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Abstract The subject of this paper is the computation of instability points in mechanical problems
with the finite element method. The objective is to extend the application of critical point detection
methods to problems with inequality constraints originating from damage and contact. A simple
bilinear model is considered for the damage problems. A bilateral, frictionless contact formulation
is used for the contact problems. Among the critical point detection methods the focus is laid on the
critical displacement method and the extended system. At first a possible combination of both
methods is evaluated by applying them to damage problems. A prediction method based on the
extended system is developed to facilitate the comparison of both methods. Secondly, the extended
system is used as a computation method for critical points in two-dimensional contact problems.

1. Introduction
The history of stability theory for mechanical problems dates back to the 18th
century and the early works of Euler (1774), who studied the buckling of
beams. A lot of experimental and theoretical investigation has been dedicated
to the buckling of plates and shells at the beginning of the 20th century. When
numerical methods such as the finite element methods (FEM) were developed,
more complex mechanical problems could be solved. With the introduction of
arclength methods by Riks (1972) and Wemper (1971) in engineering, even the
computation of complex non-linear load-deflection paths became feasible.
Detection of critical points, however, was made with indicator functions that
had to be computed accompanyingly to incremental-iterative path computation
methods. Examples of these are the determinant of the tangent stiffness matrix
or the number of negative diagonal elements.

With the extension of the set of equations by a condition for critical points
the direct computation of a critical point became feasible. In the mathematical
literature these methods can be found in the work of Abbott (1978) and
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Seydel (1979). The extended system was applied to engineering problems for
the first time by Wriggers et al. (1988). Enhancements on the algorithm were
proposed by Wriggers and Simo (1990). Another method of interest is the
critical displacement method (CDM) which was developed in recent years by
Oñate and Matias (1996). Here, the secant stiffness matrix is used to make a
prediction of the critical displacements first. Then, in the second step the
critical load is computed.

The CDM and the extended system proved to give good results, however
both are not perfect and have certain disadvantages. The CDM as an indirect
method only predicts the critical values, but gives good results even at greater
distances from the critical point. The extended system as direct method
computes the critical points directly, but does not converge in all cases and is
dependent on the initial values.

The objective of this article is to apply the computation methods for critical
points to more complex mechanical problems involving inequality constraints
originating from damage and contact. Therefore, the CDM and the extended
system as the most promising techniques will be compared and evaluated. One
step prediction of the critical load based on the extended system will be
developed that enables a better evaluation. A conceivable combination of both
the methods will be examined. The idea is to use the prediction of a CDM
computation as starting value for the extended system and enhance the
convergence of the latter.

The layout of the article is as follows: at first the basic equations in
continuum mechanics and finite elements are given. Then a simple bilinear
damage and the bilateral frictionless contact formulation are presented briefly.
The theory part is concluded by the critical point computation methods.

The numerical examples section is divided into two parts. The first contains
the damage examples, where the critical point detection methods are evaluated.
In the second part, only the extended system is applied to contact problems.

2. Basic equations
2.1 Continuum mechanics
With the deformation energy W for hyperelastic material the principle of the
minimum of potential energy with respect to the reference configuration can be
stated as:

PS ¼

Z
B

W dV 2

Z
B

r0b̂ · u dV 2

Z
›Bs

t̂ · u dA ) Min: ð1Þ

Besides the term for the elastic energy, terms considering the energy of applied
body forces b and surface loads t have been added. The unknown displacement
function is denoted by u. Assuming the St Venant constitutive law, the elastic
energy is

W ¼
1

2
ðSEÞ ¼

1

2
ðE : ðDEÞÞ with E ¼

1

2
ðFTF 2 IÞ ð2Þ
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Here S is the second. Piola-Kirchhoff stress tensor, D is the fourth order
constitutive tensor and E the Green-Lagrange strain tensor with the
deformation gradient F ¼ ðI þ Grad uÞ: Variation of equation (1) then yields

dPS ¼

Z
B

E : D dE dV 2

Z
B

r0b̂ · du dV 2

Z
›Bs

t̂ · du dA ¼ 0; ð3Þ

where the variation of the Green-Lagrange strain tensor is

dE ¼
1

2
ðFT Grad du þ GradTdu FÞ ð4Þ

and du is the test function for which {dujdu ¼ 0 on ›Bu} is required.

