Nuevos elementos de lámina cuadriláteros sin rotaciones

C.F. Estrada F.F. Flores

Nuevos elementos de lámina cuadriláteros sin rotaciones

C.F. Estrada F.F. Flores

Publicación CIMNE Nº-330, Noviembre 2008

INFORME DE AVANCE SEMESTRAL

Carlos F. Estrada y Fernando G. Flores

1. CONTENIDO

El contenido de este informe semestral es el siguiente. En la Sección 3 se presentan los aspectos básicos de la formulación original del elemento BSQ. Se muestra la geometría donde se define "la parcela de elementos" y el sistema de coordenadas a utilizar y el cálculo de las curvaturas en función de las coordenadas de los nudos de la parcela. En la Sección 4 se describe una forma alternativa de tratar el campo de curvatura con motivos de extender las capacidades del BSQ al tratamiento de superficies quebradas y ramificadas. El cálculo de las deformaciones membranales se meustra en la Sección 5. En la Sección 6 se muestra el nuevo esquema particular de estabilización física y una forma alternativa de tratar las fuerzas de estabilización flexional. También se dan algunos detalles respecto al cálculo de de fuerzas nodales equivalentes. En la Sección 7 se presenta algunos ejemplos de los elementos presentado incluyendo ejemplos no lineales. Finalmente se resumen algunas conclusiones.

2. INTRODUCCIÓN

En los últimos años ha habido una importante actividad en el desarrollo de elementos de láminas que prescinden de las rotaciones como grados de libertad. Las aproximaciones son muy diversas, una muy promisoria pero todavía limitada a problemas lineales de placas es la basada en el concepto de "isogeometría" (Cottrell et al. (2006)) asociada a funciones usadas en los sistemas de CAD. Uno de los objetivos aquí es utilizar una única definición geométrica (NURBS) a los fines de simplicar los procedimientos de refinamiento. Una segunda aproximación, que comparte algunas ideas con la anterior en lo referido a la interacción con los sistemas de CAD, que no está limitada a problemas lineales y facilita el tratamiento del contacto, es el concepto de "superficies de subdivisión" (Cirak y Ortiz (2000, 2001)). Los esquemas de subdivisión construyen superficies suaves a partir de una malla de control inicial usando un proceso de refinamiento repetitivo. Una vez generada la malla, para evaluar las curvaturas en cada elemento (triangulo), se utiliza una parcela regular de 12 elementos sobre la que se define una función de interpolación especial. La tercera aproximación, ya no asociada con los sistemas CAD y con mayores antecedentes dentro del MEF (Oñate y Cervera (1993); Sabourin y Brunet (1993)) consiste en evaluar la curvatura usando una parcela de elementos formada por el elemento sobre el cual se desea evaluar las deformaciones y los inmediatamente adyacentes (parcela de 4 elementos triangulares o 5 elementos cuadriláteros). En problemas tridimensionales los principales desarrollos ha sido con elementos triangulares utilizando interpolaciones lineales sobre cada elemento (Oñate y Zárate (2000); Flores y Oñate (2001)). En todos los casos se ha usado un único punto de integración en la superficie y un número variable de puntos de integración

en el espesor de acuerdo a la aplicación. Estos elementos se han implementado en códigos comerciales y se han utilizado extensivamente para simulaciones de embutición de láminas delgadas con excelentes resultados (Brunet y Sabourin (1995); Rojek y Oñate (1998); Oñate et al. (2002)). Una mejora sustancial en el comportamiento membranal de estos elementos se logró utilizando una aproximación cuadrática sobre la parcela de cuatro elementos(Flores y Oñate (2005)), dando lugar a un elemento con comportamiento similar al triángulo de deformación lineal pero sin los problemas de bloqueo membranal que presenta este último. En la Referencia (Oñate y Flores (2005)) se presenta un amplio rango de aplicaciones que muestra el excelente comportamiento membranal y flexional de este último elemento. Todos los elementos descriptos hasta aquí suponen que la superficie es suave y que no hay cambios bruscos en la rigidez flexional de la lámina, lo cual surge de la forma en que se interpola la geometría. En la referencia (Flores y Oñate (2006a)) se presenta un elemento para láminas bidimensionales (basicamente de revolución) en el cual esta última restricción fue levantada, de tal forma que es posible considerar láminas con quiebres e incluso ramificadas. Una extensión a problemas tridimensionales, usando nuevamente triángulos ha sido presentada en (Flores y Oñate (2006b)), lo cual implica un aumento importante en el campo de aplicación, incluyendo la industria aeronáutica entre otras. Finalmente cabe mencionar que existe una cuarta alternativa para la formulación de elementos sin grados de libertad de rotación a partir de las teorías de láminas deformables por corte transversal o de la aproximación de sólido degenerado (ver por ejemplo (Reese (2006)) y los trabajos allí citados). Esta última aproximación es completamente diferente porque los grados de libertad rotacionales son eliminados a costa de nuevos grados de libertad traslacionales (los desplazamientos de la superficie superior e inferior).

A diferencia de otras formulaciones la mayoría de los desarrollos han sido realizados sobre elementos triangulares, y no existe un desarrollo exhaustivo de elementos cuadriláteros. El trabajo de (Oñate y Cervera (1993)) sugiere la posibilidad de considerar elementos de placa delgada cuadriláteros pero no indica los detalles y menos aún provee de resultados. La primera aproximación mencionada (Cottrell et al. (2006)) incluye la utilización de superficies de control de cuatro lados nuevamente para placas. El primer elemento sin grados de libertad de rotación cuadrilátero para láminas delgadas ha sido presentado en la Ref.(Brunet y Sabourin (2006)) como una extensión de un elemento triangular. La formulación utiliza una parcela de cinco cuadriláteros, y calcula deformaciones de flexión normales a los lados comunes a partir de sus giros relativos, las cuales son luego interpoladas usando coordenadas de área. Adicionalmente a las cuatro ángulos de giros evaluados a cada lado del elemento principal de la parcela se adicionan dos ángulos internos para evitar posibles modos de alabeos. La formulación presentada implica una integración paso a paso de las deformaciones dentro de un sistema corrotacional, una formulación Lagrangena actualizada y una relación constitutiva hipoelástica. Un segundo y un tercer elemento sin grados de libertad de rotación cuadrilátero para láminas delgadas fue presentado por los autores del presente informe (Flores y Estrada (2007); Estrada y Flores (2008)). La formulación es una extensión de los elementos triangulares desarrollados previamente (Flores y Oñate (2001, 2005, 2006a,b)) para superficies suaves, quebradas y ramificadas. La diferencia principal con la aproximación presentada en (Brunet y Sabourin (2006)) es que se trabaja directamente con la obtención de la primera y segunda forma fundamental de la superficie en base a una formulación Lagrangeana total que permite utilizar un modelo constitutivo hiper-elástico.

En este informe los elementos BSQ y BBSQ son revisitado con motivo de mejorar el tratamiento de las fuerzas de estabilización membranal y flexional. Los elementos cuadriláteros con un solo punto de integración son ampliamente usados por su bajo costo computacional, sin embargo, como consecuencia de la subintegración suelen aparecer modos de energía nula los cuales deben controlarse para obtener una solución numérica estable. En (Flores y Estrada (2007)) se presenta una forma de calcular las fuerzas de estabilización membranal y flexional basada en la evaluación del gradiente a la mitad de cada lado. Se observó que el esquema de estabilización flexional en problemas quasi estáticos, resueltos con un código explícito requiere de un fuerte amortiguamiento para evitar inestabilidades numéricas locales. Otro aspecto importante observado en la formulación del elemento BSQ es el uso de energía elástica de estabilización membranal en problemas con material elasto plástico. Como consecuencia de este último aspecto en algunos casos se introduce demasiada energia membranal. Como consecuencia de ello, en este trabajo se presenta una mejora en la formulación de las fuerzas de estabilización flexional y membranal. Algunos aspectos aquí mencionado han sido presentados en (Estrada y Flores (2008)).

