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ABSTRACT

“This paper shows a gencrahzat;on of the classic 1sotr0pw plastmty theory to be appl:ed to orthotropm or
anisotropic materials. This approach assumes the existence of a real anisotropic space, and other fictitious
isotropic space where a mapped fictitious problem is solved. Both spaces are related by means of a linear
transformation using a fourth order transformation tensor that contains all the information concerning
- the real anisotropic material. The paper describes the basis of the spaces transformation proposed and the

‘expressions of the resulting secant and tangent constitutive equations. Also details of the numerical

' 'integration-ofthe constitutive equation are provided. Examples of application showing the good performance

- of the model for analysis of orthotropic materials and fibre-reinforced composites are given.
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_ INTRODUCTION
“The formulation of adequaté constitutive laws for orthotropic or anisotropic solids is a problem
of large complexity.

One of the more popular attempts to formulate yield functions adequate for orthotropic -
_ _matenals is due to Hill who succeed to extend the Von Mises isotropic model to the orthotropic
" case”. The main drawback of Hill’s theory is its limitation to simulate the mechanical behaviour -

‘of geomaterials, wood and composite materials. Different modifications of Hill's orthotropic
“'model, for the analysis of fibre-reinforced components have been reported by different -
" authors?°-23, :

The idea to formulate the behaviour of an amsotroplc material by means of an equzvalent
isotropic solid was first introduced by Betten using the concept of mapped stress tensor’. This
concept offers the possibility of using all the advantages of the well known isotropic models;
consequently it has many computational advantages.

The authors have developed a generalization of standard isotropic plasticity theory for the
analysis of anisotropic solids in previous works'®*2¢_ The basic idea was to model the behaviour
of an anisotropic solid by means of a fictitious isotropic solid. A basic assumption of the model
_was that the elastic strain is unique for both the real and fictitious spaces. This situation
© introduces a limitation in the anisotropic mapped theory, because it involves a proportionality

concept between the y1eld strength and the elasticity modulus for each material direction
(f&1/E, =f5/Eyy=... =f53/E,3). In the present work a generalization of such basic theory is
introduced.

The anisotropic behaviour is formulated by means of the fictitious isotropic stress and strain
tensors which results from the tensor transformations of the real stresses and strains. This allows
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'us to use the same yield and potential functions derived for standard isotropic materials, whereas
all the relevant information on the material anisotropy properties is embedded in the two fourth
order transformations tensors only. The material parameters involved in these tensors can be
defined from adequate experimental tests. This model is here termed ‘isotropic mapped model
for non-proportional materials’. ' : _

The formulation presented is completely general and it allows us to model different class of
orthotropic and anisotropic materials typical in composites. The model seems to be particularly
suited to be applied for analysis of multiphase materials such as fibre-reinforced composites and
concrete. '

In the next section the properties of the constitutive law for a general anisotropic material
are described together with the basic ingredients of the stess and strain transformations and the
derivation of the second and tangent constitutive relationships..

Details of the integration of the constitutive equation are given next. The implementation
aspects into a finite element code are detailed in a later section.

Finally, the model is applied to three particular problems: (1) the study of the fibres orientation
in a fibre-reinforced composite; (2) the comparison of the results in the analysis of an orthotropic

- material with those provided by standard Von Mises—Hill? theory; and (3) the analysis of a
fibre-reinforced composite material, :

GENERAL CONS’TITUTIVE LAW FOR AN ANISOTROPIC PLASTIC MATERIAL

A general anisotropic plastic model based on a consistent thermodynamic approach is presented.
The model is formulated in a material configuration using total Lagrangian kinematics®*2. The
model, as presented here, can deal with non-linear problems involving large plastic strains and
small elastic strains®'#!7. Obviously, simpler orthotropic and isotropic plasticity models are
readily obtained as particular cases of the model proposed.

