Smoothest solution with parameters: q = 1,
ε = 10−1, σ = |β|10−6, and γ = 10−10.

(b) Sharpest solution with parameters: q = 25
and ε = 10−4, σ = |β|10−9, and γ = 10−10.

Figure 9. Stabilized solution of the circular convection test using the steady version
of the discrete problem (12) and the nonlinear diffusion (16) for two different parameter
choices.
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Figure 10. Evolution of global DMP violation during nonlinear iterations when
avoiding the projection step in Algs. 1 and 2 for the circular propagation of a discon-
tinuity. Using q = 25, ε = 10−4, σ = |β|10−9, γ = 10−10.

performed at the end of every nonlinear iterations onto a FE space of admissible solutions. The space
of admissible solutions is the one that satisfies the desired monotonic properties (maximum principle
or positivity). The projection has no effect on the quality of the nonlinear convergence.

Future work should tackle the entropy stability analysis of the resulting schemes when applied to
nonlinear problems. Some initial results in this direction can be found in [5]. The extension to systems
of conservation laws and higher order methods in space and time is another interesting line of research.

Appendix A. Proof of Theorem 6.1

Let us proof Theorem 6.1. We assume that the FE mesh is quasi-uniform in order to reduce
technicalities. However, the proof for Lipschitz continuity can be extended to more general meshes.
We denote A = cB as A h B and A < cB as A . B, for any positive constant c that does not depend
on the numerical or physical parameters.
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(a) Initial conditions. (b) LED scheme.

(c) Global DMP scheme. (d) LED DMP nonsmooth stabilization.

Figure 11. 3 Body rotation test results using discrete problem (12) and two different
artificial diffusions ((16) leading an LED scheme, and (15) with (18) leading a global
DMP scheme). Using a 150×150 Q1 element mesh, and parameters: q = 25, γ = 10−8,
σ = |β|10−10, ε = 10−4, and ∆t = 10−3.

From the definition of the nonlinear stabilization in (5), we get

|〈B(u)u, z〉 − 〈B(v)v, z〉| ≤

∣∣∣∣∣∣
∑
i∈Nh

∑
j∈Nh(Ωi)

νij(v)`(i, j)(uj − vj)zi

∣∣∣∣∣∣ (21)

+

∣∣∣∣∣∣
∑
i∈Nh

∑
j∈Nh(Ωi)

(νij(u)− νij(v))`(i, j)ujzi

∣∣∣∣∣∣ .
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Figure 12. Cross-sections of each for the figures rotated in the three body rotation
benchmark. The parameters used are q = 25, γ = 10−8, σ = |β|10−10, ε = 10−4,
and ∆t = 10−3, in a 150 × 150 Q1 element mesh. The discrete problem (12) is used
in combination with three different artificial diffusions (16) and (6) leading to a LED
scheme, and (15) leading to a global DMP scheme.

(a) Solution for:q = 1, ε = 10−2, σ = |β|10−6,
and γ = 10−8.

(b) Solution for: q = 4, ε = 10−3, σ = |β|10−7,
and γ = 10−8.

Figure 13. Burger’s equation solutions at t = 0.5 using discrete problem (12) and (6)
with (16). Using a 150×150 Q1 element mesh, ∆t = 10−2, and two sets of parameters
q, γ, σ, and ε.

Using the definition of |β|, the Cauchy-Schwarz inequality, the fact that ‖ϕi‖ ≤ Chd/2, and the inverse
inequality ‖∇vh‖ . h−1‖vh‖ for vh ∈ Vh (see [4]), we get:

Fij(w) ≤ |β|‖∇ϕi‖L2‖ϕj‖L2 . hd−1|β|, (22)

for any w ∈ V adm
h . Using (22), the first term in the RHS of (21) is bounded as follows:∣∣∣∣∣∣

∑
i∈Nh

∑
j∈Nh(Ωi)

νij(v)`(i, j)(uj − vj)zi

∣∣∣∣∣∣ . hd−1|β||u− v|`|z|`.

The second term is bounded using the Cauchy-Schwarz inequality:

∑
i∈Nh

∑
j∈Nh(Ωi)

(νij(u)− νij(v))`(i, j)ujzi .