3. FORMULACIÓN LAGRANGEANA TOTAL DEL BSQ

3.1. Definición de la geometría del elemento y de la parcela

La geometría del elemento cuadrilátero queda definida por la posición (superficie media φ) de sus cuatro nudos por lo que los únicos grados de libertad a utilizar son las tres componentes de desplazamiento en cada nudo. Dentro de cada elemento la posición de la superficie media resulta de la habitual interpolación bilineal

$$\boldsymbol{\varphi}\left(\eta_{1},\eta_{2}\right) = \sum_{I=1}^{4} N^{I}\left(\eta_{1},\eta_{2}\right) \, \boldsymbol{\varphi}^{I} \tag{1}$$

donde φ^{I} es la posición de la superficie media en cada nudo y las $N^{I}(\eta_{1}, \eta_{2})$ son las funciones de interpolación bilineal definidas sobre el elemento maestro en el sistema local (ver por ejemplo Zienkiewicz y Taylor (2000)).

Para el cálculo del tensor de curvaturas sobre un elemento M se utiliza una parcela de cinco elementos formada por el elemento M y los cuatro elementos adyacentes a sus lados. En la Figura 1a se muestra el orden de los nudos y la definición de las conectividades de la parcela de elementos. Los nudos y los lados en el elemento principal M están numerados localmente de 1 a 4 en sentido antihorario. La numeración de los lados se asocia posteriormente a puntos de evaluación de una integral sobre el contorno. Los elementos adyacentes al elemento principal M están numerados con el número asociado al contorno del lado común. Los nudos de los elementos adyacentes que no pertenecen al elemento principal se han numerado consecutivamente en sentido antihorario empezando por el elemento 1 (ver Figura 1b). Las conectividades de los elementos adyacentes son definidas comenzando por los dos nudos comunes al elemento central.

La evaluación de la primera y segunda forma fundamental de la superficie media en el elemento central de la parcela, requiere de la definición del sistema cartesiano mencionado en forma consistente sobre cada punto de la parcela donde se evalúe el gradiente $\frac{\partial \varphi}{\partial \xi_i} \equiv \varphi_{i}$. Para ello se define el sistema cartesiano de referencia (${}^{o}\mathbf{t}_1^0, {}^{o}\mathbf{t}_2^0, {}^{o}\mathbf{t}^0$) a partir de la normal

$${}^{o}\mathbf{t}^{0} = rac{1}{J_{0}} \left({}^{o} \boldsymbol{arphi}_{\prime \eta_{1}}^{0} imes {}^{o} \boldsymbol{arphi}_{\prime \eta_{2}}^{0}
ight) \qquad J_{0} = \left\| {}^{o} \boldsymbol{arphi}_{\prime \eta_{1}}^{0} imes {}^{o} \boldsymbol{arphi}_{\prime \eta_{2}}^{0}
ight\| = rac{{}^{0}A}{4}$$

donde ${}^{o}\varphi_{\prime\eta_{1}}^{0}$, ${}^{o}\varphi_{\prime\eta_{2}}^{0}$ son las derivadas respecto a las coordenadas naturales evaluadas en el centro del elemento (supraíndice derecho 0) en la configuración original (supraíndice izquierdo o) y ${}^{o}A$

Figura 1: (a) Definición de la parcela de elementos, (b) sistema de coordenadas naturales.

es el área del elemento. Las dos direcciones cartesianas de referencia (${}^{o}\mathbf{t}_{1}^{0}$, ${}^{o}\mathbf{t}_{2}^{0}$) sobre el plano normal a ${}^{o}\mathbf{t}^{0}$ se eligen arbitrariamente (por ejemplo en las direcciones principales de ortotropía del material).

Similarmente, en cada punto medio de cada lado k del elemento principal se tendrá el plano tangente (${}^{o}\varphi_{n_1}^k$, ${}^{o}\varphi_{n_2}^k$) y su normal ${}^{o}\mathbf{t}^k$

$${}^{o}\mathbf{t}^{k} = \frac{1}{J_{i}} \left({}^{o}\boldsymbol{\varphi}_{\eta_{1}}^{k} \times {}^{o}\boldsymbol{\varphi}_{\eta_{2}}^{k} \right)$$

$$\tag{2}$$

donde J_k es el determinante jacobiano de la transformación isoparamétrica en la geometría original.

En los elementos adyacentes el gradiente se requiere sólo en el centro de cada lado común con el elemento principal. Utilizando el mismo procedimiento anterior, pero ahora la referencia es el sistema local (${}^{o}\mathbf{t}_{1}^{k}, {}^{o}\mathbf{t}_{2}^{k}$) en dicho lado dentro del elemento y la intersección \mathbf{q}^{k} entre ambos planos es naturalmente el lado común a ambos elementos.

3.2. Evaluación de las curvaturas

La segunda forma fundamental (tensor de curvaturas) de la superficie media puede escribirse como (con $\alpha, \beta = 1.,2$):

$$\kappa_{\alpha\beta} = -\boldsymbol{\varphi}_{\prime\alpha\beta} \cdot \mathbf{t} \tag{3}$$

De la misma forma que en los elementos triangulares (Oñate y Flores (2005)) las componentes del tensor de curvaturas se definen constantes en cada elemento y sus valores se calculan como la integral promedio sobre cada elemento

$$\bar{\kappa}_{\alpha\beta} = \frac{-1}{^{o}A} \int_{^{o}A} \varphi_{'\alpha\beta} \cdot \mathbf{t} \ d^{o}A \tag{4}$$

expresión que, integrada por partes, resulta (t es constante a los fines de la integral y se evalúa en el centro del elemento)

$$\bar{\kappa}_{\alpha\beta} = \frac{-1}{{}^{o}A} \int_{{}^{o}\Gamma} n_{\beta} \, \varphi_{\prime\alpha} \, d \, {}^{o}\Gamma \, \cdot \mathbf{t}^{0} \tag{5}$$

donde ${}^{o}\Gamma$ es el contorno del elemento con normal saliente n sobre el plano tangente, definida en la configuración original con componentes n_{β} sobre el sistema cartesiano local.

La integral de la expresión (5) sobre el contorno se evalúa numéricamente con un punto de integración a la mitad de cada lado

$$\begin{bmatrix} \bar{\kappa}_{11} \\ \bar{\kappa}_{22} \\ 2\bar{\kappa}_{12} \end{bmatrix} = \frac{-1}{^{o}A} \sum_{k=1}^{4} l^{k} \begin{bmatrix} n_{1} & 0 \\ 0 & n_{2} \\ n_{2} & n_{1} \end{bmatrix}^{k} \begin{bmatrix} \varphi_{\prime_{1}} \cdot \mathbf{t}^{0} \\ \varphi_{\prime_{2}} \cdot \mathbf{t}^{0} \end{bmatrix}^{k}$$
(6)

donde el índice en minúscula k = 1..4 (ver Figura 1.a) corresponde a cada uno de los puntos de integración utilizados a la mitad de cada lado y l^k es la longitud (original) del lado. La continuidad C^1 de la formulación débil, requiere de la continuidad del gradiente $\varphi_{\prime\alpha}$ entre elementos. En esta formulación la continuidad se establece en forma discreta a la mitad de cada lado, para lo cual en tales puntos el gradiente se define como el promedio entre el gradiente evaluado con la geometría del elemento principal M y el evaluado con la geometría del elemento K adyacente al lado k (cuando es necesario precisar el elemento correspondiente se indica entre paréntesis en la notación)

$$\left[\boldsymbol{\varphi}_{\prime\alpha}\right]^{k} = \frac{1}{2} \left[\boldsymbol{\varphi}_{\prime\alpha}^{(M)} + \boldsymbol{\varphi}_{\prime\alpha}^{(K)}\right]^{k} = \frac{1}{2} \left[\boldsymbol{\varphi}_{\prime\alpha}^{k(M)} + \boldsymbol{\varphi}_{\prime\alpha}^{k(K)}\right]$$
(7)

Notar que la continuidad del gradiente tangente al lado φ_{s} está asegurada por la interpolación isoparamétrica y que sólo el gradiente normal al lado φ_{n} es el que se promedia.

