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SUMMARY

We present a formulation for analysis of turbulent incompressible flows using a stabilized finite element
method (FEM) based in the Finite Calculus (FIC) procedure. The stabilization terms introduced by
the FIC approach allow to solve a wide range of fluid flow problems at different Reynolds numbers,
including turbulent flows, without the need of a turbulence model. Examples of application of the
FIC/FEM formulation to the analysis of 2D and 3D incompressible flows at large Reynolds numbers
exhibiting turbulence features are presented. Copyright c© 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Stabilized FEM have been successfully used in the past to solve a wide range of fluid mechanics
problems [1–28]. The intrinsic dissipative properties of the stabilization terms (which can
interpreted as an additional viscosity) typically suffice to yield good results for low and
moderate values of the Reynolds number (Re). For high values of Re most stabilized FEM fail
to provide physically sound results and the numerical solution is often unstable or inaccurate.
The introduction of a turbulence model is then mandatory in order to obtain meaningful
results.

The relationship between the dissipation introduced by a turbulence model and the intrinsic
dissipative properties of stabilized FEM is an open topic which is attracting increasing
attention in the CFD community [29–34]. It is clear that both remedies (the turbulence model
and the stabilization terms) play a similar role in the numerical solution, i.e. that of ensuring
a solution which is “physically correct” and as accurate as possible.

This paper extends the work recently presented in [35,36] where an enhanced stabilized
FEM for incompressible flows was derived via Finite Calculus (FIC). The FIC approach is
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2 E. OÑATE, A. VALLS AND J. GARCÍA

based on expressing the balance laws in mechanics in a domain of finite size. This introduces
additional terms in the classical differential equations of momentum and mass balance of
infinitesimal fluid mechanics [37–39]. The FIC terms are a function of characteristic length
dimensions related to the finite element sizes and also to the values of the numerical solution.
The FIC terms in the modified governing equations provide the necessary stabilization to
the discrete equations obtained via the standard Galerkin FEM. The resulting FIC/FEM
formulation allows to use low order finite elements (such as linear triangles and tetrahedra)
with an equal order approximation for the velocity and the pressure variables [35–39].

This paper shows that the non linear stabilization terms introduced by the FIC formulation
into the momentum equations have a form of a non linear viscosity which is a function of
the velocity and the velocity gradients. On the other hand the FIC formulation introduces a
laplacian of pressure term into the mass balance equation. The resulting FIC/FEM formulation
can be used to solve accurately high Re number flows without the need of introducing any
turbulence model. The good results obtained in the examples presented indicate that the
(nonlinear) FIC stabilization terms play the role of a turbulent model. The remarkable aspect
of this approach is that the FIC equations are derived from basic principles in mechanics, such
as balance of momentum and mass over a domain of finite size and, in conjunction with a
numerical procedure such as the FEM, they provide a very simple procedure for the analysis
of complex fluid mechanics problems.

The outline of the paper is the following. In the next section, the basic concepts of the FIC
method are outlined for the simple one-dimensional (1D) advection-diffusion problem. Then
the FIC governing equations for an incompressible viscous flow are derived. A discussion of the
stabilization terms introduced by the FIC procedure into the momentum and mass balance
equations is presented. The discretization of the FIC governing equations using equal order
linear finite elements is described an the matrix form of the element matrices and vectors for
3D fluid flow analysis is detailed. The time integration of the discretized equations using a
fractional step scheme is described. The procedure for computing the stabilization parameters
is presented. The accuracy of the FIC/FEM formulation for analysis of turbulent flows is
verified in two examples of application.

2. FINITE CALCULUS. BASIC CONCEPTS

The Finite Calculus (FIC) method developed by Oñate and co-workers [35–57] is a consistent
procedure for re-formulating the governing equation in mechanics introducing new terms
involving characteristic space and time dimensions into the equations. The modified equations
are derived by invoking the balance laws in mechanics in a space-time domain of finite size. The
new terms introduced by the FIC approach are essential to obtain physical (stable) numerical
solutions for all ranges of the parameters governing the physical problem.

The merit of the modified equations via the FIC approach is that they lead to stabilized
schemes using any numerical method. Moreover, many stabilized numerical methods typically
used in practice can be recovered using the FIC equations [37,43].

The FIC/FEM formulation has proven to be very effective for the solution of a wide class of
problems, such as convection-diffusion [37–45] and convection-diffusion-reaction problems [46–
48] involving arbitrary high gradients, incompressible flow problems accounting for free surface
effects and fluid-structure interaction situations [49–54] and quasi and fully incompressible
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COMPUTATION OF TURBULENT FLOWS 3

Figure 1. Equilibrium of fluxes in a space balance domain of finite size

problems in solid mechanics [55–57].
In order to introduce the basic concepts of the FIC method, we will consider a steady-state

convection-diffusion problem in a 1D domain Ω of length L. The equation of balance of fluxes
in a subdomain of size d belonging to Ω (Figure 1) is

qA − qB = 0 (1)

where qA and qB are the incoming and outgoing fluxes at points A and B, respectively. The flux
q includes both convective and diffusive terms; i.e. q = uφ − k dφ

dx , where φ is the transported
variable (i.e. the temperature in a thermal problem), u is the velocity and k is the diffusivity
of the material. For simplicity the density and the specific heat constant have been assumed
to have a unit value.