∣∣∣∣∣∣
∑
i∈Nh

∑
j∈Nh(Ωi)

1
2(νij(u)− νij(v))2(ui − uj)2

∣∣∣∣∣∣
1
2

× |z|`. (23)
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Using (22), we have:

νij(u)− νij(v)
= max{αi(u)Fij(u), αj(u)Fji(u), 0} −max{αi(v)Fij(v), αj(v)Fji(v), 0} (24)
≤ max{(αi(u)Fij(u)− αi(v)Fij(v), αj(u)Fji(u)− αj(v)Fji(v), 0}
. hd−1|β|max{|αi(u)− αi(v)|, |αj(u)− αj(v)|}.

Let us assume that
∑
j∈Nh(Ωi){{|∇uh · rij |}}ij 6= 0. (The other case is straightforward.) On one hand,

for a non-degenerate FE mesh, we have that ch ≤ rij ≤ Ch, j ∈ N sym
h (Ωi), for positive constants c, C

that do not depend on h. Using this fact in the definition of the shock detector (7), we get:

αi(u)
1
q =

∣∣∣∑j∈Nh(Ωi) J∇uhKij
∣∣∣∑

j∈Nh(Ωi) 2{{|∇uh · rij |}}ij
=

∣∣∣∑j∈Nh(Ωi)
ui−uj
|rij | + ui−usym

j

|rsym
ij
|

∣∣∣∑
j∈Nh(Ωi)

|ui−uj |
|rij | + |ui−usym

j
|

|rsym
ij
|

(25)

h

∣∣∣∑j∈Nh(Ωi)(ui − uj) + (ui − usym
j )

∣∣∣∑
j∈Nh(Ωi) |ui − uj |+ |ui − u

sym
j |

.

Now, we use the following result for two sequences {ai}ni=1 {b}ni=1 (see [3] for further details):

|
∑n
i=1 ai|∑n
i=1 |ai|

−
|
∑n
i=1 bi|∑n
i=1 |bi|

=
|
∑n
i=1 ai| − |

∑n
i=1 bi|∑n

i=1 |ai|
+

n∑
i=1
|bi|
(

1∑n
i=1 |ai|

− 1∑n
i=1 |bi|

)
(26)

≤
|
∑n
i=1 ai − bi|∑n
i=1 |ai|

+
∑n
i=1 |bi| −

∑n
i=1 |ai|∑n

i=1 |ai|
≤
|
∑n
i=1 ai − bi|+

∑n
i=1 |ai − bi|∑n

i=1 |ai|

≤ 2
∑n
i=1 |ai − bi|∑n
i=1 |ai|

. (27)

Using simple algebraic manipulation, we have aq − bq = (a − b)
∑q−1
k=0 a

kbq−ik for q ∈ N+. For
a, b ∈ [0, 1], it leads to |aq − bq| ≤ q|a− b| (see [3]). This inequality, together with (25) and (27), leads
to:

1
q
|αi(u)− αi(v)| .

∣∣∣∑j∈Nh(Ωi)((u− v)i− (u− v)j) + ((u− v)i − (u− v)sym
j )

∣∣∣∑
j∈Nh(Ωi) |ui − uj |+ |ui − u

sym
j |

. (28)

On the other hand, the bounds

|ui − uj | ≤
∑

k∈Nh(Ωi)

|ui − uk| and |ui − uj | ≤
∑

k∈Nh(Ωj)

|uj − uk|,

(24), and (28), yield

(νij(u)− νij(v))(ui − uj) .qhd−1|β|
∑

k∈N sym
h

(Ωi)

|(u− v)i − (u− v)k| (29)

+ qhd−1|β|
∑

k∈N sym
h

(Ωj)

|(u− v)j − (u− v)k|.

The second term is bounded by combining (23), (29), and the fact that the number of elements
surrounding a node is bounded above independently of h:∑

i∈Nh

∑
j∈Nh(Ωi)

(νij(u)− νij(v))`(i, j)ujzi . qhd−1|β||u− v|`|z|`.



