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Abstract

The proper generalized decomposition (PGD) requires separability of the input data
(e.g. physical properties, source term, boundary conditions, initial state). In many cases
the input data is not expressed in a separated form and it has to be replaced by some
separable approximation. These approximations constitute a new error source that, in
some cases, may dominate the standard ones (discretization, truncation. . .) and control
the final accuracy of the PGD solution. In this work the relation between errors in the
separated input data and the errors induced in the PGD solution is discussed. Error
estimators proposed for homogenized problems and oscillation terms are adapted to
asses the behaviour of the PGD errors resulting from approximated input data. The PGD
is stable with respect to error in the separated data, with no critical amplification of the
perturbations. Interestingly, we identified a high sensitiveness of the resulting accuracy
on the selection of the sampling grid used to compute the separated data. The
separation has to be performed on the basis of values sampled at integration points:
sampling at the nodes defining the functional interpolation results in an important loss
of accuracy. For the case of a Poisson problem separated in the spatial coordinates (a
complex diffusivity function requires a separable approximation), the final PGD error is
linear with the truncation error of the separated data. This relation is used to estimate
the number of terms required in the separated data, that has to be in good agreement
with the truncation error accepted in the PGD truncation (tolerance for the stoping
criteria in the enrichment procedure). A sensible choice for the prescribed accuracy of
the PGD solution has to be kept within the limits set by the errors in the separated
input data.

Keywords: Proper generalized decomposition, Error assessment, Separable functions

Background
The ProperGeneralizedDecomposition (PGD) [1,2] is an a priori reduced basis technique
designed to deal efficiently with highly-dimensional BoundaryValue Problems (BVP). Dif-
ferently fromother discretisation techniques such as Finite Elements or FiniteDifferences,
PGD avoids the exponential growth of the number of degrees of freedomwith the number
of dimensions. This is achieved by means of a separated representation of the solution. A
separable function f with rank q, separated on n dimensions has the form,
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f (x1, x2, . . . , xn) =
q∑

m=1
Fm
x1 (x1)F

m
x2 (x2) . . . F

m
xn (xn) =

q∑

m=1

n∏

p=1
Fm
xp (xp). (1)

The key benefit of the use of a separable solution is to transform the multidimen-
sional integrals arising in the weak form of the problem into products of single (or
lower) dimensional integrals. This can be done as the integral of a separated function
s(x, y, z) = f (x)g(y)h(z) can be written as,

∫

�x

∫

�y

∫

�z
s(x, y, z) dx dy dx =

∫

�x
f (x)dx

∫

�y
g(y)dy

∫

�z
h(z) dx. (2)

The evaluation of 3 one-dimensional integrals of the right hand side requires smaller
computational effort compared with its left hand side. The key idea is to apply the same
separation strategy to the integrals arising in theweak form.Amoredetailed explanationof
this procedure is given in Sect. “Problem statement and PGD solution for separated space
dimensions”. However, as indicated in Eq. (2), not only the solution of the problem but all
the functions involved in the operators must be separable. The typical functions present
are material properties (thermal diffusivity, viscosity, density, etc.), initial or boundary
conditions, and source terms, among others. In practice these functions usually do not
admit an exact separable representation. The example used in this work consists in a Pois-
son problem including a non separable diffusivity function. Diffusivity could be defined by
empirical laws or a fitting function of laboratory measurements; its expression then will
be hardly separable. In those cases, in order to apply PGD it is usual to replace the non-
separable function by a separable approximation to it. Section “Separation of the input
data” presents one procedure to obtain separable approximations of known functions
based on singular value decomposition.
Section “Results” shows results of a Poisson problem including the following non-

separable diffusivity function:

k(x, y) = sin
(
0.5(x + y)2

) + 2. (3)

To apply PGD, k it is replaced by an approximation with the form

k(x, y) ≈ ksep(x, y) =
nk∑

l=1
Gl
x(x)Gl

y(y). (4)

The separation procedures usually work with discrete (mesh based) versions of the func-
tion. Therefore, this separation introduces two new sources of errors that are not present
in the traditional Finite Element approach. First, a truncation error is introduced due to
the finite number of terms (nk ) used to describe ksep. Second, an interpolation error in
the spatial representation of the functions Gl

x(x) and Gl
y(y) similar to the usual FE error

is also included. The goal of this work is to study the relation between these errors and
the accuracy of the PGD solution. This relation can be useful to determine the number of
terms nk required to achieve a certain accuracy by PGD. Moreover, this relation can also
be used as stopping criteria for the PGD enrichment process, because the PGD solution
will be at most as accurate as ksep.