Let us express now the fluxes qA and qB in terms of the flux at an arbitrary point C within
the balance domain (Figure 1). Expanding qA and qB in Taylor series around point C up to
second order terms gives

qA = qC − d1
dq

dx
|C +

d2
1

2
d2q

dx2
|C + O(d3

1) , qB = qC + d2
dq

dx
|C +

d2
2

2
d2q

dx2
|C + O(d3

2) (2)

Substituting Equation (2) into Equation (1) gives after simplification

dq

dx
− h

2
d2q

dx2
= 0 (3)

where h = d1 − d2 and all the derivatives are computed at the arbitrary point C.
Standard calculus theory assumes that the domain d is of infinitesimal size and the resulting

balance equation is simply dq
dx = 0. We will relax this assumption and allow the space balance

domain to have a finite size. The new balance equation (3) incorporates now the underlined
term which introduces the characteristic length h.

Distance h in Equation (3) is as a free parameter depending on the location of point C
within the balance domain. Note that −d ≤ h ≤ d and, hence, h can take a negative value.
At the discrete solution level the domain d should be replaced by the balance domain around
a node. This gives for an equal size discretization −le ≤ h ≤ le where le is the element or
cell dimension. Equation (3) is the exact balance equation (up to second order terms) for any
1D domain of finite size. The FIC balance equations can be used to derive numerical schemes
with enhanced properties simply by computing the characteristic length parameter from an
adequate “optimality” rule, such as requiring an smaller error in the numerical solution [40–48].

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–6
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4 E. OÑATE, A. VALLS AND J. GARCÍA

Consider, for instance, the 1D convection-diffusion problem. Neglecting third order
derivatives of φ, Eq.(3) can be rewritten in terms of φ as

−v
dφ

dx
+
(

k +
uh

2

)
d2φ

dx2
= 0 (4)

We see clearly that the FIC method introduces naturally an additional diffusion term in the
standard convection-diffusion equation. This is the basis of the popular “artificial diffusion”
procedure [1,2,10,25] where the characteristic length h is typically expressed as a function of
the cell or element dimension. The critical value of h can be computed by requiring that the
numerical solution of Eq.(4) is physically meaningful [1,2,10,25,37–43].

Equation (3) can be extended to account for source terms. The resulting FIC balance
equation can then be written in compact form as [37]

r − h

2
dr

dx
= 0 (5)

with

r := −u
dφ

dx
+

d

dx

(
k

dφ

dx

)
+ Q (6)

where Q is the external source. Note that for h = 0 the standard heat balance equation of the
infinitesimal theory (r = 0) is recovered.

The essential (Dirichlet) boundary condition for Eq.(5) is φ = φ̄ on Γφ where Γφ is the
boundary where the prescribed value φ̄ is imposed. For consistency a stabilized Neumann
boundary condition must be obtained as described next.

A B

q

[u φ ]A

A

Q

x L

h/2

q-

Figure 2. Balance domain next to a Neumann boundary point B

Let us consider a balance domain next to a Neumann boundary point B (Figure 2)).
The length of the balance segment AB next to a Neumann boundary is taken as one half of

the characteristic length h for the interior domain. The balance equation, assuming a constant
distribution for the source Q, is

q̄ − q(xA) − [uφ]A − h

2
Q = 0 (7)

where q̄ is the prescribed total flux at x = L and xA = xB − h
2 .

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–6
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COMPUTATION OF TURBULENT FLOWS 5

Using a second order expansion for the advective and diffusive fluxes at point A gives [37]

−uφ + k
dφ

dx
+ q̄ − h

2
r on x = L (8)

where r is given by Eq.(6). Again for h = 0 the infinitesimal form of the 1D Neumann boundary
condition is obtained.

It is important to recall that the underlined terms in Eqs(5) and (8) introduce the necessary
stabilization in the discrete solution using whatever numerical scheme [37,39].

Quite generally the FIC equations can be written for any problem in mechanics as

ri − hij

2
∂ri

∂xj
− δ

2
∂ri

∂t
= 0 ,

i = 1, nb

j = 1, nd
(9)

where ri is the ith standard differential equation of the infinitesimal theory, hij are
characteristic length parameters, δ is a characteristic time parameter and nb and nd are
respectively the number of balance equations and the number of space dimensions of the
problem (i.e., nd = 3 for 3D problems). The usual sum convention for repeated indexes is used
in the text unless otherwise specified. In this work the term involving the time parameter δ
will be neglected in the FIC equations.

3. FIC EQUATIONS FOR AN INCOMPRESSIBLE VISCOUS FLOW

The FIC momentum equations are obtained by expressing the balance of momentum along
each of the space directions in a domain of ”finite” size. Figure 3 shows a typical finite domain
for a two-dimensional (2D) problem. Following a procedure analogous to that explained in the
previous section for the 1D advection-diffusion problem the balance equation along the ith
space direction can be written as

∑
fidΩ =

∂

∂t

∫
Ω

ρuidΩ +
∫

Γ

(ρui)uTndΓ i = 1, nd (10)

where ρ is the density, which is assumed to be constant hereafter, ui is the component of the
velocity along the ith space direction, u = [u1, u2, u3]

T is the velocity vector, n is the unit
vector normal to the domain boundary and fi includes the forces due to the stresses acting on
the boundary of the balance domain and the body forces per unit area bi (Figures 3 and 4).