MONOTONICITY-PRESERVING DIFFERENTIABLE NONLINEAR STABILIZATION 25

Next, we have to prove that the nonlinear mass matrix is also Lipschitz continuous. First, we note
that ∑

j∈Nh(Ωi)

(1− αi(uh))(ϕj , ϕi)uj + αi(uh)(1, ϕi)ui

=
∑

j∈Nh(Ωi)

(ϕj , ϕi)uj + αi(uh)(ϕj , ϕi)(ui − uj).

Thus
〈M(u)u, z〉 − 〈M(v)v, z〉 ≤

∑
i∈Nh

∑
j∈Nh(Ωi)

(ϕi, ϕj)(uj − vj)zi

+
∑
i∈Nh

∑
j∈Nh(Ωi)

(ϕi, ϕj)(ui − uj)(αi(uh)− αi(vh))zi

+
∑
i∈Nh

∑
j∈Nh(Ωi)

(ϕi, ϕj)((u+ v)i − (u+ v)j)αi(vh)zi.

Bounds for the second and third term follow the same lines as above. For the second term, we proceed
as in (23), getting: ∑

i∈Nh

∑
j∈Nh(Ωi)

(ϕi, ϕj)(ui − uj)(αi(uh)− αi(vh))zi

.

∣∣∣∣∣∣
∑
i∈Nh

1
2

∑
j∈Nh(Ωi)

(ϕi, ϕj)(αi(uh)− αi(vh))2(ui − uj)2

∣∣∣∣∣∣
1
2

× ‖z‖

. qh
d
2 |u− v|`‖z‖.

where we have used the spectral equivalence of the consistent and lumped mass matrices in the last
inequality. The first and third term are easily bounded as∑

i∈Nh

∑
j∈Nh(Ωi)

(ϕi, ϕj)(uj − vj)zi ≤ ‖u− v‖‖z‖,

∑
i∈Nh

∑
j∈Nh(Ωi)

(ϕi, ϕj)((u+ v)i − (u+ v)j)αi(vh)zi ≤ qh
d
2 |u− v|`‖z‖.

It proves the theorem.

References

[1] S. Badia and A. Hierro, On Monotonicity-Preserving Stabilized Finite Element Approxima-
tions of Transport Problems, SIAM Journal on Scientific Computing, 36 (2014), pp. A2673–A2697.

[2] G. Barrenechea, V. John, and P. Knobloch, Analysis of Algebraic Flux Correction
Schemes, SIAM Journal on Numerical Analysis, 54 (2016), pp. 2427–2451.

[3] R. G. Barrenechea, E. Burman, and F. Karakatsani, Edge-based nonlinear diffusion for
finite element approximation of convection-diffusion equations and its relation to algebraic flux-
correction schemes, (2016).

[4] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, vol. 15
of Texts in Applied Mathematics, Springer, New York, third ed., 2008.

[5] E. Burman, On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conser-
vation laws, BIT Numerical Mathematics, 47 (2007), pp. 715–733.

[6] , A monotonicity preserving, nonlinear, finite element upwind method for the transport equa-
tion, Applied Mathematics Letters, 49 (2015), pp. 141–146.

[7] E. Burman and A. Ern, Nonlinear diffusion and discrete maximum principle for stabilized
Galerkin approximations of the convection–diffusion-reaction equation, Computer Methods in Ap-
plied Mechanics and Engineering, 191 (2002), pp. 3833–3855.



MONOTONICITY-PRESERVING DIFFERENTIABLE NONLINEAR STABILIZATION 26

[8] , Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete max-
imum principle and convergence, Mathematics of Computation, 74 (2005), pp. 1637–1652.

[9] B. Cockburn and C.-W. Shu, Runge–Kutta Discontinuous Galerkin Methods for Convection-
Dominated Problems, Journal of Scientific Computing, 16 (2001), pp. 173–261.

[10] J. Donea and A. Huerta, Finite Element Methods for Flow Problems, Finite Element Methods
for Flow Problems, John Wiley & Sons, 2003.

[11] S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the
equations of hydrodynamics, Mat. Sb. (NS), 47 (1959), pp. 271–306.