2.2 FEM
For the application of the FEM to equation (3) the area of integration B is
approximated by the discretization

Bh ¼ <
ne

e¼1
Ve

with ne finite elements. The displacements u and the virtual displacements du
are then interpolated on the elemental level by a sum of shape functions N and
nodal values v:

uh ¼
Xnn

i¼j

N j vj 7uh ¼
Xnn

j¼1

vj ^7Nj

duh ¼
Xnn

j¼1

Nj dvj 7duh ¼
Xnn

j¼1

dvj ^7Nj

ð5Þ

with the matrix B̂ that contains derivatives of shape functions according to the
theory used, equation (3) can be split into inner energy terms and load terms:

RðvÞ ¼ <
ne

e¼1

Z
Ve

B̂TðveÞ : SðveÞ dV ð6Þ

PðvÞ ¼ <
ne

e¼1

Z
Ve

rb̂ dV þ

Z
›Ves

t̂ dA

� �
ð7Þ

This leads finally to the set of equations that has to be solved for the unknown
nodal displacements

GSðvÞ ¼ RðvÞ2 lP ¼ 0; ð8Þ
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where the load scaling parameter l for equilibrium path computations has
already been introduced. Commonly this equation set is solved with the
Newton-Raphson method. Due to the complexity of the governing equations the
load-deflection path exhibits slopes so that arclength methods for the curve
tracing become necessary (Crisfield, 1981; Ramm, 1981; Riks, 1972;
Schweizerhof and Wriggers, 1986). In this work, the arclength method with
an updated normal plane control equation is applied.

2.3 Damage model
In order to compare the critical point detection method for more complex
problems a damage model has been implemented. For simplicity reasons the
single parameter isotropic damage model of Oliver et al. (1990) is chosen. In
combination with the CDM this model was used previously by Tschöpe (2001).

In the constitutive law the scalar damage parameter d is introduced which
ranges from 0 (undamaged material) to 1 (completely damaged material):

S ¼ ð1 2 dÞDE ¼ �DE ð9Þ

Furthermore, a damage criterion formulated in terms of the stress norm �s and
the damage threshold value r(d) is assumed with

FðE; dÞ ¼ �s2 rðdÞ # 0: ð10Þ

In this work, the following definitions are used:

�sðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E : ðDEÞ

p
ð11Þ

rðdÞ ¼
r0

1 2 ð1 þ HÞd
ð12Þ

In this equation, r0 is the initial damage threshold value and H is the hardening
modulus. This damage model is a simple bilinear one where the evolution law
for the damage parameter yields

d ¼
1

1 þ H
1 2

t0

�s

� �
: ð13Þ

An algorithm for the application of this damage model can be found in the
work of Tschöpe (2001).

2.4 Contact
For contact modeling, a two-dimensional frictionless normal contact
formulation is used. Therefore, the master-slave concept of Hallquist (1979)
is adopted, where one of the bodies is chosen as the master BM; the other as the
slave BS: In numerical contact mechanics this is a rather common model, that
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can be found in several articles (Curnier, 1984; Laursen and Simo, 1993;
Wriggers and Miehe, 1992).

For a given slave node xS on ›BS
c a distance function dðjaÞ to the

parameterized master surface xM(ja) can be defined. The corresponding
master point xMð �ja; tÞ for the slave point xS can be found minimizing this
distance function

dðjaÞ ¼ kxS 2 xMðjaÞk ) Min with a ¼ 1; 2: ð14Þ

This leads to the local gap function gN, which permits to distinguish between
the different contact states:

gN ¼ ½xS 2 �xM	 · �n ð15Þ

The outward directed normal vector �n is obtained from the convective
coordinate system of the surface discretization

�aa ¼ x;að �jaÞ; �n ¼
�a1 £ �a2

k �a1 £ �a2k
: ð16Þ

Since negative values of gN would mean a penetration of the two bodies, which
is not allowed, the constraint gN $ 0 yields. For the incorporation of this
constraint in the set of equations (8) a penetration function

gþ
N ¼

jgNj for gN , 0

0 else

(
ð17Þ

is defined. With this function, the penalty method can be applied and the
contact constraints are added to the equation system (8):

G ¼ GS þ

Z
›Bc

1Ngþ
Ndgþ

N dA|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
contact terms GC

with 1N . 0 ð18Þ

The penalty method does not solve the problem exactly, it only regularizes it.
The great advantage of this method is the ease of implementation in the
existing finite element program codes. However, due to the regularization tiny
rest penetrations remain after the problem is solved. The penalty parameter,
1N, has to be chosen properly, so that on one side ill conditioning of the
equation system and on the other side too large rest penetration do not occur.