Expressing the values of the momentum and force terms at the corner points of the balance
domain in terms the values at the corner point A using higher order Taylor expansions in the
space directions and retaining second order terms, gives after some algebra the FIC momentum
equations along the ith coordinate direction as [37]

r̄mi −
1
2
hij

∂r̄mi

∂xj
= 0 i, j = 1, nd (11)

where

r̄mi := ρ

[
∂ui

∂t
+

∂

∂xj
(uiuj)

]
− ∂σij

∂xj
− bi (12)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–6
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Figure 3. Finite domain where balance of momentum is imposed along the horizontal direction
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Figure 4. Finite domain where balance of momentum is imposed along the vertical direction

with σij = sij − pδij where p is the pressure, δij is the Dirac delta and sij are the viscous
stresses related to the velocities by the standard expression

sij = 2µ

(
εij − δij

1
3

∂uk

∂xk

)
(13)

where

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(14)

Note that distance h12 is arbitrary when writing the balance of momentum along the x1

direction. The same applies for the distance h21 when deriving the balance equation along the
x2 direction. Thus, in general, h12 �= h21.
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h
1

h
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A

B

ρu
2

C

D

X
1

X
2

ρu
2

ρu
1

ρu
1

Figure 5. Finite domain where balance of mass is enforced

The convective term in the expression of r̄mi of Eq.(12) is written in conservation form, as
deduced from the FIC momentum balance equations. A simplified form of r̄mi can be written
by introducing the incompressibility condition

(
∂ui

∂xi
= 0
)

into the convective term of r̄mi and
using the split of the stresses σij into their deviatoric and pressure components giving

rmi −
1
2
hij

∂rmi

∂xj
= 0 i, j = 1, nd (15)

with

rmi := ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
+

∂p

∂xi
− ∂sij

∂xj
− bi (16)

The two forms of the FIC balance equations (11) and (15) are identical for the exact
incompressible solution. Both forms will be used to the advantage of each derivation step
in the following sections.

Mass balance equation

The FIC mass balance equation is obtained by invoking the balance of mass in the finite
domain of Figure 5 ∫

Γ

ρuTndΓ = 0 (17)

Expanding the values of ρui at the corner points in terms of the value at the corner point
A gives the FIC mass balance equation as [37,38]

εv − 1
2
hj

∂εv

∂xj
= 0 j = 1, nd (18a)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–6
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8 E. OÑATE, A. VALLS AND J. GARCÍA

with
εv =

∂ui

∂xi
(18b)

Note that a matrix form of the characteristic distances is not obtained in this case as the
mass balance equation expresses the conservation of the mass in the domain ABCD of Figure 5
with dimensions h1 and h2. Distances h1 and h2 are in general different from the distances hij

defining the domain where balance of momentum is enforced. In the following we will assume
that h1 = h11 and h2 = h22 for simplicity.

Boundary conditions

The FIC Neumann boundary conditions are obtained by expressing the balance of momentum
in a domain of finite size adjacent to a boundary Γt where the surface tractions ti act. After
some algebra we obtain [37,38]

njσij − ti +
1
2
hijnjrmi = 0 on Γt j = 1, nd , no sum in i (19a)

In Eq.(19a) the hij distances define the domain where equilibrium of boundary tractions is
established. The boundary condition on the Dirichlet boundary Γu is the standard one

uj − up
j = 0 on Γu (19b)

Note that in the discretized problem the characteristic distances become of the order of
the typical element dimensions. The infinitesimal form of the fluid mechanics equations is
recovered by making these distances equal to zero.

Eqs.(11)–(19) are the starting point for deriving stabilized FEM for solving the
incompressible Navier-Stokes equations. The underlined FIC terms in Eqs.(11) (or (15)) and
(19a) are essential to overcome the numerical instabilities due to the convective terms in the
momentum equations, whereas the underlined terms in Eq.(18a) take care of the instabilities
due to the incompressibility constraint. An important feature of the FIC formulation is that
it allows to use equal order interpolation for the velocity and pressure variables [38,54].

4. A DISCUSSION OF THE STABILIZATION TERMS IN THE FIC EQUATIONS

The compact residual forms of the FIC equations of momentum balance (Eqs.(11) or (15))
and mass balance (Eq.(18a)) hide the relevant terms that contribute to the stabilization of
the numerical solution for all flow regimes. We will show next that the FIC terms introduce
a non linear anisotropic viscosity into the standard momentum equations of the infinitesimal
theory. Also it is shown that the FIC terms in the mass balance equation introduce a pressure
laplacian term.

Momentum equations

Let us write the ith FIC momentum equation of Eq.(15) as

ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]
+

∂p

∂xi
− ∂sij

∂xj
− bi − hik

2
∂

∂xk

[
ci + ρuj

∂ui

∂xj

]
= 0 (20)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–6
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where
ci := ρ

∂ui

∂t
− ∂σij

∂xj
− bi (21)

is termed the convective projection term. Note that in the infinitesimal limit

rmi := ci + ρuj
∂ui

∂xj
= 0 (22)

Substituting the expression of the viscous stresses of Eq.(13) into Eq.(20) and using Eq.(14)
yields after small algebra

ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]
+

∂p

∂xi
− ∂

∂xk
[µδkj + µ̄kj ]

∂ui

∂xj
− bi − hik

2
∂ci

∂xk
+ µ

∂εv

∂xi
= 0 (23)

where
µ̄kj =

ρujhik

2
(24)

In the derivation of Eq.(23) we have assumed that the space derivatives of the characteristic
lengths hij are zero.

Eq.(23) shows clearly that the FIC formulation introduces the following new terms into the
ith momentum equation of the infinitesimal theory:

a) an additional (non linear) anisotropic viscosity µ̄kj given by Eq.(24) and

b) a convective projection term of value −hik

2
∂ci

∂xk
.

The last term in Eq.(23) involving εv is usually disregarded in practice. We have found
however that retaining this term is very important in free surface viscous flows [58]. For this
reason the full compact (residual) form of Eqs.(11) or (15) is used in practice.