La expresión de las componentes del tensor de curvatura resulta entonces

$$\begin{bmatrix} \bar{\kappa}_{11} \\ \bar{\kappa}_{22} \\ 2\bar{\kappa}_{12} \end{bmatrix} = \frac{-1}{2 \circ A} \sum_{k=1}^{4} l^{k} \begin{bmatrix} n_{1} & 0 \\ 0 & n_{2} \\ n_{2} & n_{1} \end{bmatrix}^{k} \begin{bmatrix} \left(\boldsymbol{\varphi}_{\prime_{1}}^{(M)} + \boldsymbol{\varphi}_{\prime_{1}}^{(K)} \right) \cdot \mathbf{t}^{0} \\ \left(\boldsymbol{\varphi}_{\prime_{2}}^{(M)} + \boldsymbol{\varphi}_{\prime_{2}}^{(K)} \right) \cdot \mathbf{t}^{0} \end{bmatrix}^{k}$$
(8)

La definición de la curvatura utilizando el promedio de los gradientes en los lados permite observar que pueden existir configuraciones geométricas con una variación alternada de la curvatura (una sinusoide de semionda igual a la longidud del elemento) que conducen a un valor nulo de la curvatura promedio. Lo cual implica que pueden aparecer configuraciones deformadas sin energía asociada (modo flexional de deformación espurio). Estrictamente este modo sólo puede aparecer en superficies planas, aunque puede ocurrir con baja energía en superficies curvas. Para mantener un sólo punto de integración en el elemento (curvatura constante) es necesario entonces realizar alguna estabilización de este modo flexional. Recientemente Flores y Oñate (Flores y Oñate (2006a)) han desarrollado un elemento de viga/lámina bidimensional sin rotaciones que utiliza una aproximación lineal de la curvatura κ_s entre los dos nudos del elemento. Allí aparece el mismo problema si se utiliza un único punto de integración, lo cual ha sido resuelto reescribiendo la curvatura como el valor obtenido en el punto de integración más una componente de estabilización. Esta última componente no es otra cosa que la diferencia entre las curvaturas evaluadas en los nudos.

Para el planteo de la forma débil de las ecuaciones de equilibrio se requiere evaluar la variación de las componentes del tensor de curvaturas, ésta resulta:

De aquí la variación de las curvaturas puede finalmente escribirse como

$$\delta \bar{\kappa}_{\alpha\beta} = \frac{-1}{2A} \sum_{k=1}^{4} l^{k} \left\{ \sum_{I=1}^{4} \left[n_{\alpha} N_{\prime\beta}^{I} + n_{\beta} N_{\prime\alpha}^{I} \right] \delta \mathbf{u}^{I} \cdot \mathbf{t}^{0} + \sum_{J=1}^{4} \left[n_{\alpha} N_{\prime\beta}^{J(K)} + n_{\beta} N_{\prime\alpha}^{J(K)} \right] \delta \mathbf{u}^{J(K)} \cdot \mathbf{t}^{0} \right\}^{k} = \mathbf{B}_{b} \, \delta \mathbf{u}^{p} \tag{9}$$

donde $N^{J(K)}$ es la función de forma del nudo local J en el elemento adyacente K (análogamente para $\delta \mathbf{u}^{J(K)}$) y $\delta \mathbf{u}^p$ agrupa a las variaciones de los desplazamientos de los nudos de toda la parcela (12 nudos y 36 grados de libertad).

Para el planteo de la estabilización flexional, de la misma forma en que se dividen los vectores $\mathbf{h}_{\alpha\beta}$, puede dividirse la matriz \mathbf{B}_b en (9), $\mathbf{B}_b = \mathbf{B}_b^{(1)} + \mathbf{B}_b^{(2)}$ lo cual permite definir la correspondiente matriz para estabilización $\mathbf{B}_b^S = \mathbf{B}_b^{(2)} - \mathbf{B}_b^{(1)}$ lo que muestra que el esfuerzo numérico para la estabilización flexional no será significativo.

4. FORMULACIÓN EXTENDIDA DEL BSQ PARA SUPERFICIES NO SUAVES

4.1. Evaluación de las curvaturas

Si las curvaturas son definidas en términos del sistema local al contorno (n, s) se tiene

$$\begin{bmatrix} \bar{\kappa}_{11} \\ \bar{\kappa}_{22} \\ 2\bar{\kappa}_{12} \end{bmatrix} = \frac{-1}{2^{o}A} \sum_{k=1}^{4} l^{k} \begin{bmatrix} n_{1}^{2} & -n_{1}n_{2} \\ n_{2}^{2} & n_{1}n_{2} \\ 2n_{1}n_{2} & n_{1}^{2} - n_{2}^{2} \end{bmatrix}^{k} \begin{bmatrix} \left(\varphi_{\prime_{n}}^{(M)} + \varphi_{\prime_{n}}^{(K)} \right)^{k} \cdot \mathbf{t}^{0(M)} \\ 2\varphi_{\prime_{s}}^{k(M)} \cdot \mathbf{t}^{0(M)} \end{bmatrix}$$
(10)

Notar que en general $\varphi_{i_n}^{k(M)} \cdot \mathbf{t}^{0(M)} << 1$ para cuadriláteros no muy distorsionados, en tanto que $\varphi_{i_s}^{k(M)} = \varphi_{i_s}^{k(K)}$ debido a la continuidad de la superficie media. La proyección del gradiente normal al contorno en el elemento adyacente sobre la normal al

La proyección del gradiente normal al contorno en el elemento adyacente sobre la normal al elemento $\varphi_{r_n}^{k(K)} \cdot \mathbf{t}^{0(M)}$ puede interpretarse como el seno del ángulo entre las direcciones tangente al elemento $\varphi_{n_k}^{0(M)}$ en el centro y la dirección tangente al elemento vecino sobre el lado $\varphi_n^{k(K)}$. Esta interpretación alternativa es válida para ángulos pequeños. De hecho, la expresión (10) expresa la curvatura para el caso de superficies suaves. Sin embargo, estamos interesados en expresar el campo de curvatura para el caso donde exista un quiebre o ramificación, donde el ángulo indicado puede ser muy distinto del recto. Luego, resulta necesario modificar la definición de la expresión (10), utilizando efectivamente el ángulo indicado y no su seno.