Yield and poteniial functions; space transformation tensor

It will be assumed that both yield and plastic potential functions are defined in the
Piola-Kirchhoff stress space (material configuration), as:

Yield function: F5(S;0%)=0
. . Potential function: G5(Syo¥)=K = 4_ )
where §;;=8(C ¥} is the second Piola-Kirchhoff stress tensor, C;;=F&LF,; is the right .
Cauchy~Green tensor, F; is the deformation gra_dient, o¥ 1s a set of m internal plastic variables,

and K is a constant parameter. - : N
The yield and plastic potential functions are iserropic if the invariance condition

FS(a;,058 ,0%) = FS(S ;08) =0 |

. Gs{aipaqupq;a?)EGS(SJ'}';“?)EK _ @)
is satisfied for any orthogonal transformation {a,a,=d;;, where a;; is a unit diagonal tensor,
and &;; is the Kronecker tensor). Obviously isotropic materials satisfy the invariance condition.
This can be simply checked by writing (2) in terms of the first three stress invariant, I, I, and
I (see Reference 14}, ic.

1,3,14.

(S, 508) = FI (S (S 5(S:5a8) =0

G3(8508) = G U (S o(Sihd 55, 08) =K . (3 .
For materials satisfying plastic incompressibility (3) can be written in terms of the invariant of
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Figure I Rekatibnship between the (a) real {anisotropic) and the (b) fictitious (isotropic) space

the deviatoric stress tensor as: ‘ .
F(Si08) = F (oS 5(S o) =FoUa(Sihls(Siha®) =0

_ GO(8150%) =G (J oS5 5(8508) = G UAShIs(SiihoB) =K )
Traditional procedures for deriving the constitutive equations for anisotropic elastoplastic
materials are based on the description of appropriate vield and potential functions in terms of
the characteristic material properties®!-2%. Satisfaction of the invariance condition in these cases
is difficult and not always possible. A procedure to guarantee this' condition proposed in this
work is to define the properties of the real anisotropic solid in terms of those for a fictitious
isotropic solid*'2. This is achieved by relating the stresses in the real and fictitious spaces using

the following linear transformation. (see Figure I): ;
§ij2A%kISk! : o (5)

where S;; and ‘S;; are-the stress tensor in the real anisotropic solid and the fictitious isotropic
solid, respectively, and S is a fourth order material tensor, termed stress space transformation
tensor defined as a ratio of the material strength, ie.

AS=fa15 1 : '— (6)

where f} and S are the yield strength tensors corresponding to the real and fictitious solids,
respectively: — C : _ _ ‘

To ensure no-proportionality between the strength and the elastic modulus the following
relation between the real elastic strains Ef; and the fictitious ones Ef; is defined:

| Ej=AB.Ey G
This assumption implies non-uniqueness of elastic strains when the change of space is produced.

In (7) A%, is a fourth order material tensor, termed strain space transformation tensor. This can
be derived from (5) as follows: . :

SuS ; 1= Agikl = (CsikrsEfs)(CsﬂmnE:m) -t
= CgikrsEﬁsErenn w1 CImnd -t
AE
' CgikrsAfsmncsmn 111 - . ' (Sa,b)

and hence:
" 4E  __ 8 —1 45 8
Arsmn_crsik Aijk!c HAmn

Equation (8b) allows us to derive the relationship between the constitutive tensors in the real
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C®;u and fictitious CE,-_,M spaces. This is:

= AE 4E —1_ 8 <1 48 8 E -1
Irsm_' ArsnmAmmu - Crsr'.i’c_ Aijklc jlmnAmn!u
M R L

. Coru ' ®

or the inverse relation: _ -
. Csjlnin = Afnj-— ! CsikmAfumn

Note that both €% ;; and 15, are expressed in a global reference system. This means that prior

to the derivation of 43, and AF;, the following transformaitons to the global reference system
are required:

CS:' el T R, js(csrqu)!ocalepIq
f:}s = Rijkt(f;cst)locai
where (- ).,y denotes description in a local coordinate system. . _ .

- The rotation tensor* R, takes into account the angles between the local principal directions
of the anisotropic material and those of the global coordinate system. Superindices § and §
~denote hereafter variables in the real (anisotropic) and fictitious (isotropic) spaces, respectively.