Motivation examples

Next sections present the effects of the separation of the input data in the case of an aca-
demic Poisson problem. Although, the motivation of this study comes after the authors
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faced PGD convergence problems in some more complex examples. Two of these prob-
lems are briefly described next.
The first example was found while solving a BVP with parameterized geometry. In

that case the shape of the domain, or the location of internal interfaces, depend on a
set of parameters. Figure 1 shows a parameter dependant geometry for an airfoil and
the objective is to find the air flow around it. The method applied was proposed in [3]
and later extended in [4]. It is based on the idea of having a reference domain T and a
mapping function that relates all possible geometries to the reference domain. In practice,
this mapping introduces some Jacobians depending on the parameters to the equation
and, therefore, the dependence of the problem on the geometrical parameters becomes
explicit. For example, the usual bilinear form for a Poisson problem reads

a(u, v) =
∫

�(µ)
∇u · (k∇v) d� =

∫

T
∇x̂u · (

k |J(µ)|J(µ)−TJ(µ)−1
︸ ︷︷ ︸

D(µ)

∇x̂v
)
dx̂

where x̂ are the reference coordinates. The matrix D(µ), including all the Jacobians,
accounts for the geometrical parameterization. The analytical expression of D(µ) is
known, but it is not separable. An approximation to it is therefore utilized in practice.
The discretization used in the separation of D was found of to be of key importance in
order keep the convergence of PGD. The truncation errors are also relevant and ultimately
may control the final convergence that PGD could attain.
A second example arises in a scheme proposed in [5] for the real-time integration

of solid dynamics equations. The scheme combines Proper Orthogonal Decomposition
(POD) and PGD approaches and it is based upon a parametric formulation depending on
the initial conditions. It implements a direct time integrator that can be seen as a sort of
black-box: it that takes the resulting displacement field of the current time step as input
and (via POD) provides the result for the subsequent time step. In order to reduce the
high dimensionality produced by the large amount of parameters describing the initial

Fig. 1 Motivation example: flow around a geometrically parameterized airfoil. The solution of parameterized
geometries involves the separation of the Jacobians and, therefore, a truncation error in introduced in the
operators
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Fig. 2 Motivation example: real-time integration of solid dynamics. The initial conditions of the problem are
separated. Left and right panel show the solution of the problem when the input data is separated with 3 and
8 terms, respectively. In the former case there is an error in the amplitude and also in the phase, while in the
later the error is only in the amplitude and the phase is corrected

displacement field a reduced basis is obtained using PGD. This step introduces again a
truncation error that will affect the final convergence of the proposed scheme. Figure 2
shows two results with 3 and 8 terms in the approximation of the input data (initial
conditions). Note that the solution including only 3 terms presents phase errors that
disappear for the 8 terms solution.

A priori estimates for FE

Different sources of errors are present in the solution provided by PGD (see for example
[6–8]. If u is the analytical solution of the BVP and uH,M is the solution of PGD char-
acterized by a mesh size H and a number of terms M, the PGD error is then defined by
e := u− uH,M . This error can be divided into several sources: first, an interpolation error,
eFE = u− uH , related with the space discretization, where uH is the standard FE solution
of the problem. Second, a truncation error eM := uH − uH,M that comes from the finite
number of terms computed by PGD. The PGD error e, therefore, can be written as

e = u − uH,M = u − uH︸ ︷︷ ︸
eFE

+uH − uH,M︸ ︷︷ ︸
eM

(5)

where the contribution of each type of error becomes explicit. Figure 3 shows schemat-
ically the relation between these errors. When the input data separation is required and
functions are replaced by separable approximations, another source of errors is intro-
duced. The replacement of function k by ksep is assumed to affect similarly to the FE
solution and the PGD solution (i.e. the truncation error is assumed to be independent of
the error introduced by FE). If the error affects the source term, error estimators proposed
for data oscillation could be used, for example [9].
The standard error estimates for FE read

eH = ‖u − uH‖ ≤ CHα ,

for some value of alpha depending on the norm chosen, the element type and the reg-
ularity of the solution. For the sake of simplicity and in concordance with the proper
measure for error expected in the separated approximation, in the following the norm
under consideration, denoted by ‖ · ‖, is the L2 norm.
If the diffusivity function k is the one separated, the ideas of homogenization theory (e.g.