For the numerical examples computed in this work a node to segment
contact discretization has been used. In general, the description of contact
presented can be found in the work of Wriggers (1995) and several other
publications.
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3. Computation of critical points
This section briefly presents the three critical point computation methods,
which will be applied to numerical examples in the end of this work.

3.1 CDM
The CDM was developed recently by Oñate and Matias (1995). Here only an
outline of the theory of this method is given. For a more detailed description,
the reader may refer to Oñate and Matias (1996) and Matias (1996).

The CDM is based on the secant stiffness matrix, which is derived by
introducing the displacements of an updated configuration as utþDt ¼
ut þ Du: With these displacements an incremental Green-Lagrange strain
tensor yields:

DE ¼ EtþDt 2 Et ¼ jþ h ð19Þ

In the tensors, j and h, the terms with linear and quadratic dependence on Du
are summarized, so that

j ¼
1

2
ðGradDu þ GradTDu þ GradTutGradDu þ GradTDu Grad utÞ ð20Þ

h ¼
1

2
GradTDu GradDu: ð21Þ

Deriving a similar expression for dE and doing the incremental split for the
stress tensor as well, equation (3) can be rewritten in an incremental formZ

B0

½djTDjþ djTDhþ dhTDjþ dhTDhþ dhTSt	 dV

¼

Z
B0

dDuTb̂tþDtr0 dV þ

Z
›B0s

dDuTT̂tþDt dA 2

Z
B0

djTSt dV :

ð22Þ

Similar to the interpolation in equation (5) the incremental displacement are
approximated by

Duh ¼
Xnn

i¼1

NiDvi; dDuh ¼
Xnn

i¼1

NidDvi: ð23Þ

After some mathematical operations (Oñate, 1995; Oñate and Matias, 1995) the
secant stiffness matrix can be assembled as the sum of the following four
matrices:

KS ¼ KLU þ KM þ KN þ Ks ð24Þ
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Details of the form of the above matrices can be found in the work of Oñate and
Matias (1996).

As expected the limiting behavior yields the tangent stiffness matrix

KT ¼
Dv!0
lim KS ¼ KLU þ Ks: ð25Þ

To obtain a prediction of the critical values it is assumed that the critical
displacements are equal to

vc ¼ vt þ Dv with Dv ¼ rF: ð26Þ

The secant stiffness matrix is now assembled with this relation. Neglecting the
terms with quadratic and higher dependence on r the eigenvalue problem
KTF ¼ 0 can be approximated with this secant matrix by

½KTðv
tÞ þ rðKL2 þ Ks1Þ	C ¼ 0: ð27Þ

The form of all the above matrices can be found in the work of Matias (1996)
and Oñate and Matias (1996).

Solving this eigenvalue problem with the inverse iteration method a
prediction for the critical displacements yields with (26). The critical load can
then be computed using the secant relation

Dfc ¼ KSðrFÞrF with fc ¼ ft þ Dfc: ð28Þ

For the example with damage the enhancements proposed by Oñate et al. (2001)
are used:

�s ðEcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec · ðDEcÞ

p
and

dc ¼

d t for �s ðEcÞ # r t

1
1þH

1 2 r0

�sðEcÞ

� �
for �s ðEcÞ . r t

8><
>:

ð29Þ

The basic idea with this is to compute equation (28) based on the damage state
of the predicted critical displacements.