The mapping expressed by means of (5), induces a change in the yield function shape as can
be seen in Figure 1. Figure 2, shows this effect for different strength ratios {S;;/S;;) on four classical
yield functions?*1¢: (A) Tresca, (B) Von Mises, (C) Mohr—Coulomb, (D) Drucker-Prager, and

‘also on that proposed by (E)- Lubliner and Oller'®*S. This space mapping allows the
representation of the one directional fibre yield function when the ratio 5,;/S;; tends to infinity.

Figures 2 and 3, show for associated plasticity, the loss of the strength in a given directon while

in the normal one there is a plastic flow growth in the same proportion. ‘

. Assuming that alt the information concerning material anisotropy is contained in the tensor

Ay, the'yield and plastic potential functions for the anisotropic solid are defined as:

. FS(S i ﬁa's") = FS(SE j§A'isjkz§°‘?) = FS(S;'_,';OC?) =0

: G*(s; FU5)= G*(s; j?Afjm;Of? )=G(S;ze5) =K {10)
It is therefore concluded that the yield and plastic potential functions for any anisotropic solid
can be simply defined in terms of an irreducible basis of the invariants of tensor 5;; Usually, a
finite number of stress invariants are involved in the definition of the yield and potential functions
(ie: I,, J, and sometimes J,). These invariants are elements of the system of invariants which
are only considered. Therefore the formulation presented is a simplified theory but very useful
to solve practical problems®. :
. In the following sections the main relationships characterizing an anisotropic elastoplastic
solid formulated as an ideal isotropic solid using the spaces transformation expressed by (3) and
{7) are derived. :

. Secant constitutive equation :
- The constitutive equation for an anisotopic material is obtained by writing the dissipiation
occurring in an isothermic elastoplastic process in the real anisotrpic space. From the first
Classius—Plank condition'%~*2-1417:18 the foliowing expression for the mechanical dissipation

power is obtained: . :
' . S\ . S.EP s ‘
m®  GE; m’ Oog

*The ‘rotation tensor definition is: Rip=rarz where r;=cos{(@)pmar (Zdiocars 204 (&) peronce 15 the umit vector
corresponding to the k component of a certain reference coordinate system,
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Figure 3 Differences in the plastic flow on the real (r=1) and fotitious spaces (r=4.5)

Applymg Colleman’s method11 to guarantee the COnditIOD of pos:twe dissipation in (11) the
secant constitutive equatlon is obtained as:

o OVS(ES0™
ii =m .-....—“.._. 12
! OEj; (12
where lI’S 1s the free energy of matenaI formulated in the material conﬁguratlon under real stress
state and m° the density in the material conﬁguratlon The freeenergy is assumed to be of the form:

lIfsufs,), )= \{'S”(Egjj + ‘I-'S” A= (E"l_ E;CS; jk,Eg,) +¥(ag) - (13)

where s and s denotc the elastic and plastic free energy contnbunons -and the free variable
{;1s the fictitious elastic strain in the material configuration as proposed by GJ:&:en«Naghdl6 11,12
‘ and defined as:

Eu Efw=— (C,J, U) fEPdt {14)

where E" 18 the Lagranglan piastlc strain, -C;; is the right Cauchy—Green tensor and E" the

plastic stram rate defined in the material configuration as exlained in the next section.
Substxtutxon of (9) into (13) allows us to rewrite the free energy in terms of the constitutive tensor-
s, ;7 for the ideal ISOHOPIC material as:

Ef[ A%, Cpudl, JE fs)-!—‘?sp og) - (15

Mg

‘I-‘S(E, p“s) (2 1
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' Substitutmg (15) into (12) leads to the secant constitutive equation in the real anisotropic -
o space defined in terms of the stress ‘field in the ideal isotropic fictitious space as: o

o GOV (Efo ) - - =
. Sij e 6Ee : = [AUF‘! 1Cqutu S] UP-’! lcquruEe Afrpq Spq - (16)
' _whé:re § =Clus are ‘the stresses in the ﬁcnnous 1sotroplc space Equation (16) conﬁnns the

: assumptmns made in (5) and (7).