Esta modificación afecta únicamente al término asociado con el gradiente normal $\varphi_{i_n}^{k(K)}$. $\mathbf{t}^{0(M)}$, para ello proponemos reescribir esta proyección como la suma

$$\boldsymbol{\varphi}_{,n}^{k(K)} \cdot \mathbf{t}^{0(M)} = \boldsymbol{\varphi}_{\prime n}^{k(M)} \cdot \mathbf{t}^{0(M)} + \lambda_n^{k(K)} \sin\left(\gamma^k\right)$$
$$\cong \boldsymbol{\varphi}_{\prime n}^{k(M)} \cdot \mathbf{t}^{0(M)} + 2\lambda_n^{k(K)} \gamma^k$$
(11)

donde $2\gamma^k$ es el ángulo entre los vectores normales al lado en cada elemento

$$\gamma^k = rac{1}{2} \mathrm{ang}\left(\mathbf{n}_k^{(M)}, \mathbf{n}^{(K)}
ight)$$

Reemplazando en (10), se tiene un nueva aproximación numérica de la curvatura

$$\begin{bmatrix} \bar{\kappa}_{11} \\ \bar{\kappa}_{22} \\ 2\bar{\kappa}_{12} \end{bmatrix} = \frac{-1}{^{o}A} \sum_{k=1}^{4} l^{k} \left\{ \begin{bmatrix} n_{1}^{2} & -n_{1}n_{2} \\ n_{2}^{2} & n_{1}n_{2} \\ 2n_{1}n_{2} & n_{1}^{2} - n_{2}^{2} \end{bmatrix}^{k} \begin{bmatrix} \varphi_{\prime_{n}}^{k(M)} \cdot \mathbf{t}^{0(M)} \\ \varphi_{\prime_{s}}^{k(M)} \cdot \mathbf{t}^{0(M)} \end{bmatrix} + \begin{bmatrix} n_{1}^{2} \\ n_{2}^{2} \\ 2n_{1}n_{2} \end{bmatrix}^{k} \lambda_{n}^{k(M)} \gamma^{k} \right\}$$
(12)

La estabilización del modo flexional se logra "penalizando" la semidiferencia entre las curvaturas nodales. Una posible solución es definir la curvatura de estabilización flexional $\bar{\kappa}_{\alpha\beta}^{(S)}$ (ver Flores y Estrada (2007)) como

$$\bar{\boldsymbol{\kappa}}_{\alpha\beta}^{(S)} = \bar{\boldsymbol{\kappa}}_{\alpha\beta}^{(1)} - \bar{\boldsymbol{\kappa}}_{\alpha\beta}^{(2)} \tag{13}$$

De la misma forma que se dividen los vectores $\bar{\kappa}_{\alpha\beta}$ se divide la matriz B que relaciona incremento de desplazamientos con incrementos de curvaturas

$$\mathbf{B} = \mathbf{B^{(0)}} + \mathbf{B}^{(1)} + \mathbf{B}^{(2)}$$

lo cual permite definir la matriz

$$B^{S} = B^{(2)} - B^{(1)}$$

lo cual implica que el esfuerzo numérico para la estabilización no es significativo.

4.2. Tratamientos de quiebres

En este caso se busca establecer cómo formular con el BSQ los casos donde hay una discontinuidad marcada en la normal (quiebre o pliegue) en la superficie original. El tratamiento del quiebre debe tratarse en forma localizada en los puntos medio de cada lado del elemento principal a los efectos de definir los sistemas de referencia. Las dirección normal al lado del elemento adyacente se define a partir del lado s^k y la normal ^ot^{k(K)} correspondiente. Supongamos entonces que en la configuración original exista un ángulo no nulo ^o ϕ^k entre la normal del elemento principal ^on^{k(M)} y la normal entrante al lado del elemento vecino ^on^(K). En los puntos medios del lado correspondiente al elemento adyacente se calcula el plano tangente (^o $\varphi_{\eta_1}^{k(K)}$, ^o $\varphi_{\eta_2}^{k(K)}$) y su normal ^ot^{k(K)}. A cada lado del elemento vecino, sobre el lado común, es posible definir un triedo local con: la normal ^ot^{k(K)}, el lado común ^os y la normal al lado en el plano del elemento ^on^{k(K)} = ^os × ^ot^{k(K)}. Notar que ^os = s^{k(M)} y s^{k(K)} están a lo largo de la misma línea pero en sentido contrario. Donde s^{k(K)} es el lado compartido con el elemento adyacente.

Luego es posible definir el ángulo que forman la normal al elemento principal ${}^{o}\mathbf{n}^{k(M)}$ y la normal del elemento adyacente ${}^{o}\mathbf{n}^{k(K)}$ obtenida previamente en el triedo local al lado, como

$$\sin^{o} \phi^{k} = {}^{o} \mathbf{n}^{k(M)} \cdot {}^{o} \mathbf{n}^{k(K)}$$
(14)

$$\cos^{o} \phi^{k} = {}^{o} \mathbf{n}^{k(M)} \cdot {}^{o} \mathbf{t}^{k(K)}$$
(15)

donde el ángulo ${}^{o}\phi^{k}$ es medido alrededor del lado común ${}^{o}s$ en sentido horario desde ${}^{o}\mathbf{n}^{k(M)}$ hasta ${}^{o}\mathbf{n}^{k(K)}$ (Figura 2).

En la configuración deformada los vectores $\mathbf{n}^{k(M)}$ y $\mathbf{n}^{k(K)}$ ya no formarán un ángulo ${}^{o}\phi$, sino ϕ en la posición que corresponda. Esto último representa un cambio $\Delta \phi^{k}$ respecto a la configuración original. Dicho cambio de ángulo que experimenta el elemento en cada borde debe garantizar que la sección normal de cada quadrilátero en los lados rote con el lado en cuestión, asegurando de esa manera la continuidad de la lámina. Para que las normales $\mathbf{n}^{k(M)}$ y $\mathbf{n}^{k(K)}$ mantengan el ángulo original ${}^{o}\phi$ puede asociarse a cada elemento una rotación γ relativa a la rotación de la arista s, con la condición

$$\Delta \phi^k = \gamma^{k(M)} + \gamma^{k(K)} \tag{16}$$

Figura 2: Ángulos entre dos elementos

donde $\gamma^{k()}$ son las rotaciones relativas de las normales $\mathbf{n}^{k()}$ y cuyo valores interesan para la obtención del campo de curvaturas. La rotación relativa del elemento adyacente se define como

$$\gamma^{k(K)} = \frac{R^{k(M)}}{R_k^{k(M)} + R^{k(K)}} \Delta \phi^k = r^{k(K)} \Delta \phi^k$$
(17)

Introduciendo la definición del ángulo de rotación $\gamma^{k(K)}$ en la expresión de la curvatura se tiene una nueva aproximación del campo de curvatura. De igual manera para la estabilización flexional $\bar{\kappa}_{\alpha\beta}^{(S)}$ en (13)

Para evaluar las variaciones de las componentes del tensor de curvaturas debe calcularse la variación de los dos términos de la expresión (12). Concentrándonos en el segundo término, se obtiene

$$\delta\gamma^{k(K)} = r^{k(K)} \left(\frac{1}{\lambda_n^{k(M)}} \mathbf{t}^{k(M)} \cdot \delta\varphi_{\prime_n}^{k(M)} + \frac{1}{\lambda_n^{k(K)}} \mathbf{t}^{k(K)} \cdot \delta\varphi_{\prime_n}^{k(K)} \right)$$
(18)

donde $\delta \varphi_{i_n}^{k()}$ es la variación del gradiente normal al lado.