[10,11]) can be recalled: k can be understood as k = ksep + ε, being ε a highly oscillatory
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Fig. 3 Error sources in the PGD solution The approximation introduced by data separation affects the PGD
and the FE solutions

function with small amplitude compared to k . Figure 4 shows the spatial variation of ε

(computed as ‖ksep − k‖). Note that ε can be reduced by increasing the number of terms
nk in ksep. The problem, although, is inverse to the standard homogenization problem: the
exact solutionhere is smooth and thehigh frequency termsare the errors introducedby the
separation. The fact of replacing k by ksep produces the same error as the opposite. Thus,
ksep is seen as a de-regularization of k , where the high-frequency terms are truncated. This
is the same effect produced in the homogenization, and therefore the error introduced
by the homogenization is of the same type of the error produced in using a separated
approximation of the material property. Thus, if oscillation terms are included (either by
perturbations of k or s) an extra term appears:

esepH = ∥∥u − usepH
∥∥ ≤ ‖u − uH‖ + ∥∥uH − usepH

∥∥ ≤ CHα + Osc,

being Osc ∝ ‖k − ksep‖ in the case in which k is replaced by ksep. The truncation error,
eM , introduced by PGD is a function decreasing with the number of termsM, so its norm
is bounded by ‖eM‖ ≤ C̃F (M). Note that, as mentioned above, for error affecting the

Fig. 4 Spatial distribution of errors (‖ksep − k‖) of the separated k function including 30 terms. Errors are
computed at nodal points of a 100 × 100 uniform structured mesh. When compared with k (Fig. 5), errors are
a highly oscillatory, small amplitude function
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source term s the standard estimates for oscillation terms provide a similar expression for
Osc [9].
The final error of the PGD solution, therefore can be stated as

∥∥u − usepH,M
∥∥ ≤ CHα + C̃F (M) + Osc. (6)

This bound expression shows that if Osc dominates over the truncation error, the error
of the PGD solution cannot be reduced. On the other hand, if an estimation for Osc
and for esepH at enrichment step i are available, (6) can be used as stopping criteria of the
enrichment process.

Problem statement and PGD solution for separated space dimensions
In order to study the propagation of the errors within the PGD scheme a boundary value
problem governed by a Poisson equation is considered. Its solution u, taking values in �,
satisfies,

−∇ · (k∇u) = s in � (7a)

(k∇u) · n = gN on �N (7b)

u = uD on �D (7c)

where the source term s, theprescribedvalueson theDirichlet boundaryuD , theprescribed
flux on the Neumann value gN and the diffusivity k are the data set. The usual variational
form for this problem reads: find u ∈ V such that

a (u, v) = �(v), for all v ∈ V0, (8)

where V := {u ∈ H1(�) : u = uD in �D} and its corresponding test functions space is
V0 := {u ∈ H1(�) : u = 0 on �D}. The bilinear and linear forms a(·, ·) and �(·) are given
by

a (u, v) :=
∫

�

∇u · (k∇v) d� and �(v) :=
∫

�

sv d� +
∫

�N

gN v ds. (9)

Space-separated PGD algorithm

The space-separated PGD algorithm for problem (8) is based on a separated solution
usep(x, y) with the form

u ≈ usep(x, y) =
nu∑

m=1
Fm
x (x)Fm

y (y).

As usual, usep is inserted in the weak form (8). In this case, the diffusivity function k(x, y) is
also replaced by its separable approximation ksep, see Eq. (4), and therefore the operator
a(·, ·) is somehow redefined. The problem then reads: find usep such that

asep (usep, v) = �(v), for all v,

where

asep (u, v) :=
∫

�

∇u · (ksep∇v) d�.