3.2 Extended system
The application of the extended system to damage problems is straightforward
in contrast to contact problems where the additional terms in equation (8) pose
some difficulties. The solution of equation systems of the type (8) and (18) is
accomplished with the Newton-Raphson method. This standard finite element
algorithm for equation (18) reads as

½KTðv
iÞ þ Kcðv

iÞ	Dviþ1 ¼ 2GSðv
iÞ2 Gcðv

iÞ ð30Þ

with
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viþ1 ¼ vi þ Dviþ1: ð31Þ

The matrices KT and Kc are the contributions to the global tangent stiffness
matrix originating from the solid and contact terms G S and G c, respectively:

KT ¼
›GS

›v
; Kc ¼

›Gc

›v
ð32Þ

For the direct computation of instability points with the extended system, the
equation system (18) is extended by a condition for the critical point. In this
work, the eigenvector equation in the critical point KT f ¼ 0 was chosen. This
procedure has been described before in literature in several publications,
(Wriggers and Smio, 1990; Wriggers and Wagner, 1989; Wriggers et al., 1988).
With the additional constraint and a scaling equation for the eigenvector, the
extended equation system is

Ĝðv; l;fÞ ¼

GSðv; lÞ þ Gcðv;lÞ

½KTðv; lÞ þ Kcðv; lÞ	f

lðfÞ

0
BB@

1
CCA ¼ 0 ð33Þ

with

lðfÞ ¼ kfk2 1: ð34Þ

For the Newton-Raphson algorithm the derivatives with respect to the
unknowns have to be computed. With the shorthand notation ( · ), v ¼ ›ð · Þ=›v,
equation (30) evolves to:

KT þ Kc 0 2P

½ðKT þ KcÞf	; v KT þ Kc ½ðKT þ KcÞf	; l

0T fT

kfk
0

2
66664

3
77775

Dv

Df

Dl

0
BB@

1
CCA

¼ 2

GSðvÞ þ GcðvÞ

½KTðvÞ þ KcðvÞ	f

kfk2 1

0
BB@

1
CCA ð35Þ

The number of unknowns now has increased to 2n þ 1 with n being the
degrees of freedom of the equation system (18). For the efficient solution of (35)
(Wriggers and Simo, 1990; Wriggers et al., 1988) proposed an algorithm with a
numerical derivative as an approximation for the derivatives of KT.
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This algorithm is adapted to the contact problems of this paper and outlined in
the Appendix.

In this algorithm, special attention is necessary for the reassemblation of
the stiffness matrix Kcðv

i þ 1f iÞ in combination with the contact model
used in this work. Since for each assembly of the stiffness matrix a new
mapping of slave nodes to master segments is performed in the contact
algorithm, this means that Kc(v

i) and Kcðv
i þ 1f iÞ can differ substantially.

To prevent this the assembly of Kcðv
i þ 1f iÞ is made based on the master

segment to slave node mapping of Kc(v
i). Furthermore, the active set of

Kc(v
i) is held fix, too. The negative effect of adhesive forces that are

applied for a degree of freedom in the active set whose gap was closed in
Kc(v

i) but become open in Kcðv
i þ 1f iÞ are negligible due to the low

magnitude of 1f. A proper choice of the starting values for the extended
system is of great importance for the convergence of the algorithm. For the
eigenvector f several possible starting vectors exist:

f0 ¼

1 unit vector

vt

kvtk
current displacement vector

K21
T 1

kK21
T 1k

1: or higher step of an inverse iteration

f0 from previous eigenvalue computations

8>>>>>><
>>>>>>:

ð36Þ

A major advantage of this extended system algorithm is that the
eigenvector f in the critical point is computed simultaneously. This
additional information is useful in bifurcation points since it shows the
deformation pattern of the secondary path. This deformation pattern is
needed for path switching algorithms.

3.3 One step prediction
The one step prediction consists basically of the first step of the application of
the extended system algorithm. Rewriting equation system (35) for the first
iteration and setting K̂T ¼ KT þ Kc for the following set of three equations
can be obtained:

K̂Tðv
0ÞDv1 ¼ Dl1P ð37Þ

½K̂Tðv
0Þf	; vDv1 þ K̂Tðv

0ÞDf1 ¼ 2K̂Tðv
0Þf ð38Þ

fTDf1 ¼ kfk2 kfk
2

ð39Þ

In these equations, the fact was exploited that 2Rðv0Þ þ l0P 2 Gcðv
0Þ ¼ 0

when the extended system computation is started from a converged
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equilibrium point of the load-deflection path. Solving these equation for the
load update dl yields

Dl1 ¼ 2
1

fT

kfk
K̂

21

T ½ðK̂TfÞ;vDv1
P	

so that l1 ¼ l0 þ Dl1: ð40Þ

This means that an estimation of the critical load l 1 can be obtained this way.
The computation of the denominator in equation (40) can be simplified again
by the numerical derivative as in the extended system algorithm (Appendix).
The eigenvector f in equation (40) is one of the possible starting vectors from
equation (36).