4.3. Tratamiento de ramificaciones de láminas

El caso anterior, cuando dos elementos forman una superficie quebrada es un caso particular de ramificación. En otras palabras, un caso general tendremos n elementos concurriendo a una misma arista s. Con motivos de explicar el tratamiento de cáscaras ramificadas supongamos que el lado intersección como el primer lado de cada uno de los elementos que se intersectan y que la orientación del lado sea la misma para todos. Denominemos por I y J a los nudos que definen el lado y que los restantes nudos de los (K = 1, ..., n) cuadriláteros sean los nudos k y l. En la configuración original, en el punto medio del lado común o s se calcula el plano tangente $(^{o}\varphi_{\eta_{1}}^{(K)}, ^{o}\varphi_{\eta_{2}}^{(K)})$ de cada elemento y su normal $^{o}t^{(K)}$. Luego se define para cada elemento un triedo local con: la normal $^{o}t^{(K)}$, el lado común o s y la normal al lado en el plano del elemento $^{o}n^{(K)} = ^{o}s \times ^{o}t^{(K)}$. Luego la normal saliente de cada elemento permite definir (k = 1, ..., n-1) ángulos independientes entre $^{o}n^{(K)}$ y $^{o}n^{(K+1)}$, los cuales se define en la configuración original como

$$\sin^{o} \phi^{k} = -{}^{o} \mathbf{n}^{(K)} \cdot {}^{o} \mathbf{n}^{(K+1)}$$
(19)

$$\cos^{o} \phi^{k} = {}^{o} \mathbf{n}^{(K+1)} \cdot {}^{o} \mathbf{t}^{(K)}$$
(20)

En la configuración deformada, a partir de la interpolación bilineal de la geometría pueden evaluarse los gradientes ($\varphi_{\eta_1}^{(K)}, \varphi_{\eta_2}^{(K)}$), es decir los planos tangentes sobre el lado común s que se completa con la normal a cada lado y con ellos los nuevos ángulos ϕ^k que representa un cambio $\Delta \phi^k$ respecto a la configuración original.

La rotación del lado s en si mismo se define como el promedio ponderado

$$\bar{\beta} = \frac{1}{\sum_{L=1}^{n} R^{(L)}} \sum_{K=1}^{n} R^{(K)} \beta^{(K)} = \sum_{K=1}^{n} r^{(K)} \beta^{(k)}$$
(21)

Con lo cual la rotación relativa $\gamma^{(K)}$ del elemento K respecto del lado s se define como la diferencia entre el ángulo rotado por la arista $\bar{\beta}$ y el ángulo rotado por el elemento $\beta^{(K)}$

$$\gamma^{(K)} = \bar{\beta} - \beta^{(K)} \tag{22}$$

Luego, la definición de $\gamma^{(K)}$ permite completar la evaluación de la curvatura en (12) para cada lado del elemento en cuestión. De igual manera se procede para el tratamiento del vector curvatura de estabilización $\bar{\kappa}_{\alpha\beta}^{(S)}$ (13).

Para evaluar las variaciones de la curvatura debe calcularse la variación de la componente del gradiente normal al lado sobre la normal al elemento, luego

$$\delta\gamma^{(K)} = \left[\mathbf{t}^{(K)} \cdot \delta\varphi_{\prime n}^{(K)} - \lambda_{,n}^{(K)} \sum_{M=1}^{n} r^{(M)} \frac{1}{\lambda_{n}^{(M)}} \mathbf{t}^{(M)} \cdot \delta\varphi_{\prime n}^{(M)}\right] + \gamma^{(K)} \delta\lambda_{n}^{(K)}$$
(23)

donde $\delta \varphi_{,n}^{()}$ son las variaciones de los gradientes normales calculados sobre el plano tangente a cada cuadrilátero.

Finalmnte la forma de $\delta \gamma^{(K)}$ sobre cada uno de los lados dependerá de si el lado es parte de una única superficie (suave o no) (18) o corresponde a una línea de ramificación (23).

5. EVALUACIÓN DE LOS ESFUERZOS MEMBRANALES

Las características especiales del elemento de lámina desarrollado requieren la evaluación del gradiente a la mitad de cada lado a los fines de calcular la curvatura. Resulta ventajoso entonces usar esta información para calcular la primera forma fundamental en el centro del elemento y desarrollar el esquema de estabilización membranal. A partir del gradiente de la deformación evaluado a la mitad de cada lado k en la superficie media se tienen las componentes en el plano del tensor derecho de Cauchy-Green C

$$a_{\alpha\beta}^{k} = \boldsymbol{\varphi}_{\prime\alpha}^{k} \cdot \boldsymbol{\varphi}_{\prime\beta}^{k} \tag{24}$$

Se propone definir el tensor métrico, a utilizar en el punto de integración en el centro del elemento, como un promedio ponderado de los tensores métricos evaluados sobre cada lado. En la referencia (Flores y Estrada (2007)) se realiza una evaluación detalladade esta aproximación. Las componentes del tensor de deformaciones de Green-Lagrange sobre la superficie media en el centro del elemento pueden escribirse

$$\bar{\varepsilon}_{\alpha\beta} = \frac{1}{2} \left(\bar{a}_{\alpha\beta} - \delta_{\alpha\beta} \right) \tag{25}$$

 $\cos \delta_{\alpha\beta}$ la delta de Kronecker.

En tanto que la variación de estas deformaciones, necesarias para el planteo de la forma débil de las condiciones de equilibrio, resulta:

$$\delta \bar{\varepsilon}_{\alpha\beta} = \frac{1}{{}^{o}A} \sum_{k=1}^{4} J_k \mathbf{B}_m^k \delta \mathbf{u}^e = \bar{\mathbf{B}}_m \, \delta \mathbf{u}^e \tag{26}$$

donde \mathbf{B}_m^k es la habitual matriz que relaciona para cada punto k la variación de las deformaciones de Green-Lagrange con la variación de los desplazamientos de la superficie media y permite calcular la matriz $\bar{\mathbf{B}}_m$ correspondiente a la aproximación en deformaciones impuestas que relaciona deformaciones virtuales con desplazamientos virtuales. El vector $\delta \mathbf{u}^e$ agrupa ahora sólo a los cuatro nudos del elemento.

A los efectos de controlar la aparición de los modos espurios de deformación (*hourglass*), se definen deformaciones de Green-Lagrange de estabilización como la diferencia de las componetes cruzadas del tensor métrico calculado a la mitad de cada lado y el promedio ponderado

$$\varepsilon_{12}^{kS} = \frac{1}{2} \left(a_{12}^k - \bar{a}_{12} \right) \tag{27}$$

La variación de esta deformación resulta

$$\delta\varepsilon_{12}^{kS} = \left(N_{\prime 1}^{I}\boldsymbol{\varphi}_{\prime 2} + N_{\prime 2}^{I}\boldsymbol{\varphi}_{\prime 1}\right)^{k} \cdot \delta\mathbf{u}^{I} - \frac{1}{^{o}A}\sum_{i=1}^{4}J_{i}\left(N_{\prime 1}^{I}\cdot\boldsymbol{\varphi}_{\prime 2} + N_{\prime 2}^{I}\cdot\boldsymbol{\varphi}_{\prime 1}^{I}\right)^{i} \cdot \delta\mathbf{u}^{I}$$
(28)

$$= \mathbf{B}_{m}^{kS} \,\delta \mathbf{u}^{e} = \left[\mathbf{B}_{m}^{k} - \bar{\mathbf{B}}_{m}\right] \delta \mathbf{u}^{e} \tag{29}$$

donde puede observarse que \mathbf{B}_m^{kS} es la diferencia $\mathbf{B}_m^k - \bar{\mathbf{B}}_m$ por lo cual el esfuerzo adicional para la estabilización membranal también es mínimo.