Using the separability of usep, ksep and defining v = vxvy (as explained next), asep(·, ·) is
written (and solved) in terms of one dimensional integrals as,

asep (u, v) :=
nu∑

m

nk∑

l

(∫

x
∇Fm

x ·
(
Gl
x∇vx

)
dx

)(∫

y
∇Fm

y ·
(
Gl
y∇vy

)
dy

)
.
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Note that if k is not separable, this last step can not be done and the two integrals stay
nested.
The definition of �(·) remains unchanged.
Assuming that the initial nu terms of usep are known (that is all functions Fm

x and Fm
y ,

for m = 1 . . . nu are known), each new mode, FxFy, added to usep is obtained by solving
the following problem:

asep
(
FxFy, v

) = �(v) −
nu∑

m=1
asep

(
Fm
x Fm

y , v
)
. (10)

To simplify notation, the dependence of each function Fm∗ is kept implicit in the subindex,
for example Fi

x stands for Fi
x(x).

The PGD solution is constructed one term at a time using the incremental procedure
suggested in (10). The addition of a new term involves solving problem (10) with all the
previously computed modes in their right hand side. Note that this problem is non linear
because of the multiplication of the unknown functions Fx and Fy. This non linearity
is usually handled by an alternate-directions algorithm consisting in first solving for Fx,
assuming Fy is known, and then solving for Fy, assuming Fx is known. These two (linear)
subproblems are iterated until convergence.
The test functions v belong to V0 and they are written as v = δFxFy + FxδFy. When

solving the first subproblem, Fy is assumed to be fix and therefore δFy vanishes. The test
function v, then, simplifies to v = δFxFy. The first subproblem is stated as,

asep
(
FxFy, δFxFy

) = �(δFxFy) −
nu∑

m=1
asep

(
Fm
x Fm

y , δFxFy
)
. (11)

The second problem is completely symmetric, inverting the dimensions x and y.

Separation of the input data
Several procedures can be applied to obtain separable approximations of known functions.
Theproper orthogonal decomposition (POD) and the singular valuedecomposition (SVD)
are the most common techniques when the separation is done in two dimensions. Many
techniques have been proposed to extend SVD to higher number of dimensions. These
techniques are usually called higher-order, as they were originally proposed to decompose
higher-order tensors. An overview can be found, for example, at [12]. Some examples are
the higher-order SVD (HOSVD) [13], the CANDECOMP/PARAFAC (CP) [14,15] and the
Tucker decomposition [16].
When the number of separated dimensions is two, the POD and the SVD are equivalent

and they provide a optimal decomposition in the sense that they provide the minimum
number of required to obtain an given accuracy. Unfortunately, for n > 2 this property is
lost and usually there is no guarantee of the optimality of the separated tensor.
Recently in [17] a method based on PGDwas proposed to perform efficiently separation

of functions. This approach has the advantages of being equivalent to SVD when the
separation is done in two-dimensions and it is trivial to extend it to higher dimensions.
This technique produced decompositions having lower rank than HOSVD for all tested
cases and it does not require to specify the order of the separated function before starting
the process (as CP does).
The application of SVD to obtain a two-dimensional separable approximation is

explained next: consider a discrete approximation of a function f (x, y) supported on a
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finite element (FE)mesh, that is, f is determined by a set of nodal values fi for i = 1, . . . , nt .
In this case the dimensions in which the function will be separated are the cartesian axis
x and y. The form of the approximation is,

f (x, y) ≈
q∑

m=1
αmFm(x)Gm(y),

where the set of function Fm(x) and Gm(y) are to be determined. A scalar αm holding the
amplitude of each term is added in order to normalize Fm and Gm. These functions are
also supported in a FE mesh with the corresponding dimensionality; in this example both
are 1D meshes.
LetM ∈ Rm×n be a matrix with rank r and coefficients f (xi, yi), where xi and yi are the

nodal locations. The SVD provides a factorisationM in the form

M = U · S · VT (12)

where the columns ofU ∈ Rm×m are called the left-singular-vectors and denoted here as
Ui. The columns of V ∈ Rn×n are called the right-singular-vectors and denoted Vj . The
matrix S ∈ Rm×n is rectangular and diagonal and holds the singular values of M sorted
from larger (S11) to smaller. Matrices U and V are both unitary, in the sense that their
transpose its equal to their right inverse.
The factorisation provided be SVD allows to construct a separated representation of the

matrixM as,

M =
r∑

i=1
Sii · Ui · VT

i . (13)