Mass balance equation

The FIC momentum balance equation (11) is written as (assuming the viscosity µ to be
constant)

ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]
+ ρuiεv +

∂p

∂xi
− ∂

∂xj
(2µεij) +

2
3
µ

∂εv

∂xi
− bi − hij

2
∂r̄mi

∂xj
= 0 (25)

From the FIC mass balance equation (18a) we deduce

εv =
hj

2
∂εv

∂xj
(26)

Substituting εv from Eq.(26) into (25) gives after small algebra

∂εv

∂xi
=

1
ai

[
hij

2
∂r̄mi

∂xj
− rmi − ρ

uihk

2
∂εv

∂xk

]
, i �= k (27)

with
ai =

2µ

3
+ ρ

uihi

2
no sum in i (28)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–6
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10 E. OÑATE, A. VALLS AND J. GARCÍA

We note that all terms in Eq.(27) vanish for the exact solution. On this basis, the following

simplified expression is chosen for
∂εv

∂xi

∂εv

∂xi
=

hii

2ai

∂rmi

∂xi
no sum in i (29)

Substituting Eq.(29) into (18a) gives the following useful expression for the FIC mass balance
equation incorporating the momentum equations rmi

εv −
nd∑
i=1

τi
∂rmi

∂xi
= 0 (30)

with

τi =
(

8µ

3h2
ii

+
2ρui

hii

)−1

(31)

Note that in Eq.(31) the assumption hi = hii has been used.
The τi’s in Eq.(33) when multiplied by the density are equivalent to the intrinsic time

parameters, seen extensively in the stabilization literature [1–28]. The interest of Eq.(30) is
that it introduces a laplacian of pressure term into the mass balance equations through the
first derivative of rmi . To show this clearly it is convenient to express the rmi terms as

rmi =
∂p

∂xi
+ πi (32)

where πi are termed the pressure gradient projections. The exact expression of πi is deduced
by substracting the pressure gradient terms from the standard momentum equations, i.e.

πi := ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]
− ∂

∂xj
(2µsij) − bi (33)

This form of πi will not be however used in practice as the nodal values of πi are directly
computed from the projection of the pressure gradients, as explained in the next section.

Substituting the expression of rmi of Eq.(32) into Eq.(30) gives

εv −
nd∑
i=1

τi
∂

∂xi

(
∂p

∂xi
+ πi

)
= εv −

nd∑
i=1

τi

[
∂2p

∂x2
i

+
∂πi

∂xi

]
= 0 (34)

Eq.(33) shows that the FIC formulation introduces naturally a laplacian of pressure term
into the mass balance equation. The consistency of the approach is ensured by the pressure
gradient projection terms πi, as the bracketed terms in Eq.(34) are equal to the momentum
equations and, therefore, they vanish as these equations are satisfied for the ”exact” solution.

5. INTEGRAL FORM OF THE FIC GOVERNING EQUATIONS

The weighted residual form of the momentum and mass balance equations (Eqs.(15) and (30))
is ∫

Ω

δui

[
rmi −

hij

2
∂rmi

∂xj

]
dΩ +

∫
Γt

δui(σijnj − ti +
hij

2
njrmi)dΓ = 0 (35a)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–6
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COMPUTATION OF TURBULENT FLOWS 11

∫
Ω

q

[
εv −

nd∑
i=1

τi
∂rmi

∂xi

]
dΩ = 0 (35b)

where δui and q are arbitrary weighting functions representing virtual velocities and virtual
pressure fields. Integrating by parts the terms involving the derivatives of rmi in Eqs.(34) gives∫

Ω

δuirmidΩ +
∫

Γt

δui(σijnj − ti)dΓ +
∫

Ω

hij

2
∂δui

∂xj
rmidΩ = 0 (36a)

∫
Ω

qεvdΩ +
∫

Ω

[
nd∑
i=1

τi
∂q

∂xi
rmi

]
dΩ −

∫
Γ

[
nd∑
i=1

qτinirmi

]
dΓ = 0 (36b)

We will neglect hereonwards the third integral in Eq.(36b) by assuming that rmi is negligible
on the boundaries. The deviatoric stresses and the pressure terms in the first integral of
Eq.(36a) are integrated by parts in the usual manner. The resulting momentum and mass
balance equations are∫

Ω

[
δuiρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
+

∂δui

∂xj
(sij − δijp)

]
dΩ −

∫
Ω

δuibidΩ−

−
∫

Γt

δuitidΓ +
∫

Ω

hij

2
∂δui

∂xj
rmidΩ = 0

(37a)

∫
Ω

q
∂ui

∂xi
dΩ +

∫
Ω

[
nd∑
i=1

τi
∂q

∂xi
rmi

]
dΩ = 0 (37b)

The computation of the residual terms are simplified if we introduce the convective
projections ci (Eq.(22)) and the pressure gradient projections πi (Eq.(32)). We therefore
express rmi in Eqs.(37a) and (37b) in terms of ci and πi, respectively which then become
additional variables. The system of integral equations is now augmented in the necessary
number of equations by imposing that the residual rmi vanishes (in a weighted residual sense)
for both forms given by Eqs.(22) and (32). This gives the final system of governing equation
as: ∫

Ω

[
δuiρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
+

∂δui

∂xj
(sij − δijp)

]
dΩ −

∫
Ω

δuibidΩ −

−
∫

Γt

δuitidΓ +
∫

Ω

hik

2
∂(δui)
∂xk

(
ρuj

∂ui

∂xj
+ ci

)
dΩ = 0 (38)

∫
Ω

q
∂ui

∂xi
dΩ +

∫
Ω

nd∑
i=1

τi
∂q

∂xi

(
∂p

∂xi
+ πi

)
dΩ = 0 (39)

∫
Ω

δciρ

(
ρuj

∂ui

∂xj
+ ci

)
dΩ = 0 no sum in i (40)

∫
Ω

δπiτi

(
∂p

∂xi
+ πi

)
dΩ = 0 no sum in i (41)

with i, j, k = 1, nd. In Eqs.(40) and (41) δci and δπi are appropriate weighting functions and
the ρ and τi weights are introduced for convenience.
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12 E. OÑATE, A. VALLS AND J. GARCÍA

Accounting for the convective and pressure gradient projections enforces the consistency of
the formulation as it ensures that the stabilization terms in Eqs.(38) and (39) have a residual
form which vanishes for the “exact” solution. Neglecting these terms can reduce the accuracy
of the numerical solution and it makes the formulation more sensitive to the value of the
stabilization parameters [54–56].