6. EVALUACIÓN DE FUERZAS RESIDUALES

Las fuerzas nodales equivalentes $\mathbf{r}(\mathbf{u})$ se obtienen de la expresión del trabajo virtual interno sobre el volumen inicial ${}^{o}V$

$$\delta \mathbf{u}^{T} \mathbf{r} \left(\mathbf{u} \right) = \int_{o_{V}} \frac{1}{2} \delta \mathbf{C} : \mathbf{S} \ d^{o} V$$
(30)

donde S el el segundo tensor de Piola-Kirchhoff y el tensor derecho de Cauchy-Green C puede aproximarse para puntos fuera de la superficie media como

$$\mathbf{C}\left(\xi_{3}\right) = \bar{\mathbf{a}} + 2\xi_{3}\bar{\boldsymbol{\kappa}}$$

$$C_{\alpha\beta}\left(\xi_{3}\right) = \bar{a}_{\alpha\beta} + 2\xi_{3}\bar{\kappa}_{\alpha\beta}$$
(31)

Definiendo los esfuerzos integrados en el espesor (con ^oh el espesor original)

$$\mathbf{N} = \int_{o_h} \mathbf{S} \, d\xi_3 \qquad \mathbf{M} = \int_{o_h} \mathbf{S} \, \boldsymbol{\lambda} \xi_3 \, d\xi_3 \tag{32}$$

la expresión (30), considerando un punto de integración, se simplifica a:

$$\delta \mathbf{u}^{pT} \mathbf{r}^{0} \left(\mathbf{u} \right) = {}^{o} A \left(\delta \bar{\boldsymbol{\varepsilon}}^{T} \mathbf{N} + \delta \bar{\boldsymbol{\kappa}}^{T} \mathbf{M} \right)$$
(33)

Las fuerzas de estabilización membranal resultan

$$N_{12}^{kS} = J_k \, \left(f_s^{ep} G \right) \varepsilon_{12}^{kS} \tag{34}$$

donde G es el módulo de corte y f_s^{ep} es un factor elasto-plástico que se define como

$$f_s^{ep} = \frac{\overline{\varepsilon}_{12}^e}{\overline{\varepsilon}_{12}} \qquad \overline{\varepsilon}_{12} = \overline{\varepsilon}_{12}^e + \overline{\varepsilon}_{12}^p \tag{35}$$

El factor f_s^{ep} se limita a los valores comprendido en el intervalo [1,0-0,01]. Nótese que un valor mayor a 1,0 puede suceder en un proceso de descarga.

En tanto que las fuerzas nodales equivalentes resultan de la suma

$$\delta \mathbf{u}^{eT} \mathbf{r}_m^S = \sum_{k=1}^4 \delta \varepsilon_{12}^{kS} N_{12}^{kS}$$
(36)

Recordando que $\sum N_{12}^{kS} = 0$, las fuerzas nodales debidas a la estabilización membranal resultan finalmente

$$\delta \mathbf{u}^{eT} \mathbf{r}_m^S = \delta \mathbf{u}^{eT} \sum_{k=1}^4 \left(\mathbf{B}_m^k \right)^T \mathbf{N}^{kS}$$
(37)

Para el control del modo flexional espurio, se definen los momentos estabilizantes como:

$$M_{\alpha\beta}^{S} = \beta_{s} \, \frac{E^{o}h^{3}}{12} \left[\left(\kappa_{\alpha\beta}^{S} - {}^{o}\kappa_{\alpha\beta}^{S} \right) + \Delta \kappa_{\alpha\beta}^{S} \right] \tag{38}$$

con E es el módulo de Young del material. Las fuerzas equivalentes asociadas resultan

$$\delta \mathbf{u}^{pT} \mathbf{r}_b^S = \frac{{}^o\!A}{3} \,\delta \kappa_{\alpha\beta}^S \,M_{\alpha\beta}^S \tag{39}$$

donde el factor 1/3 proviene de suponer una variación lineal de la curvatura normal estabilizante (nula en el centro del elemento).

7. EJEMPLOS NUMÉRICOS

En esta sección se analizan distintos ejemplos numéricos con motivos de mostrar las capacidades de los elementos cuadriláteros sin grados de libertad rotacional para el tratamiento de superficies suaves y quebradas. Los ejemplos numéricos se dividen básicamente en dos grupos. El primer grupo contempla los resultados obtenidos con el elemento denominado BBSQ (de su acrónimo en inglés, Branching Basic Shell Quadrilateral) para el tratamiento de superficies quebradas y ramificadas. Los resultados se comparan principalmente con el elemento S4R (incluye grados de libertad de rotación) presente en el código comercial ABAQUS (2003). El segundo grupo formado por los tres últimos ejemplos numéricos muestran los resultados obtenidos con el elemento BSQ (de su acrónimo en inglés *Basic Shell Quadrilateral*) desarrollado por los mismos autores (Flores y Estrada (2007)) para el tratamiento de superficies suaves, y se compara con los resultados obtenidos con la modificación realizada sobre la nueva forma de calcular las fuerzas de estabilización flexional (38) y memebranal.(34). Para distinguir los nuevos resultados obtenidos con la versión modificada se utiliza el nombre de BSQ1.

Para los esquemas de estabilización se ha utilizado (salvo indicado expresamente) los coeficientes $\alpha_s = 0.05$ y $\beta_s = 0.05$. Los elementos descriptos arriba han sido implementado en un código implícito desarrollado por el segundo autor y en el código STAMPACK (2004) con integración explícita de las ecuaciones de movimiento.

7.1. Ejemplos numéricos del BBSQ

7.1.1. Puente en cajón recto

En este ejemplo se estudia el comportamiento de un puente recto en cajón. En la Figura 3 se muestra la sección transversal y las propiedades del material. El puente tiene una longitud total de 40 m y los extremos se suponen restringidos todos los desplazamientos en el plano de la sección y libres los desplazamientos longitudinales.

El puente ha sido sometido a una carga puntual P = 1000 kN alternativamente en los puntos A (borde) y C (centro). Se discretizó la mitad de la luz con 20 elementos, en tanto que en la sección transversal se han incluido 30 elementos. A los fines comparativos se muestran resultados obtenidos con el programa ABAQUS (2003) usando elementos de láminas S4R (cuadriláteros de cuatro nudos) sobre las mismas discretizaciones utilizadas para el presente elemento.

En la Figura 4a se presentan los desplazamientos verticales de las superficies superior e inferior de la sección central cuando la carga se aplica en el punto central C. En la Figura 4b los desplazamientos de las superficies superior e inferiror cuando la carga se aplica en el punto A. La comparación con el elemento S4R de ABAQUS (2003) muestra idéntico patrón de desplazamiento y que el presente elemento es ligeramente más flexible.

Figura 3: Puente recto en cajón bajo carga puntual. Geometría de la sección tranversal. E = 25GPa, v = 15, L = 40m.

Figura 4: Puente recto en cajon bajo carga puntual. Desplazamiento vertical de la seccion central. (a) carga en el punto C (b) carga en el punto A.

7.1.2. Puente curvo de sección celular

En este ejemplo se estudia el comportamiento de un puente celular simplemente apoyado en los extremos (se restrigen los desplazamientos en el plano de la sección). La Figura 5a muestra la sección transversal y las propiedades del material. El puente se extiende sobre un ángulo de un radián, el radio del puente es de 30, 1 m y en los extremos se suponen restringidos todos los desplazamientos en el plano de la sección y libres los desplazamientos longitudinales.

El puente ha sido sometido a una carga puntual P = 1000kN en el centro. Se discretizó la mitad de la luz con 10 elementos, en tanto que en la sección transversal se han incluido 34 elementos. Se ha comprobado con resultados obtenidos con el programa ABAQUS (2003) usando elementos de láminas S4R (cuadriláteros de cuatro nudos) sobre las mismas discretizaciones usadas para el presente elemento.