In practice, the rank of the separated tensor is kept as low as possible as the computational
effort is usually proportional to the number of terms in it. Therefore, it is usual to truncate
the sum and discard all terms with amplitud smaller than a given threshold. That is, the
terms corresponding to the largest eigenvalues are kept and termswith smaller eigenvalues
are discarded.
As an example the function k(x, y) = sin

( 1
2 (x + y)2

) + 2 introduced in (3) is separated
using SVD to obtain ksep(x, y) as defined in (4). This function is chosen because it does not
admits an exact separated representation (Fig. 5). Figure 5 shows the function k(x, y) (top
right), the amplitude of the initial terms in the separated version of k , that is, the diagonal
coefficients of the matrix S (top left), and the functions Fm and Gm for the four initial
terms of ksep(x, y). Note that with the initial 25 terms the function k is approximated to
machine precision. The meshes corresponding to F and G, both have 402 nodes.

Influence of the sampling points

The first idea is sampling the input data (material parameters, source terms. . .) on the
nodes of the grid used for the space and parametric discretization. As it is shown in the
next section, this choice is not particularly sensible because the values of these functions
are required at the integration points of the FE mesh used to solve the weak form of
the equation. This extends not only to the spatial coordinates but also to the parametric
coordinates because the parametric modes are approximated in a least squares sense
(Galerkin L2 projection). Thus, separation has to be performed on the basis of values
sampled at integration points: sampling at the nodes defining the functional interpolation
results in an important loss of accuracy.
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Fig. 5 Separation of the diffusivity function using SVD. Top left panel shows the analytic diffusivity function k.
Top right panel show the relative weight of the initial 30 terms of the separated functions; the relative weight
is computed as the sum of the amplitude of all previous terms, divided by largest amplitude. Lower panels
show the functions F and G corresponding to the initial four terms

Results
The behaviour of the PGD scheme with respect to errors in the input data is studied
next via a series of numerical experiments. The problem (7) is solved using PGD as
described above in a square domain with size [0, 4] × [0, 4]. It is closed with Dirichlet
boundary conditions on the top and bottom sides with values one and zero respectively
and homogeneous Neumann in the lateral sides. The separated diffusivity function (4) is
used. The mesh is structured and regular and has 100 elements in each dimension.
The relative errors shown in convergence curves are computed as the H1 norm of the

relative difference between the PGD solution and a reference Finite Element solution
computed over the same mesh. Note that the FE solution is computed using the exact
analytic expression for the diffusivity k .

Input data sampling

The diffusivity function (3) is separated using the SVD approach described in Sect. “Sep-
aration of the input data”. To do that, the spatial grid to sample the function k(x, y) needs
to be selected. The first choice taken here is to evaluate k in the same mesh that will be
later used in the discretization of u. In this case, it is a regular grid with 101 × 101 nodes.
This is an overkill mesh to represent the function k (see first panel of Fig. 5). The ksep

separated function described with 26 terms has an maximum nodal relative error of the
order of machine tolerance (10−14).
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When ksep is introduced into the weak form and the problem is solved via PGD, the
solution obtained is rather inaccurate having relative errors of order 10−2 (Fig. 6). This
poor behaviour comes from the fact that the diffusivity function was sampled at the nodes
but it is required by PGD (and by FE) at the integration points. The values of ksep used in
the integrals are interpolated spatially and therefore an “H-like” error is introduced. This
error is not related with the truncation on the number of terms used in ksep, but is only
dependent on the grid chosen to sample k .
In the example above, despite thenodal values of ksep have errors that couldbenegligible,

the interpolated values at the mid points of the elements have relative error of order 10−2,
coinciding with the maximum accuracy that PGD could provide.
To overcome this limit the grid used to sample ksep is modified so that the grid nodes

coincidewith the integration points that will be used later by the integrals of PGD. Figure 7
shows an example of such amesh for a quadrature of 4 points per element in each direction
x and y. Same as in the previous grid, the nodal values of ksep have errors comparable of
machine tolerance but, in this case, the spatial interpolation is completely avoided. When
this new ksep is used, the limit imposed by the interpolation disappears and PGD recovers
it normal convergence.