6. FINITE ELEMENT DISCRETIZATION
We choose C◦ continuous linear interpolations for the velocities, the pressure, the convective
projections ci and the pressure gradient projections πi over 3-noded triangles (2D) and 4-noded
tetrahedra (3D). The linear interpolations are written as

ui = Nkūk
i , p = Nkp̄k

ci = Nkc̄k
i , πi = Nkπ̄k

i

(42)

where the sum goes over the number of nodes of each element n (n = 3/4 for
triangles/tetrahedra), (̄·)k

denotes the nodal variables and Nk are the linear shape functions
[1].

Substituting the approximations (42) into Eqs.(38)–(41) and choosing the Galerkin form
with δui = q = δci = δπi = N i leads to following system of discretized equations

M ˙̄u + Hū− Gp̄ + Cc̄ = f (43a)

GT ū + L̂p̄ + Qπ̄πππππππππππππ = 0 (43b)

Ĉū + Mc̄ = 0 (43c)

QT p̄ + M̂π̄πππππππππππππ = 0 (43d)

where

H = A + K + K̂

The matrices and vectors in above equations are assembled from the element contributions

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 00:1–6
Prepared using fldauth.cls



COMPUTATION OF TURBULENT FLOWS 13

in the standard manner. The element expressions for 3D problems are given next.

Me
ij =

∫
Ωe

ρN iN jI3dΩ , Ce
ij =

1
2

∫
Ωe

⎡
⎣hT

1 ∇∇∇∇∇∇∇∇∇∇∇∇∇∇N i 0 0
0 hT

2 ∇∇∇∇∇∇∇∇∇∇∇∇∇∇N i 0
0 0 hT

3 ∇∇∇∇∇∇∇∇∇∇∇∇∇∇N i

⎤
⎦N jdΩ

Ae
ij =

∫
Ωe

ρN i(uT∇∇∇∇∇∇∇∇∇∇∇∇∇∇N j)I3dΩ , Ke
ij =

∫
Ωe

BT
i DBjdΩ , K̂e

ij =
∫

Ωe

(∇̄∇∇∇∇∇∇∇∇∇∇∇∇∇N i)T D̄∇̄∇∇∇∇∇∇∇∇∇∇∇∇∇N jdΩ

Ge
ij =

∫
Ωe

BT
i mN jdΩ , L̂e

ij =
∫

Ωe

(∇∇∇∇∇∇∇∇∇∇∇∇∇∇N i)T [ττττττττττττττ ]∇∇∇∇∇∇∇∇∇∇∇∇∇∇N jdΩ

Qe
ij =

∫
Ωe

(∇∇∇∇∇∇∇∇∇∇∇∇∇∇N i)T N j[ττττττττττττττ ]dΩ , Ĉij =
∫

Ωe

ρ2N i(uT∇∇∇∇∇∇∇∇∇∇∇∇∇∇N j)I3dΩ

M̂ij =
∫

Ωe

N iN j [ττττττττττττττ ]dΩ , m = [1, 1, 1, 0, 0, 0]T , hi = [hi1, hi2, hi3]
T

D̄ = ρ
2

⎡
⎣h1uT 0 0

0 h2uT 0
0 0 h3uT

⎤
⎦ , ∇̄∇∇∇∇∇∇∇∇∇∇∇∇∇ =

⎡
⎣∇∇∇∇∇∇∇∇∇∇∇∇∇∇ 0 0

0 ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ 0
0 0 ∇∇∇∇∇∇∇∇∇∇∇∇∇∇

⎤
⎦ , ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂x1
∂

∂x2
∂

∂x3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, [ττττττττττττττ ] =

⎡
⎣τ1 0 0

0 τ2 0
0 0 τ3

⎤
⎦

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N i

∂x1
0 0

0
∂N i

∂x2
0

0 0
∂N i

∂x3
∂N i

∂x2

∂N i

∂x1
0

∂N i

∂x3
0

∂N i

∂x1

0
∂N i

∂x3

∂N i

∂x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D = µ

([
2I3 0
0 I3

]
− 2

3mmT

)
, I3 =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦

fi =
∫

Ωe

N ibdΩ +
∫

Γe

N itdΓ

(44)
where i, j, k = 1, nd in above expressions.

A 3D finite element has typically 10 d.o.f.: three velocities ūk
i , one pressure p̄k, three pressure

gradient projections π̄k
c and three convective projections c̄k

i , i = 1, 2, 3. Note however that the
solution for the π̄πππππππππππππ and c̄ variables is usually decoupled from the rest of equations and it is
performed explicitly as shown in Section 8.

7. TRANSIENT SOLUTION SCHEME

The solution in time of the system of Eqs.(43) can be written in general form as

M
1

∆t
(ūn+1 − ūn) + Hn+θūn+θ − Gp̄n+θ + Cn+θc̄n+θ = fn+θ (45a)

GT ūn+θ + L̂n+θp̄n+θ + Qn+θπ̄πππππππππππππn+θ = 0 (45b)
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14 E. OÑATE, A. VALLS AND J. GARCÍA

Ĉn+θūn+θ + Mc̄n+θ = 0 (45c)

[Qn+θ]T p̄n+θ + M̂n+θπ̄πππππππππππππn+θ = 0 (45d)

where Hn+θ = H(ūn+θ), etc and the parameter θ ∈ [0, 1]. The direct monolithic solution of
Eqs.(45) is possible using an adequate iterative scheme. However, in our work we have used
the fractional step method described next.