' Flow rule Evolutwn of the znternal varzables

From the transformation rules expressed by (5) and (7) and the deﬁnmon of the plastic potentlai -
. fuhction in the fictitious 1sotrop1c space {(10)), the flow rule and the evolution of the internal
- plastic variables of are obtained in the form:

Ry
) /—A—-ﬁ _
: 6(}5 BGSES LGS :
E l_""'lm_kl"' khj"""(E )SAkIU
' aS askl BSU SkI
B
L aGS s eI |
A(h }S A(h ——“E-“ﬁ(hus — Ak!u‘ | - (17)
aStJ - S aSu Sy S
i S
——A(h:r:: S..._._zog%"
a ki
e
- RY

’Due to the add1t1v1ty strain’ conccpt (14), the elastic strams ‘transformation rulc 1§ extended to
~ ‘the plastic strains, ie.

R—

E:S—A:‘ii,-ﬂ--—mﬂua_ Ay @)
ki ' ) e
3
RS

. where (e s and (h;")u are tensorzal functions to be determmed” 16 for each of the m-internal

" variables involved, R is the plastic flow in the fictitious stress space, as shown in Figure 3, Rj;

is the plastic flow in the real stress space, Rl is the plastlc flow in the fictitious stress space
R is the plastic flow in the fictitious isotropic space and E7, is the fictitious plastic strain.

Free energy in the fictitious fsotrépic space. Uniquenesj of the dissipation
Note that the dissipated mechanical power Z5,. can be written in the fictitious isotropic space
by substxtutmg the ﬁow rule, the evolution law for the internal variables ((17)) and the

‘—‘mec
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transformation space rules {((5) and (7)) .int.o (10), i.e.*®:

(S, 8WS\.. S.Er _ 3
Eﬁlec =| == Ef+ Lty ——aF
L (m° aEfj) T om® % By ®

SAERS WS o :
- — e TEE ec. ;O : 19
m° %6&?% mee. ( ‘)

- It is deduced from (19) that the dissipation is an invariant of the thérmodynamic process and,
therefore, its value is independent of the space where it is computed. also, the free energy can
be obtained in the fictitious isotropic space in the form: :

- 1= = =\ .5 o
- ‘PS(E:?j;a?)=.(§;EfjcsijktE§I) +¥¥(E) S 20)
_ \2m; - S

~ Equation (20) is equj{rale'nt to (13} defined in the real anisofropic space, and therefore the
constitutive equation given by (16) still holds. This is:

_ WS(EL e o —
Sij =m° a(——ma@* CsijklEzl

OE; |
;e = (A;'SjrscsrstnAﬁkl) (Aflpq zq) . . . (21)
= Azl'sjrscsrs:u'[ 1 pqE ;q

= A7 C% o Bl = A7,.S,s

ifrs rstu~tu

where the stress transformation rule is recovered.

Tangeﬁr constitutive eguation . oo :
The rate form of the constitutive equation is obtained by petforming the temporal derivative

* REMARK: The plastic pontential transformation is derived in the following manfer:
. ' Si_iE.xE} = (A;frs_ 131;)(145-;« - iEi‘c,I} ]
U
=A,Ai.rs lgr.rAiEij -IAITEIru"aE;Afp:u
R Eles
=M|‘sjrs lgrs[ijzu TAnp:u

np

Cy a6S -~ 3G
.=M;?‘rs— 1§;-5WA5 i':.’-{srs_lnprs
3 a—ﬂp Pij as-kp

e BG°5 — o
j‘g:lpggl:;= np{Eﬂ'}s



.- ANISOTROPIC ELASTOPLASTIC MODEL o ' - 253
of the secant expression (16) as: |

_ Srs
e,

3y s _0S; 05, dEE,

S--

if
i e ki = — "
7 oEy, - 88, oE:, OEq “
e [ C e
A}s;'rs -1 Csrsmn Afmkl . .
= AtﬁicrsmnAmnkIEk! = t:ricfsmn mnki(EkI It!) - ‘ . (22)
= Al }ri Cfsmn(Emn mn) .\ S_rs
Srs

Equatlon (22) can be mterpreted as a linear transformanon of the followmg rate constitutive
equation defined in the fictitious isotropic space:

S, s e =
: Sij= 7 E"’J i:“cuszkl=C‘isjk'1(Ekt'_E£1 ' . ) (23)
- The plastic consistency condition leads to the standard rate form of the constitutive equation
in the fictitious isotropic space as: :
F 5
(Cur rs* (T'Csrskl)
o8

S;= C_i 308 = P — | Ey . (24a)
’ 6 m 3 6F !
- zm (km)_”g*R:u C pqln
o oug 08,
or in compact form: . :
S=CSE. (24b)

Combmmg now (22) and (23) leads to the final expression of the rate constitutive equation
" in the real anisotropic solid as:

S Auklskl - A:sﬂclw lcsk[r.s‘Er f}k[w ! S;Ph' rsm 1>

C¥is ' (25

Therefore, the consmutwe model requlres only the following deﬁmtmns in each of the two spaces
used:

. . : - | initial constitutive tensor C5,,
® ‘real anisotropic spacé: { ( ”kl)k’cal.

-{ yield strength b  hocal _
initial fictitious constitutive tensor ~ Cfy,
vield function  F5(S,

e fictitiousisotropic space: G

potential function ( il ) K

yield strength ,f)
Above definitions allow us to derive all the basic constitutive relationships, including the evolution
of the inner variables, necessary to formulate in a precise manner the constitutive behaviour of
an anisotropic elastoplastic solid by means of an associated fictitious isotropic solid.
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INTEGRATION OF THE CONSTITUTIVE EQUATION

- The constitutive equation is intégrated by means ofa tangent cutting plane algorithm as presented
by Ortiz and Simo®®. This kind of Euler-backward algorithm is used for intégration of rate
. _constitutive equations in orthotropic solids®. Nevertheless, in our case, note that the integration
-of the constitutive equation is done on the isotropic fictitious space. The integration methodology -
" is based in the ‘mapping return’ concept, i.e. the return path towards the converged vield function
- follows the direction of the normal flow computed at each iterative solution (see Figure 4). Further -
details of this technique can be found in References 4, 5,19, '

NUMERICAL IMPLEMENTATION OF THE ANISOTROPIC ELASTOPLASTIC
_ MODEL PROPOSED

The basic steps for implémenting the anisotropic model proposed into standard elastoplastic
finite element programs* are given next. ‘ '

‘@ LOOP OVER SOLUTION INCREMENT: g 1, NINCR
* ITERATION LOOP: i=1, NITER :
IF (n.GT.1 .OR. iGT.1) GOTO 4

1. Define stiffness and rotation tensors: o
o % (Fhocas €5 (COhoear' R
2. Obtain the spaces transformation tensors:
F=R: ()
AS=FRf
- -CS:R: {Cs)locai: R
CAE=CSAS ¢S
3. Initialice the isotropic constitutive tensor:
- .I{Cgep)()= l(CE)D
4. Compute tangent stiffness: BT
.. B(Cscp)f-leS-l: ,,(Cgep)m: AE
K@) ={ B: (C>)™": BdV

. - "(K)" = AlL, (K@)
5. Compute displacements and strains: .
(OU) ="K Y (F, ppi0)
L MAUY =AU + 75U
L MAE) =P(ADY
_ _ "E) ="="E)+"AE)
6. Evaluate predicted stresses: . o
- AS"Y =(C%:YAE)
(ST =""1S)+"(AS"Y
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7. Transform predicted stresses to the fictitious isotropic space:
"(E*)izAS: "(St)l
8. Integré‘te. isotropic constitutive law: ITERATION LOOP: .
j=1 JITER |
| for: j=1="(S)"="(S"); (AE?)*=0
e 81 . | ) "(E)U:n(g)u-l —I(CS)O-"(AE‘F)U-I

g andj=1=GOTO 10
if FS S,a’l’ n—-s"_l'ﬂo .
T FASaE {andj> 1=GOTO9
else: '

oG
as

| "(EY' ="(E?)" +"{AEP)"
S 3 -
oy =y ),
. ' S

(o) ="y (A

"(AE")” (AZY-AE: - ( S)J As—.(A/)’ "(R)_

k=k+1Go back to 8.1 e

9. Compute tangent constitutive tensor in the isdtropic space:

(C§:-R§)®(6FSCS)
Fomi z as
n(CS" - CS___ T

) 6F5 < oF

- (h“'} RS+ CSRE [ .