Computing this load prediction during a path computation gives a curve of
critical load estimations. Besides being a means of comparison to the CDM it
turned out in the numerical examples that the one step prediction indicates
favorable starting values for the extended system algorithm.

4. Numerical examples
In the first part of this section, the three critical point detection methods are
tested on the two numerical examples, one without and the other with damage.
The second part contains three examples, where the extended system and the
one step prediction are applied to the mechanical contact problems.

4.1 Comparison of CDM and extended system
4.1.1 Hinged circular arch. The first example is the hinged circular arch of
Oñate and Matias (1995) which is shown in Figure 1 with the relevant
geometrical and material date. The results of the critical point computations are
plotted in Figure 2. As expected the extended system is able to compute the two
critical points, a bifurcation point B1: ðuy; lÞ ¼ ð210:76; 1; 073:2Þ and a limit
load point L1: ðuy;lÞ ¼ ð222:16; 1; 262Þ; without problems. The load
predictions of CDM and one step predictions are more or less equal, but the
CDM loads are slightly better as the values are converging more stable towards
the bifurcation point. Since the CDM is a prediction method mainly for the first
critical point on the equilibrium path there are no predictions for the limit load
point.

Figure 1.
Hinged circular arch
with solid elements
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4.1.2 Clamped shallow arch. As a second example, the clamped shallow arch
from Oñate et al. (2001) is chosen. An outline including geometrical and
material data is given in Figure 3. A hardening parameter of H ¼ 1:5 and an
initial threshold value of r0 ¼ 0:2 are assumed.

The computational results are shown in Figure 4. With the extended system
the limit load point at L1: ðuy; lÞ ¼ ð28:56; 110:29Þ is obtained easily. As in the
previous example, the CDM critical load predictions are slightly better than the
one step prediction loads. The enhancements of the critical load prediction with
damage (mentioned at the end of Section 3.1) become noticeable in this
example, since the CDM values are lesser than the one step prediction values.

4.2 Examples with contact
The two examples of the previous section showed that the CDM loads and the
one step prediction loads were more or less equal with a slight advantage for
the CDM values. A disadvantage of the CDM is the huge effort for
the implementation of the CDM in the existing finite element codes where the
secant stiffness matrix commonly is not assembled. Considering this,

Figure 2.
Equilibrium path for the

hinged circular arch

Figure 3.
Clamped shallow arch

with solid elements
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the slightly better results do not justify the effort necessary for the CDM.
Therefore, only the extended system is used for the examples of this section.

4.2.1 Hinged arch with obstacles. The first example with contact is an arch
with two obstacles placed above and below it at one side. Figure 5 shows an
outline of the structure including geometrical and material data. A load is
placed in the apex and the distance between obstacles and arch is 0.1. The arch
is discretized with 20 layers of 300 Q1-elements each, the obstacles consist of
100 elements in ten layers.

Looking at the results in Figure 6 the common bifurcation point for hinged
arches is not present due to the obstacles and only a limit load point at
ð2uy;lÞ ¼ ð26:97; 245:0Þ remains. The extended system is able to compute
this point directly from some distance. The one step prediction is quite good.
After some initial up and down the curve stabilizes for points with 2uy . 3:5:
This means that favorable starting values for the extended system are in the
range 3:5 , 2uy , 8:. This results in Figure 6 confirm this.

Figure 4.
Equilibrium path of the
shallow arch with
damage r0¼ 0.2, H ¼ 1.5

Figure 5.
Hinged arch with
obstacles

EC
20,5/6

622

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

t P
ol

ite
cn

ic
a 

de
 C

at
al

un
ya

 A
t 0

5:
02

 0
4 

Ja
nu

ar
y 

20
19

 (
PT

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/02644400310488781&iName=master.img-004.jpg&w=226&h=168
http://www.emeraldinsight.com/action/showImage?doi=10.1108/02644400310488781&iName=master.img-005.jpg&w=335&h=106


4.2.2 Two arches. The next example is the structure of an arch that has a
second arch upside down on top of it. An outline containing geometrical and
material data is shown in Figure 7. A sidewards movement (x-direction) of the
upper arch is prevented by the boundary conditions in the corner nodes, where
the unit loads are applied.