8. FRACTIONAL STEP METHOD

A fractional step scheme is derived by spliting the discretized momentum equation (45a) into
the following two equations

M
1

∆t
(ũn+1 − ūn) + Hn+θũn+θ − αGp̄n + Cn+θ c̄n+θ = fn+θ (46a)

M
1

∆t
(ūn+1 − ũn+1) − G(p̄n+1 − αp̄n) = 0 (46b)

In Eqs.(46) ũn+1 is a predicted value of the velocity at time n + 1 and α is a variable whose
values of interest are zero and one. For α = 0 (first order scheme) the splitting error is of order
0(∆t), whereas for α = 1 (second order scheme) the error is of order 0(∆t2) [19,21]. We have
chosen α = 1 for the solution of the examples presented in the paper.

Eqs.(46) are completed with the following three equations emanating from Eqs.(45b-d)

GT ūn+1 + L̂np̄n+1 + Qnπ̄πππππππππππππn = 0 (47a)

Ĉn+1ūn+1 + Mc̄n+1 = 0 (47b)

[Qn+1]T p̄n+1 + M̂n+1π̄πππππππππππππn+1 = 0 (47c)

The value of ūn+1 obtained from Eq.(47b) is substituted into Eq.(47a) to give

GT ũn+1 + ∆tGT M−1G(p̄n+1 − αp̄n) + L̂npn+1 + Qnπ̄πππππππππππππn = 0 (48)

The product GT M−1G can be approximated by a laplacian matrix, i.e.

GTM−1G =
1
ρ
L with Lij =

∫
Ωe

(∇∇∇∇∇∇∇∇∇∇∇∇∇∇N i)T∇∇∇∇∇∇∇∇∇∇∇∇∇∇N jdΩ (49)

The steps of the fractional step scheme (for α = 1) are:

Step 1 Eq.(46a) is linearized as

M
ũn+1 − ūn

∆t
+ Hnūn − Gp̄n + Cnc̄n = fn (50)

The fractional nodal velocities ũn+1 can be explicitely computed from Eq.(50) by

ũn+1 = ūn − ∆tM−1
d [Hnūn − Gp̄n + Cnc̄n − fn] (51)
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COMPUTATION OF TURBULENT FLOWS 15

Step 2 Compute p̄n+1 from Eq.(48) as

p̄n+1 = −[L̂n +
∆t

ρ
L]−1[GT ũn+1 − ∆t

ρ
Lp̄n + Qnπ̄πππππππππππππn] (52)

Step 3 Compute ūn+1 explicitly from Eq.(46b) as (for α = 1)

ūn+1 = ũn+1 + ∆tM−1
d G(p̄n+1 − p̄n) (53)

Step 4 Compute c̄n+1 explicitly from Eq.(47b) as

c̄n+1 = −M−1
d Ĉn+1ūn+1 (54)

Step 5 Compute π̄πππππππππππππn+1 explicitly from Eq.(47c) as

π̄πππππππππππππn+1 = −M̂−1
d [Qn+1]T p̄n+1 (55)

In above equations Md and M̂d denote the lumped diagonal form of matrices M and M̂,
respectively.

Steps 1–5 are repeated until convergence for ūn+1, p̄n+1, c̄n+1 and π̄πππππππππππππn+1 is found. Typically
three iterations per time step sufficed to find a converged solution in the examples presented
in the paper.

Above algorithm has improved stabilization properties versus the standard pressure
segregation methods due to the introduction of the laplacian matrix L̂ in Eq.(52) which
emanates from the FIC stabilization terms.

The boundary conditions are applied as follows. No condition is applied in the computation
of the fractional velocities ũn+1 in Eq.(51). The prescribed velocities at the boundary are
applied when solving for ūn+1 in the step 3. The prescribed pressures at the boundary are
imposed by making p̄n equal to the pressure values computed explicitly from the Neumann
boundary condition (19a), neglecting the stabilization terms, i.e.

pn =
1
3

∑
i

(sn
ijnj − ti) i = 1, nd (56)

Eq.(56) shows that for low values of the viscosity, the standard assumption of pn = 0 on
free surfaces (with ti = 0) can be used.

We note that there is no need to prescribe any value of the pressure at the boundary if the
form of matrix L = ρGTM−1G as deduced from Eq.(48) is used. This expression for L has a
wider bandwidth than the laplacian form of Eq.(48) and therefore it is more inconvenient for
practical purposes. In our work we have used for L the simple laplacian form of Eq.(49).

9. COMPUTATION OF THE CHARACTERISTIC DISTANCES

The computation of the stabilization parameters is a crucial issue as they affect both the
stability and accuracy of the numerical solution. The different procedures to compute the
stabilization parameters are typically based on the study of simplified forms of the stabilized
equations [1–28].
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16 E. OÑATE, A. VALLS AND J. GARCÍA

Recent work of the authors has shown that the stabilizing FIC terms for convection-diffusion
problems take the form of a simple orthotropic diffusion if the balance equation is written in
the principal curvature directions of the solution. Excellent results were reported in [45,47]
by computing first the characteristic length distances along the principal curvature directions,
followed by a standard transformation of these distances to global axes. The resulting stabilized
finite element equations capture the high gradient zones in the vicinity of the domain edges
(boundary layers) as well as the sharp gradients appearing randomly in the interior of the
domain [45,47]. The FIC/FEM thus reproduces the best features of the so called transverse
(cross-wind) dissipation or shock capturing methods [1,28].