5 a8 ns,

10. Back transformation of stresses to the réal anisotropic space:
| "S) = A%": ()
11. Compute residual forces:

N ”(Fiz;d) =[5 HSYAV ~f,

(P esia) = A"e (FO)

T | F el >0? =i=i+1 Go back to 4
else: .
: Converged solution foi‘lfhe nth increment.
‘ 7 , _ n=n+1
Compute new incremental solution - l

- 255
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Figure 4 Plastic flow definition in the cutting plane algorithm!® -

EXAMPLES

. Orientation effect of fibres in a composite

Let us consider the case where continuous glass fibres are placed uni-directionally within an
epoxy matrix material and form an angle ¢ with the applied tension load as shown in Figure 5.
The tension failure limit strength (S,) of the composite depends on the fibre orientation which
angle will be varied between 0° and 90°. In order to establish strength and failure characteristics
of the material, it is necessary to consider a number of fundamental properties related to the

. composite behaviour such as: Young’s modulus along principal directions: in-plane directions,

Ey e ="591998.8 kg/cm?, and Eq,,, = 1406173 keg/cm?. Poisson ratio: v;»=0.293. Elastic strength
limits, in-plane directions: for the longitudinal fibre behaviour fSomP-=19686.4 kg/cm?,

flems=95619 kg/em?, fire=421.8kg/cm®; and for the transverse fibre behaviour fEomp.

rans

Additional data required defining the fictitious isotropic model are: equivalent Young's
modulus: ES=591998.8 kg/cm?, equivalent elastic compression strength litnit; /=19 686.4 kg/cm?,
Mohr-Coulomb yvield function, fibre plastic flow (it only has components on the fibre direction)
and perfect plasticity. Figure 5 shows the tension strength lmit (S,/f7 where f; is the tension
failure limit strength of the fibres) of the composite as the fibre orientations angle ¢ varies. Note
that the maximum strength takes place for ¢=0° and the minimum for ¢ =45°. The material
strength is greater for ¢=90° than for ¢$=45° due to the transversal deformation restricted by
the compression fibre strength of the fibres. : —

The particular form of the curve in Figure 5, depends on the yield and potential plastic functions
‘adopted in the fictitious isotropic solid. Here the Mohr-Coulomb yield function was arbitrarily

chosen.

- 1406.2 kg/em?, f1ims, =281.2 kg/em?. :

A comparison with the Mises—Hill orthotropic model

The anisotropic model proposed has been applied to the analysis of a rectangular specimen
under axial loading acting along three different directions (Figure 6). Plane stress conditions have
been assumed. The geometry has been discretized using a simple mesh of sixteen standard 4
nodes quadrilateral elements as shown in Figure 6. Numerical results obtained have been
compared with those provided by the well known orthotropic Mises-Hill model’.

The material properties are the following: Young’s modulus along principal directions: in-plane
directions, E, =2.5 E® kg/ecm?, and E,=2.0 E®kg/cm®. Transverse direction E;~=2.0 E® kg/cm?.
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Figure 5 Strength ratio vs. fibre slope angle, for an epoxy matrix with glass fibre
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Figure 6 Test specimen. Geometry, boundary condition, loading and finite element

Shear modulus: G=0.45 E®kg/em®. Poisson ratio: v=0.3. Elastic strength limits: in-plane

directions; f; =8000.0 kg/cm? and f, =6000.0 kg/cm?, transverse direction f3=6000.0 kg/qnz.

- Additional data defining the fictitious isotropic model are: equivalent Young’s modulus: E5=2.5

E° kg/em?®, equivalent elastic strength limit: £** = 8000.0 kg/cm2, and Von—Mises yield function.