[12] J. Guermond, M. Nazarov, B. Popov, and Y. Yang, A Second-Order Maximum Princi-
ple Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations,
SIAM Journal on Numerical Analysis, 52 (2014), pp. 2163–2182.

[13] J.-L. Guermond and M. Nazarov, A maximum-principle preserving C0 finite element method
for scalar conservation equations, Computer Methods in Applied Mechanics and Engineering, 272
(2014), pp. 198–213.

[14] J.-L. Guermond and R. Pasquetti, A correction technique for the dispersive effects of mass
lumping for transport problems, Computer Methods in Applied Mechanics and Engineering, 253
(2013), pp. 186–198.

[15] A. Hierro, S. Badia, and P. Kus, Shock capturing techniques for hp-adaptive finite elements,
Computer Methods in Applied Mechanics and Engineering, (in press).

[16] T. Hughes and A. Brooks, A multi-dimensioal upwind scheme with no crosswind diffusion.,
in: T.J.R. Hughes ed. Finite Element Methods for Convection Dominated Flows, (ASME, New
York), 34 (1979), pp. 19–35.

[17] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation
for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive
equations, Computer Methods in Applied Mechanics and Engineering, 73 (1989), pp. 173–189.

[18] T. J. R. Hughes, M. Mallet, and M. Akira, A new finite element formulation for com-
putational fluid dynamics: II. Beyond SUPG, Computer Methods in Applied Mechanics and
Engineering, 54 (1986), pp. 341–355.

[19] D. I. Ketcheson, C. B. Macdonald, and S. Gottlieb, Optimal implicit strong stability
preserving Runge–Kutta methods, Applied Numerical Mathematics, 59 (2009), pp. 373–392.

[20] A. Kritz and D. Keyes, Fusion Simulation Project Workshop Report, Journal of Fusion Energy,
28 (2008), pp. 1–59.

[21] S. N. Kružkov, First order quasilinear equations in several independent variables, Mathematics
of the USSR-Sbornik, 10 (1970), pp. 217–243.

[22] D. Kuzmin, Linearity-preserving flux correction and convergence acceleration for constrained
Galerkin schemes, Journal of Computational and Applied Mathematics, 236 (2012), pp. 2317–
2337.

[23] D. Kuzmin and J. N. Shadid, A new approach to enforcing discrete maximum principles in
continuous Galerkin methods for convection-dominated transport equations, Journal of Computa-
tional Physics, (2015).

[24] D. Kuzmin and J. N. Shadid, Gradient-based nodal limiters for artificial diffusion operators in
finite element schemes for transport equations, (2016).

[25] D. Kuzmin, M. J. Shashkov, and D. Svyatskiy, A constrained finite element method satisfy-
ing the discrete maximum principle for anisotropic diffusion problems, Journal of Computational
Physics, 228 (2009), pp. 3448–3463.

[26] D. Kuzmin and S. Turek, Flux Correction Tools for Finite Elements, Journal of Computational
Physics, 175 (2002), pp. 525–558.

[27] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, 1 ed., 2002.
[28] L. R. Scott and S. Zhang, Finite Element Interpolation of Nonsmooth Functions Satisfy-

ing Boundary Conditions, Mathematics of Computation, 54 (1990), pp. 483–493. ArticleType:
research-article / Full publication date: Apr., 1990 / Copyright c© 1990 American Mathematical
Society.



MONOTONICITY-PRESERVING DIFFERENTIABLE NONLINEAR STABILIZATION 27

[29] J. Xu and L. Zikatanov, A Monotone Finite Element Scheme for Convection-Diffusion Equa-
tions, Mathematics of Computation, 68 (1999), pp. 1429–1446.


	1. Introduction
	2. Preliminaries
	2.1. The continuous problem
	2.2. Finite element spaces and meshes
	2.3. The semi-discrete problem

	3. Nonlinear stabilization
	4. Monotonicity properties
	5. Symmetric mass matrix stabilization
	6. Lipschitz continuity
	7. Differentiable stabilization
	8. Nonlinear Solvers
	9. Numerical Experiments
	9.1. Steady problems
	9.2. Transient transport problems
	9.3. Burgers' equation

	10. Conclusions
	Appendix A. Proof of Theorem 6.1
	References