Let us assume that there exists at each point a local orthogonal coordinate system
characterized by the local directions ξi

j with associated vectors �ξi
j (j = 1, 2 for 2D problems)

such that ∂2u′
i

∂ξi
j∂ξi

k

= 0 for j �= k, where u′
i is the velocity component along the ξi

i direction

(Figure 6). The ith FIC momentum equation (20) written in such a local coordinate system
reads

ρ

[
∂u′

i

∂t
+ u′

j

∂u′
i

∂ξi
j

]
+

∂p

∂ξi
j

− ∂

∂ξi
j

(µ + µ̄jj)
∂u′

i

∂ξi
j

− bi − h′
ik

2
∂ci

∂ξi
k

+ µ
∂εv

∂ξi
i

= 0 (57)

The stabilizing dissipation introduced by the FIC approach has now the form of the
orthotropic viscosity term underlined in Eq.(57). For 2D problems

∂

∂ξi
j

µ̄jj
∂u′

i

∂ξi
j

=
∂

∂ξi
1

(
µ̄11

∂u′
i

∂ξi
1

)
+

∂

∂ξi
2

(
µ̄22

∂u′
i

∂ξi
2

)
(58)

with

µ̄jj =
ρu′

jh
′
ij

2
no sum in j (59)

The characteristic length distances h′
ij in Eq.(57) are defined in the local axes �ξi

j . Note that
the upper index i in vector �ξi

j denotes the ith momentum equation corresponding to the u′
i

velocity, while index j denotes the local directions, i.e. ξi
1, ξi

2 are the two local coordinate
directions corresponding to the ith momentum equation (Figure 6).

The value of h′
ij can be estimated by analogy of Eq.(57) with the linear 1D advection-

diffusion equation

ρu′
j

∂φ

∂ξi
j

− ∂

∂ξi
j

(µ + µ̄jj)
∂φ

∂ξi
j

= 0 , no sum in i (60)

where φ is the transported variable.
Introducing into Eq.(60) the expression of µ̄jj of Eq.(59) and assuming µ and µ̄jj to be

independent of the space coordinates gives (for φ = u′
i)

h′
ij =

⎡
⎣2

(
∂u′

i

∂ξi
j

)(
∂2u′

i

∂ξi2
j

)−1

− 1
γij

⎤
⎦ lij = αij lij no sum in i, j (61)

where

αij = 2

(
∂u′

i

∂ξi
j

)(
∂2u′

i

∂ξi2
j

)−1

− 1
γij

, γij =
ρu′

ilij
2µ

(62)
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´ ´
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Figure 6. Definition of the principal curvature direction �ξi
1 along the gradient of ui

and lij is a characteristic element dimension along the ξi
j direction (Figure 7).

Note that γij can be interpreted as a local Reynolds number. It can be shown that αij → 1
for large values of γij inducing high local gradients of the transported variable.

A good approximation for αij deduced by analogy with the stabilization parameter for the
linear advection-diffusion equation [1,37,39] is

αij = coth γij − 1
γij

(63)

Observation of Eq.(63) shows that αij > 0.95 for γij > 20. Indeed, αij � 1 for high values
of γij typical of turbulent flows.

The characteristic distances hij are finally computed by transforming their local values h′
ij

to global axes xi. Details of the transformation are given below.
The numerical computations are simplified without apparent loss of accuracy if the ξi

1

direction is taken to be constant within each element and equal to the direction of the gradient
of the ui velocity component at the element center. The other coordinates ξi

j (j = 2, 3 for 3D
problems) are defined so as to form an orthogonal system with ξi

1.
The algorithm described above for computing the characteristic distances hij is detailed

below for 3D problems and linear tetrahedra elements. The particular form of some expressions
for 2D problems using 3-noded linear triangles is given

For the i-th momentum balance equation and every time step of the transient solution
scheme:

1. A coordinate system ξi
1, ξi

2, ξi
3 is defined at the element center such that vector �ξi

1 is
aligned with the gradient of ui (�ξi

1 = �∇ui), vector �ξi
2 is orthogonal to �ξi

1 in anticlockwise
sense and vector �ξi

3 is defined by the vector product of �ξi
1 and �ξi

2. Figure 6 shows the
definition of �ξi

1 and �ξi
2 for 2D problems.

2. The element characteristic distances lij , j = 1, 2, 3 are defined as the maximum
projections of the element sides along the �ξi

j axes (Figure 7).
3. The characteristic distances hij j = 1, 2, 3 are computed as

hi = Th′
i , i = 1, 2 (64)
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ξ
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°

l
i2

l
i1

ξ
2

i

Figure 7. Definition of the element characteristic distances li1 and li2 corresponding to the ith
momentum equation

with

T =

⎡
⎣(1, 1′)i (1, 2′)i (1, 3′)i

(2, 1′)i (2, 2′)i (2, 3′)i

(3, 1′)i (3, 2′)i (3, 3′)i

⎤
⎦ , hi =

⎧⎨
⎩

hi1

hi2

hi3

⎫⎬
⎭ , h′

i =

⎧⎨
⎩

h′
i1

h′
i2

h′
i3

⎫⎬
⎭ (65)

where (j, k)i is the cosine of the angle between the global xj axis and the ξi
k axis.

For 2D problems

T =
[
ci −si

si ci

]
(66)

where ci = cosαi, si = sin αi and αi is the angle that ξi
1 forms with the global axis x1

(Figure 6).
The local distances h′

ij are computed as

h′
ij =

(
coth γij − 1

γij

)
lij , γij =

ρu′
jlij

2µ
j = 1, 2 (67)

where u′
j is the component of the velocity vector along the local axis �ξi

j (Figure 6).