Accuracy of ksep

A second set of tests is done to evaluate the relation between the accuracy of PGD and the
truncation error of ksep. To do that, the problem is solved several times using different
truncated versions of ksep for nk = 5, 6, 7, . . . , 11, 12, 14. Note that all nk are smaller than
26 (26 terms were required to get machine tolerance at the nodes) and therefore we do
not expect the errors to vanish at the nodes. The grid for ksep is taken coinciding with the
integration points. Figure 8 shows the different convergence curves of the error on the
PGD solution as a function of the number of terms. Recall that the errors are computed
against the FE solution having the exact k function. All curves present a final flattening
and a convergence to an error that is imposed by truncation error of ksep. In other words,
at some point, the error Osc (that does not depends on the number of terms) dominates

Fig. 6 Evolution of the error of the PGD solution with the number of terms for a ksep function with
discretized on the nodes. The separated diffusivity function is discretized on a grid that coincides with the
nodal points used to describe the solution usep
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Fig. 7 Grid for the discretization of ksep coinciding with the location of the integration points. Left mesh for
usep in gray lines and location of integration points. Right mesh for usep in thick gray lines and mesh for ksep in
thin red lines

Fig. 8 Evolution of the error of the PGD solution with the number of terms. Errors are relative and computed
against a FE solution. Each curve corresponds with a PGD solution including a different accuracy of ksep

in (6) and therefore the PGD error cannot decrease. The better the description of ksep

(that is, the larger nk and the smaller the Osc term), the smaller the final error achieved
by PGD. For this example and when Osc dominates, the relation between the PGD error
and ksep truncation error is linear with slope close to one (as shown in Fig. 9).
Previous results were done using a very smooth diffusivity function k . To test the robust-

ness of the result, the accuracy study is repeated using a new discontinuous function k2
defined as
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Fig. 9 Dependence of the final PGD error as a function of the errors introduced by ksep in the range where
the separation error is dominant a linear dependence (having slope equal to one) is obtained

k2(x, y) =
⎧
⎨

⎩
2 if (x − 2)2 + (y − 2)2 < 1

3 otherwise
. (14)

The separated version of k2, shown in Fig. 10 requires more terms than the smooth k to
reach nodal machine precision. The results are consistent with the previous and the final
convergence of the PGD solution is controlled by the accuracy of ksep2 . Figure 11 shows
convergence curves for ksep2 having 10, 20, 30, 35 and 40 terms.

Conclusions
The stability of PGD with respect to errors in the input data was studied by means of
numerical experiments. These errors are in practice present due to the need of approx-
imate input data by truncated separable expressions. Moreover, separation requires dis-
cretization introducing into the input data a “spatial” h-like error.
Results show that PGD is stable (it does not amplify errors). In the tested case of a

boundary value problem governed by the Poisson equation, the errors introduced on the
diffusivity function are linear with the final error that PGD commits. The grid in which the
separated data is represented is crucial to the accuracy of PGD; to minimize interpolation
error, the mesh for the input data should coincide with the integration points used for the
solution of u.
The relation between the errors in the input data and the final error of PGD can be used

to decide the accuracy required in the input data to get a certain accuracy on the PGD
solution. In the example presented in this work, as the relation between these errors is
linear, it is straightforward to determine, given the desired accuracy in the final solution,
which is the accuracy required at the nodal values in the input data.
This relation can also be used as stoping criteria for the enrichment process of the PGD

solution. If some error indicator is available (see for example [6]), the limit imposed by the
separated input data canbeused as the tolerance to end the enrichment process. In the case
that no formal error indicator is computed, the relative amplitude of the last computed
term, αn/‖uPGD‖, can be compared with the tolerance imposed by the separation of the
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Fig. 10 Separation of the discontinuous diffusivity function using SVD. Top left panel shows the analytic
diffusivity function k2. Top right panel show the relative weight of the initial 45 terms of the separated
function; the relative weight is computed as the sum of the amplitude of all previous terms, divided by largest
amplitude. Lower panels show the functions F and G corresponding to the initial four terms

Fig. 11 Dependence of the final PGD error as a function of the errors introduced by the discontinuous
diffusivity function ksep2

input data. Note that this is an heuristic stopping criteria that cannot be translated into
an estimation on error on the solution. Although, it provides a reference value for the
tolerance as the relative amplitude of the terms is not expected to be much smaller than
it.
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