Figuré 6 shows the three loading types applied: (a) axial loading paralle]l to the maximum
strength direction: (b) transverse loading orthogonal to the maximum strength direction, and (c)
diagonal loading. . o : '

. Figures 7 and & show the comparison between the strain—stress curves obtained at the centre
of the sample, assuming perfect plasticity and hardening plasticity with a hardening modulus
H=250000.0 kg/cm?, respectively.

Note that results obtained with both models coincide for loading cases (a) and (b). However,
considerabie differences arise for the diagonal loading case (c). This is due to the excessive
influence -of shear in Mises—Hill theory leading to over-stiff results. The values obtained with
the proposed model are within reasonable limits and bounded by those of loading cases (a) and
(b} as expected. '

Analysis of a fibre-reinforced Eomposi{e _
The third example is the analysis of a plane rectangular specimen of a fibre-reinforced composite
material. Figure 9 shows the specimen geometry, the boundary conditions and the finite element
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Figure 9 Fibre—reinforced specimen. Geometry, boundary condition, loading and finite element mesh

mesh of sixteen 4 node quadrilateral elements used. A prescribed longitudinal displacement has
been imposed to both ends of the specimen as shown in Figure 9. '

The specimen is composed of an isotropic matrix and a 20% of long fibres. Initially, the fibres
are considered aligned along the longjtudinal direction and then along the transverse direction.
The combined effect of fibre and matrix material has been modelled using a multiphase model
based on mixing theory developed by the authors®®. '

Material properties: Marrix isotropic material: E=7.24 tn/mm?, v=0.33, limit elastic strength
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Figure 11 Load-displacement curves in point ‘A’ of the specimen. (a): longitudinal fibres; (b): transverse fibres

F=0.036tn/mm? and 80% of fraction volume participation. Isotropic associated Von Mises
plasticity bas been assumed in this case.

Fibres. The anisotropic model proposed has been used with E=84.4 tn/mm? and limit elastic
strength f=0.2283 tn/mm?, and plastic flow along the fibre direction has been assumed in the
fictitious isotropic space.

Perfect plastic behaviour for both materials has been assumed.

Figure 10(1) displays the stress—strain behaviour for the composite with longitudinal ﬁbres
showing the behaviour of the composite (curve b), the matrix (curve c) and the fibres (curve a).
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Figure 13 Principal stresses for the transverse fibre case. 1, Finite element mesh; 2, principal stresses in the composite;
3, principal stresses in the matrix; 4, principal stresses in the fibres

Also, the same Flgure shows that the stlffness of the comp051te remain equal to that of the
matrix after plastification of the fibres.

Figure 10(2) shows the stress—strain behaviour for the composite with transversal fibres. Curve
(a) shows the evolution of the longitudinal stress in the composite, curve (b) shows that the
strength of the matrix is greater than that of the composite. This can be explained by the small
contribution of the transverse fibres to the global longitudinal stiffness. Therefore, the resisting
material has 20% less transverse cross area with the corresponding reduction in stiffness. Curve
{c) in the same Figure shows the transversal tension stress in the matrix and the corresponding
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compressmn stress in the ﬁbres curve (d). Finally curve (e) shows the null *global’ resistance of
the composite in the transverse-direction as expected.

Figure 11 shows the load—displacement curves for the two fibre orientations studied.

Figures 12 and 13 show, in qualitative form, the principal stress field in the composite material,
as well as in the matrix and the fibre components for each of two fibre orientation case analyses,
respectively.

The numerical results obtained are in good agreement with the expected values, thus showing .
the ability of the model proposed to analyse fibre-reinforced composites.

CONCLUDING REMARKS

It has been shown that the eclasto-plastic anisotropic behaviour of solids can be effectively
modelled by means of an equivalent isotropic model based on standard Green—Naghdi large
strain elasto-plasticity theory. The model proposed is particularly suited for finite element
computations of composite structures with different material propertics. Initial applications of
the model to standard isotropic materials and more complex fibre-reinfoced composites using
a multiphase material model®® show promising results which will be more extensively validated
in the near future. Extensions of the anisotropic formulation presented to non-linear damage
mechanics are straxghtfoward and are currently investigated by the authors \
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