10. EXAMPLES

The first version of the FIC/FEM stabilized formulation presented above was successfully
tested in a number of 2D problems including the flow over a backwards facing step and the
flow past a cylinder. Excellent results were obtained for a range of Reynolds numbers as
reported in [35]. The first 3D application of a flow past a cylinder at Re = 1000 also produced
excellent results and it was briefly reported in [36]. The examples presented next provide
further evidence of the effectiveness and accuracy of the FIC/FEM formulation presented in
this paper for solving complex flows at high Reynolds numbers exhibiting turbulence effects.
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U+ 

U- 

0
δ  

Figure 8. Initial configuration for the 2D mixing layer problem

10.1. 2D mixing layer

We consider a temporal developing mixing layer [61], schematically sketched in Figure 8. The
initial horizontal velocity has a hyperbolic-tangent profile:

u1(x2) = U tanh
(

2x2

δ0

)
(68)

which implies a vorticity thickness

δ0 =
2U

du1

dx2

∣∣∣
x2=0

(69)

From linear stability analysis the mixing layer is know to invisicidly unstable. A perturbation
leads to the formation of vortices by Kelvin-Helmholtz instability, where the most amplified
mode corresponds to a longitude wavelength δ = 7δ0 [62]. Kelvin-Helmholtz instability leads
to the development of vortices which in a later stage roll-up and merge.

The initial vorticity thickness δ0 is chosen such that four vortices should develop in a square
domain of unit size. In order to triggering the instability we superimposed a weak white
noise in the rotational region. The value of U = 1 is chosen in Eq.(68) and the viscosity is
µ = 3.571e − 6 (given a Reynolds number of 2.8 × 105). The boundary conditions applied
are: periodic boundary conditions on the lateral boundaries and zero-normal-velocity and
zero-shear-stress at the upper and bottom boundaries. With these boundary conditions, the
problem is solved in a cylindrical domain.

We use a structured mesh of 256 × 256 three-noded triangular elements. 570 time steps of
0.0125s lead to a total simulation time of 7.125s.

The mixing layer is a good example for the tendency of 2D turbulence to transfer energy from
small to large scales. This leads to a fast decrease of the complexity of the flow. In Figure 9
the vorticity modulus contours at several time steps is shown. Four vortices are formed as
predicted by the linear theory, which subsequently undergo successive mergings.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Vorticity modulus contours at times 0.5 (a), 075 (b), 1 (c), 2 (d), 3 (e) and 4s (f)

For the reference simulations a Fourier spectral code was applied to the periodized version
of the problem [63]. The code is based on the pressure-velocity formulation and uses a 3rd
order Adams-Bashforth (AB3) scheme. The numerical resolution was a grid of 256× 256 too.
Figure 10 compares the decay in time of the system enstrophy obtained with the reference run
and with the present method. The results show that all the scales of the flow are well-resolved
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Figure 10. Enstrophy evolution with time

by the FIC formulation here proposed and compare well with the reference run.

10.2. 3D flow past a cylinder

We present a 3D simulation of unsteady incompressible flow around a circular cylinder. The
simulation is performed at a Reynolds number of 10000.

The diameter of the cylinder is 2 units and its length is 8 units (this length is recommended
in [59] to capture a few wavelengths along the cylinder axis). The computation domain extends
15 units upstream, 60 units downstream, and 30 units in the cross flow direction (Figure 11).

The boundary conditions consist of uniform inflow velocity set to 1.0, zero-normal-velocity
and zero-shear-stress at the lateral boundaries, traction-free conditions at the outflow boundary
and no-slip at the cylinder surface.

The computation presented here was carried out on a structured mesh of 5193600 linear
tetrahedral elements (80 elements along the cylinder span and 160 along its circumference)
and 864270 nodes. The thickness of the layer of elements around the cylinder is 0.001.
Figure 12 shows details of the mesh. For the simulation the time step is set to 0.025. The
time-averaged drag coefficient is 1.07 and compares well with the value of 1.12 reported
in experimental measurement [64,65]. The Strouhal number is 2.02 and also agrees with
experimental measurements [36,38,65].

The flow field in chordwise planes (perpendicular to the cylinder axis) reveals fine-scale
structures. There is a clear difference between the turbulent wake and the laminar outer flow
zones (see Figure 13). We observe the turbulent recirculating region bounded by shear layers.
The shear layers roll up to produce small-scale vortices at the edge of the formation zone.
These vortices cause entrainment of the free-stream fluid into the recirculating zone. The flow
on the cylinder separates at an angle ≈ 78◦ (measured from the leading stagnation point).

Figure 14 shows the isosurfaces of the vorticity vector modulus for three different vorticity
values. Note that the flow structures are more diffuse due to the increasing turbulence effect.
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Figure 11. Computational domain for 3D flow past a cylinder

Figure 15 shows streamlines behind the cylinder within the recirculation area. It is clear the
structure of the vortex created in the turbulent region. When the vortex gets enough energy
then it detaches from the cylinder, generating the von Karman street vortexes.

11. CONCLUSIONS

The finite calculus (FIC) form of the Navier-Stokes equations is a good starting point for
deriving stabilized FEM for solving a variety of incompressible fluid flow problems. The matrix
stabilization terms introduced by the FIC formulation allow to obtaining physically sound
solutions in the presence of sharp gradients occuring for high Reynolds numbers without the
need of introducing a turbulence model. Good numerical solutions have been obtained in the 2D
and 3D examples solved with relatively coarse meshes for high values of the Reynolds number
inducing turbulence effects. These results reinforce our conviction that the stabilization terms
introduced by the FIC formulation suffice to provide good results for problems for which
turbulence models are required using alternative numerical methods. The results also confirm
the close link between the stabilized methods and turbulence models.
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Figure 12. Flow past a cylinder. Details of the mesh used for the computations
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Figure 13. Velocity vector modulus contours in the plane z = 4 at time 50s
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(a)

(b)

(c)

Figure 14. Vorticity vector modulus ω isosurfaces. (a) ω = 0.1, 0.2, 0.3; (b) ω = 0.2; (c) ω = 2
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Figure 15. Streamlines at time t = 50
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