The arches were discretized with four node elements with linear shape
functions. Covergence studies of this example proved that an elementation with
14,000 elements is sufficient for the exactness of the numerical solution.

The results of the extended system computations are shown in Figure 8.
Two bifurcation points with B1: ðuy;lÞ ¼ ð20:85; 17:21Þ and B2: ðuy; lÞ ¼
ð24:77; 75:94Þ and two limit load points with L1: ðuy; lÞ ¼ ð212:94; 108:83Þ
and L2: ðuy;lÞ ¼ ð247:73; 42:14Þ were found successfully. The dashed lines in
Figure 8 symbolize the application of the extended system. Starting point and
converged end point are marked with dots.

Figure 6.
Equilibrium path for the

hinged arch

Figure 7.
Outline of the two arches
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The deformed arches and the secondary path deformation, respectively, are
depicted in the small pictures next to each critical point. The secondary path
deformations are plots of the eigenvectors that are among the results of the
extended system computation.

In Figure 9 the curves of the critical loads predictions calculated with the one
step prediction algorithm are plotted. Comparing these with Figure 8 it can be
seen how the load predictions indicate for each starting point to which critical
point the extended system algorithm converges.

4.2.3 Deep arch with obstacles. The geometrical data of the hinged deep arch
with two arches as obstacles are outlined in Figure 10. The obstacles are

Figure 8.
Equilibrium path with
critical points

Figure 9.
One step prediction for
the two arches structure
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clamped on one side. The elementation of the deep arch is 12 layers with 600
elements each, the obstacles have 300 elements in eight layers. Here also unit
loads are placed in the 41 center nodes of the deep arch.

The two limit load points L1: ðuy;lÞ ¼ ð250:44; 20:94Þ and L2: ðuy; lÞ ¼
ð2144:4; 8:74Þ can be found with the extended system, as demonstrated in
Figure 11. The extended system computations for the points are started from a
not to far distance as indicated by the one step predictions.

5. Conclusions
In the article, the computation of critical points for inequality constrained
problems was presented. The inequality constraints were imposed by

Figure 10.
Outline of the deep arch

with obstacles

Figure 11.
Equilibrium path for the
deep arch with obstacles

Direct
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instability points
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the occurrence of damage and contact. In the first part the CDM and the extended
system were evaluated for damage problems with the objective of using the CDM
predicted load as an input for the extended system and to enhance the
convergence of the latter. A one step prediction method based on the extended
system was presented to enable a better comparison of CDM load and common
starting values of the extended system. The CDM load was slightly better than
the load of the one step prediction method. Weighting this with the high effort for
the implementation of the CDM the conclusion of this comparison was that a
combination does not offer any substantial advantages. Thus for the contact
examples of the second part only the extended system was used. In all examples
this method proved capable of computing the critical points directly. Besides this
the prediction method developed in the first part served as an indication method
for favorable starting values for the extended system.
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Appendix. Algorithm for the extended system

Solve for Dv i+1:

½KTðv
iÞ þ Kcðv

iÞ	Dviþ1
P ¼ P

½KTðv
iÞ þ Kcðv

iÞ	Dviþ1
G ¼ 2GSðv

iÞ2 Gcðv
iÞ

Compute:

hi
1 ¼

1

1
½KTðv

i þ 1f iÞDviþ1
P þ Kcðv

i þ 1f iÞDviþ1
P 2 P	

hi
2 ¼

1

1
½KTðv

i þ 1f iÞDviþ1
G þ Kcðv

i þ 1f iÞDviþ1
G þ GSðv

iÞ þ Gcðv
iÞ	

Solve for Df i+1:
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½KTðv
iÞ þ Kcðv

iÞ	Dfiþ1
1 ¼ 2hi

1

½KTðv
iÞ þ Kcðv

iÞ	Dfiþ1
2 ¼ 2hi

2

Compute increments:

Dl iþ1 ¼
2f i T

Dfiþ1
2 þ kf ik

f i T
Dfiþ1

1

Dv iþ1 ¼ Dl iþ1 Dviþ1
P þ Dviþ1

G

Update:

l iþ1 ¼ l i þ Dl iþ1; v iþ1 ¼ v i þ Dv iþ1;

f iþ1 ¼ Dl iDfiþ1
1 þ Dfiþ1

2
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