En la Figura 5b se muestra la deformada de la sección central para las dos mallas; los resultados obtenidos son casi idénticos a los obtenidos con el elemento S4R.

Figura 5: Puente curvo celular bajo carga puntual: (a) geometría de la sección transversal. E = 25GPa, v = 0.15, R = 30.1m, ángulo= 1rad; (b) deformada de la sección central.

7.1.3. Pandeo de una columna con auto contacto

Este ejemplo ilustra el pandeo de una columna comprimida entre dos platos rígidos. La columna tiene sección en forma de cruz. Los extremos de la columna están unidos a dos platos rígidos. Uno de los platos está fijo en el espacio y el otro se traslada y rota durante 7mseg para pandear la columna. La columna está hecha de acero con un módulo de elasticidad de 200GPa y un coeficiente de Poisson 0,3. La densidad es de $7850kg/m^3$. El comportamiento elastoplástico está gobernado por la función de fluencia de von Mises con un valor límite inicial de $\sigma_o = 250MPa$ y endurecimiento isótropo lineal $\sigma'_y = 450MPa$. El plato móvil se mueve verticalmente a una velocidad uniforme de 50m/s y rota alrededor del eje y a una velocidad uniforme de 78,54rad/s (ángulo final $31,5^o$). En la Figura 6a se ve la geometría original y la malla utilizada de 400 elementos. En las Figuras 6b y c se ven las configuraciones deformadas a la mitad y al final del proceso. Este ejemplo ha sido tomado del manual de ejemplos de ABAQUS; uno de los principales aspectos a considerar es el autocontacto de la lámina y con los platos. Las configuraciones obtenidas con el presente elemento y las obtenidas con el elemento S4R son muy similares. Para este ejemplo se utiliza un programa con integración explícita de las ecuaciones de movimiento.

Figura 6: Pandeo de una columna con sección en forma de cruz: (a) configuración inicial; (b) deformada para 3,5 mseg; (c) deformada para 7,0 mseg.

7.2. Ejemplos numéricos del BSQ

7.2.1. Domo esférico

Un ejemplo ampliamente utilizado para evaluar la convergencia de elementos de lámina con pequeñas deformaciones elasto-plásticas es un domo esférico empotrado, sometido a una carga escalón. La carga es una presión uniforme de 600 psi y se aplica en la parte superior del domo. Para el análisis se han utilizados dos mallas de 75 y 243 elementos, de las cuales se muestra la mas gruesa en la Figura 7 donde además de indican los parámetros geométrico y del material. Se considera un cuarto del domo por simetría y se realizan separadamente un análisis elástico y un análisis elasto plástico. En la Figura 8 se grafica el desplazamiento vertical del punto central del domo en función del tiempo para los dos casos de material elástico. Los resultados se comparan entre el elemento BSQ, la versión modificadad BSQ1 y con los resultados numéricos obtenidos con el elemento S4R usando una malla de **243** elementos. Puede notarse como se logra un mejor acuerdo a medida que se refina la malla para ambas versiones.

Figura 7: Domo esférico bajo presión impulsiva. Parámetros geométricos y del material. Malla con 75 elementos.

Figura 8: Domo esférico bajo presión escalón: historia del desplazamiento vertical del punto central. (a) material elástico; (b)material elasto-plástico.

Recordar que el BSQ y BSQ1 solo tienen tres GDL por nudo (la malla de 243 elementos tiene un NGL de 465) en contraste con el elemento de lámina S4R que incluye seis grado de libertad por nudo por lo cual los resultados son satisfactorios.

7.2.2. Panel cilíndrico

En este caso se trata de un panel cilíndrico sometido a una velocidad inicial de $v_o = -5650in./seg.$ que simula el efecto de la detonación de un explosivo. El material se considera elasto plástico perfecto en régimen de grande deformaciones. El panel se supone empotrado a lo largo de todos los bordes y por simetría se modela la mitad del cilindro. Se utilizan dos densidades de malla de 6×16 y 18×48 elementos. En la Figura 9 puede obervarse la configuración deformada para cada una de las mallas correspondientes al tiempo de 1 mseg.

Figura 9: Panel cilíndrico bajo carga impulsiva. Malla deformada para el tiempo t = 1ms.

En la Figura 10 se ha graficado el desplazamiento vertical en función del tiempo para dos puntos ubicados sobre el eje de simetría a la distancia de y = 6,28in.e y = 9,42in. respectivamente y se compara con los datos experimentales. La nueva versión BSQ1 tiene un mejor acuerdo que la versión anterior del BSQ

Figura 10: Panel cilíndrico bajo carga impulsiva. Desplazamiento vertical versus tiempo de dos puntos a lo largo de la línea de simetría.

	$\alpha_s = 0.05$	$\beta_s = 0.05$
Elemento/malla	y = 6.28 in.	y = 9.42 in.
$BSQ1\ 18\times48$	-1.260	-0.657
BSQ 18×48	-1.309	-0.690
Stolarski 16 × 32	-1.183	-0.530
EBST 18×48	-1.171	-0.584
Experimental	-1.280	-0.700

Tabla 1: Panel cilíndrico bajo carga impulsiva. Desplazamientos verticales (pulgadas)

En la Tabla 1 se muestra el valor del desplazamiento vertical correspondiente al tiempo de análisis de t = 0.4ms para la malla fina. Se comparan con la solución numérica obtenida por Stolarski (Stolarski et al. (1984)) a través de un elemento de lámina triangular curvo y una malla de 16 × 32 y los resultados numéricos obtenidos por E. Oñate (Oñate y Flores (2005)) con un elemento triangular de lámina sin grado de libertad rotacional denominado EBST para una malla de 18×48 elementos. También se compara con resultados experimentales reportados en (Balmer y Witmer (1964)). Existe un buen acuerdo entre los valores obtenidos con el elemento BSQ y BSQ1 y los datos experimentales. Los resultados numéricos obtenidos con otros elementos muestran una mayor discrepancia con los datos experimentales.

7.2.3. Estampado de una lámina

Este último ejemplo corresponde al estampado de una lámina cuya forma final es la de un riel en forma de S. Este ejemplo fué propuesto en la reunión NUMISHEET'96 (NUMISHEET'96 (1996)). La simulación comprende dos partes, la primera es el estampado del riel S y la segunda el quitado de las herramientas y la recuperación elástica.

Figura 11: Estampado de un riel en forma de S. Deformación final de la lámina obtenida en la simulación.

Figura 12: Estampado de un riel en forma de S: (a) fuerza del punzón versus el avance del punzón; (b) coordenadas Z a lo largo de la línea B-G al final del estampado.

En la Figura 11 se muestra la geometría final y la malla de elementos utilizada. La malla usada tiene 3000 elementos cuadriláteros y 3111 nudos. Las herramientas son tratadas como rígidas y los detalles geométricos y el material pueden ser encontrado en la Referencia (NU-MISHEET'96 (1996)). El material es acero dulce (IF) con módulo de Young E = 2,06GPa y una relación de Poisson v = 0,3. Se utiliza la función de fluencia de Von Mises con endurecimiento isotrópo no lineal definido por $\sigma_y (e^p) = 545 (0,13 + e^p)^{0,267} [MPa]$. Se define una fricción uniforme de 0,15 para todas las herramientas. En la simulación se considera una fuerza del pisado de 10KN.

La estabilización flexional mostró tener influencia en el comportamiento numérico del estampado. La forma de calcular las fuerzas de estabilización flexional propuesta por el elemento original BSQ exige el uso de un fuerte amortiguamiento durante el proceso de quitado de las herramientas, asociado a un tiempo mayor de cálculo para alcanzar una respuesta quasi estática. Con la nueva forma de calcular la estabilización flexional (38) estos aspectos se mejoran notablemente.

En la Figura 12a se compara la fuerza del punzón durante el estampado obtenida con el elemento BSQ, BSQ1 y con los valores experimentales y dos promedios de simulaciones numéricas. En la Figura 12b se muestra la coordenada Z a lo largo de la línea B-G después de la recuperación elástica. Puede observarse que la superficie superior del riel no permanece plana sino que muestra ciertas arrugas. La comparación con los resultados experimentales muestra dispersiones similares a las obtenidas con otros resultados numéricos.

8. DISCUSIÓN

Se han presentado dos elementos cuadriláteros de lámina denominados BSQ y BBSQ sin grados de libertad rotacional basado en una formulación Lagrangeana total. El BSQ permite tratar superficies suaves y el BBSQ permite abordar problemas donde la geometría de la lámina es quebrada y ramificada Los elementos tienen únicamente grados de libertad traslacional y utilizan un único punto de integración en la superficie, que los hace simple y económico desde el punto computacional.

La utilización de un campo de curvatura constante, definida usando la geometría de los elementos adyacentes, permite en algunas casos la existencia de configuraciones geométricas deformadas sin energía asociada (modo espúreo flexional). El nuevo mecanismo de estabilización (artificial) propuesto, utilizando una componente que tenga en cuenta la velocidad del cambio de curvatura, ha dado buenos resultados y es poco sensible al coeficiente de estabilización utilizado en la mayoría de los problemas numéricos abordados.

Similarmente la utilización de un solo punto de integración para evaluar las deformaciones membranales permite la aparición de los bien conocidos modos de *hourglass*. En este caso se ha utilizado un mecanismo de estabilización físico aprovechando la información utilizada para el calculo de las curvaturas y se ha definido un tensor métrico promedio que enmarca a la formulación como de una aproximación en deformaciones impuestas. La utilización de un mecanismo de estabilización físico conduce a que los resultados sean marcadamente insensibles al coeficiente de estabilización utilizado. Además se ha logrado de manera sencilla incluir fuerzas de estabilización membranal que tengan en cuenta el comportamiento no lineal del material, evitando utilizar excesiva energía de estabilización en problemas con plasticidad.

El elemento BSQ tiene dos ventajas sobre el BBSQ. Es más simple de programar y es computacionalmente más económico. En tanto que el BBSQ es más estable numéricamente para abordar algunos problemas.

Se han obtenidos resultados muy satisfactorios en todos los ejemplos, usando una formulación implícita y explícita. Los elementos han mostrado buen comportamiento.

REFERENCIAS

- ABAQUS. Student Edition, version 6.4.2. Hibbit, Karlson and Sorensen Inc., Pawtucket, EE.UU., 2003. URL www.abaqus.com.
- H.A. Balmer y E.A. Witmer. *Theoretical experimental correlation of large dynamic and permanent deformation of impulsively loaded simple structures*. Air Force flight dynamic Lab. Rep. FDQ-TDR-64-108, 1964.
- T. Belytschko y I. Leviathan. Physical stabilisation of the 4-node shell element with one point quadrature. *Computer Methods in Applied Mechanics and Engineering*, 113:321–350, 1994a.
- T. Belytschko y I. Leviathan. Projection schemes for one-point quadrature shell elements. *Computer Methods in Applied Mechanics and Engineering*, 115:277–286, 1994b.
- T. Belytschko, B.L. Wong, y H.Y. Chiang. Advances in one-point cuadrature shell elements. *Computer Methods in Applied Mechanics and Engineering*, 96:93–107, 1992.
- M. Brunet y F. Sabourin. A simplified triangular shell element with a necking criterion for 3-d sheet-forming analysis. *Journal of Materials Processing Technology*, 50:238–251, 1995.
- M. Brunet y F. Sabourin. Analysis of a rotation-free shell element. International Journal for

Numerical Methods in Engineering, 66:1483–1510, 2006.

- F. Cirak y M. Ortiz. Subdivision surfaces: A new paradigm for thin-shell finite element analysis. *International Journal for Numerical Methods in Engineering*, 47:2039–2072, 2000.
- F. Cirak y M. Ortiz. Fully c1-conforming subdivision elements for finite deformations thin-shell analysis. *International Journal for Numerical Methods in Engineering*, 51:816–833, 2001.
- J.A. Cottrell, A. Reali, Y. Bazilevs, y Hughes T.J.R. Isogeometric analysis of structural vibrations. *International Journal for Numerical Methods in Engineering*, 195:5257–5296, 2006.
- C.F. Estrada y F.G. Flores. Avances en la formulación de elementos de lámina cuadrilátero sin grados de libertada rotacional. *Mecánica Computacional*, pages 1085–1110, 2008.
- F.G. Flores y C.F. Estrada. A rotation-free thin shell quadrilateral. *Computer Methods in Applied Mechanics and Engineering*, page in press, 2007.
- F.G. Flores y E. Oñate. A basic thin shell triangle with only translational dofs for large strain plasticity. *International Journal for Numerical Methods in Engineering*, 51:57–83, 2001.
- F.G. Flores y E. Oñate. Improvements in the membrane behaviour of the three node rotation-free bst shell triangle using an assumed strain approach. *Computer Methods in Applied Mechanics and Engineering*, 194:907–932, 2005.
- F.G. Flores y E. Oñate. Rotation-free finite element for the non-linear analisys of beam, frames and axisymetric shells. *Computer Methods in Applied Mechanics and Engineering*, 195: 5297–5315, 2006a.
- F.G. Flores y E. Oñate. A rotation-free shell triangle for the analysis of kinked and branching shells. *International Journal for Numerical Methods in Engineering*, 67:in press, 2006b.
- NUMISHEET'96. Third International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes. E.H. Lee, G.L. Kinzel, R.H. Wagoner (Eds.), Dearbon-Michigan, USA, 1996.
- E. Oñate, P. Cendoya, y J. Miquel. Nonlinear explicit dynamic analysis of shells using the bst rotation-free triangle. *Engineering Computations*, 19:662–706, 2002.
- E. Oñate y M. Cervera. Derivation of thin plate bending elements with one degree of freedom per node. *Engineering Computations*, pages 553–561, 1993.
- E. Oñate y F.G. Flores. Advances in the formulation of the rotation-free basic shell triangle. *Computer Methods in Applied Mechanics and Engineering*, 194:2406–2443, 2005.
- E. Oñate y F. Zárate. Rotation-free plate and shell triangles. *International Journal for Numerical Methods in Engineering*, 47:557–603, 2000.
- S. Reese. A large deformation solid-shell concept based on reduced integration with hourglass stabilization. *International Journal for Numerical Methods in Engineering*, 67:in press, 2006.
- J. Rojek y E. Oñate. Sheet springback analysis using a simple shell triangle with translational degrees of freedom only. *International Journal of Forming Processes*, 1:275–296, 1998.
- F. Sabourin y M. Brunet. Analysis of plates and shells with a simplified three-node triangular element. *Thin Walled Structures*, 21:206–223, 1993.
- STAMPACK. A General Finite Element System for Sheet Stamping and Forming Problems, v6.0.0. Quantech ATZ, Barcelona, España, 2004. URL www.quantech.es.
- H. Stolarski, T. Belytschko, y N. Carpenter. A simple triangular curved shell element. *Engineering Computations*, 1:210–218, 1984.
- O.C. Zienkiewicz y R.L. Taylor. *The finite element method. Vol II: Solid Mechanics.* Butterworth-heinemann, 2000.