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Abstract

This paper describes a procedure for the solution of problems in-
volving tensile cracking using the so-called smeared crack approach,
that is, standard finite elements with continuous displacement fields
and a standard local constitutive model with strain-softening. An
isotropic Rankine damage model is considered. The softening modu-
lus is adjusted according to the material fracture energy and the ele-
ment size. The resulting continuum and discrete mechanical problems
are analyzed and the question of predicting correctly the direction of
crack propagation is deemed as the main difficulty to be overcome
in the discrete problem. It is proposed to use a crack tracking tech-
nique to attain the desired stability and convergence properties of the
corresponding formulation. Numerical examples show that the result-
ing procedure is well-posed, stable and remarkably robust; the results
obtained do not seem to suffer from spurious mesh-size or mesh-bias
dependence.
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1 Introduction and Motivation
Structural failure due to catastrophic crack propagation in some building ma-
terials poses problems of design and analysis in many fields of engineering.
Geomaterials such as concrete and rocks fail mainly due to tensile straining,
and codes of practice in civil engineering address this feature extensively.
In aerospace engineering, where safety and over-design must be counterbal-
anced, the subject of tensile (and fatigue) cracking is of paramount impor-
tance. Tensile cracking is also of primary concern in advanced composite
materials, and in specific brittle materials like ceramics, glass and ice.
It was early discovered that cracks are present to some degree in all struc-

tures. They may be present as basic defects in the constituent materials, or
they may be induced by inadequate design or construction or during service
life. Therefore, it was very soon realized that means for assessing the stability
of such cracks were necessary.
For instance, Galileo Galilei [1], in the XVII century, observed that big

ships were proner to tensile cracking than smaller ships, because they were
more brittle. In 1921, A. A. Griffith [2], a British aeronautical engineer,
introduced the first fracture mechanics theory, from observations done during
his investigation on the fracture of glass sheets. For Griffith, a crack becomes
unstable when the elastic energy stored by the material around the tip of the
existing crack is greater than the energy necessary for extending the crack.
In 1959 and 1960, Barenblatt [3] and Dugdale [4] introduced the con-

cept of cohesive forces in the crack tip region, the first within the limits of
elasticity theory and the second assuming an elastic-perfectly plastic mate-
rial behaviour. These were the first attempts to bring closer the theories of
fracture mechanics (FM) and continuum mechanics (CM).
About the same time, the Finite Element Method (FEM) and digital

computers dashed into the engineering community as a gifted means for
quantifying solutions in structural and solid mechanics. Naturally, fracture
mechanicians implemented their FE methods, while continuum mechanicians
implemented theirs. This led to the consolidation of two different concepts of
the phenomenon of cracking: the discrete and the smeared crack approaches.
The discrete crack (DC) approach is usually based in the FM theory. This

means that the criteria for crack propagation and, eventually, the prediction
of the direction of propagation come directly from this theory, which is,
mostly, based on energy criteria. DC models conceive the individual cracks
as actual discontinuities in the topology of the FE mesh.
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Figure 1: Discrete and smeared crack models, without and with remeshing

One of the first records of the DC approach is due to Ngo and Scordelis
[5], who studied a simply supported reinforced concrete beam, although they
used a tensile stress criterion to extend the cracks. In the initial studies,
cracks were modelled by separation of nodal points initially occupying the
same spatial position. Therefore, the response was strongly mesh-dependent,
as cracks could only form along the element boundaries (Fig. 1a). The DC
approach was later refined so that new elements could be introduced whose
boundaries were along the spreading crack (Fig. 1b). This reduces the mesh
dependency of the approach, but then remeshing techniques are required
and the computing time increases. Also, it was recognized almost from the
beginning that standard FE were not appropriate to capture the singular
stress and strain fields that develop at the tip of the crack [6]; consequently,
special FE were developed (see reference [7]).
Recently, Belytschko and coworkers ([8], [9], [10]) have introduced the

concept of the extended finite element method (X-FEM). This approach al-
lows for crack propagation without remeshing, at the expense of tracking the
advance of the crack through the FE mesh and progressively enriching the
nodal degrees of freedom with new ones that represent both the displacement
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jumps across the crack and the developed singular field at the tip of the ad-
vancing crack (Fig. 1c, where the “enriched” nodes are marked). Refined
integration methods are required for the elements crossed by the crack. With
this and other recent developments (see [11] for a review) the need to develop
rather complex software, in which the FE model is tightly coupled with the
geometrical modeler, has been rather satisfactorily overcome.
On the other hand, the smeared crack (SC) approach is always based

in the CM theory, in the sense that the criteria for crack propagation and
the prediction of the direction of propagation come directly from this theory,
which is, mostly, based on failure criteria expressed in terms of stresses or
strains. In SCmodels, the cracked material is assumed to remain a continuum
and the mechanical properties (stiffness and strength) are modified to account
for the effect of cracking, according to the evolving states of strain and/or
stress. Therefore, remeshing is, in principle, unnecessary (Fig. 1d).
This implicit simplicity of the approach, proposed by Rashid in his 1968

historical paper [12], caught the attention of the engineering community im-
mediately and, more than 30 years later, many of today commercial FE codes
use this approach, with little refinement over the original concept. Smeared
crack models can be readily implemented in any nonlinear FE code, by simply
writing a routine for a new material constitutive model.
Unfortunately, a drawback of the SC approach was soon discovered: it

was realized in the 1970’s that if a smeared crack is only one element across,
the total energy dissipated in the cracking process is proportional to the size
(the volume) of the element. Thus, upon mesh refinement, for infinitesimally
small elements, the dissipated energy vanishes. This is unacceptable from
the physical point of view.
In 1976 Hillerborg et al. [13] formulated, in the context of FM, the “fic-

titious crack model” (an adaptation of the previously formulated cohesive
crack model, already adopted in nonlinear fracture mechanics) and showed
that the loss of cohesion in the forming crack should be related to the ex-
perimentally measurable fracture energy of the material. In 1983, Bazant
and Oh [14] proposed the “crack band model”, which is essentially identical
to Hillerborg’s, but developed in the context of CM and, therefore, easily
implemented in standard FE codes. These developments showed that, in the
context of FE models, the always controversial concept of strain softening
should not be considered as a characteristic of the material, as it is related
to the fracture energy of the material and the size of the FE crossed by the
smeared crack. This has to be considered as a mile-stone in the road to
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crack modelling because it was the first successful attempt to bring FM and
CM theories to a common standpoint. Today, most of the commercial FE
codes implement smeared models with strain softening related to the fracture
energy of the material and the element size.
But once the problem of mesh-size dependence was quite satisfactorily

overcome, a more difficult one was identifed. In the early 1990’s it was
widely recognized that FE solutions based on CM suffered from mesh-bias
dependence in such a strong manner that it could be ignored. Also, it was
noted that if the spatial discretization was designed in such way that an “ap-
propriate” path for the advancing crack was available, the solutions obtained
were satisfactory (see Fig. 1e). Again, remeshing was suggested as a partial
solution to this problem (see [15], [16]). In the last 15 years, a significant part
of the research effort in Computational Solid Mechanics has been devoted to
this problem, now termed Computational Failure Mechanics.
To propose, implement and use a computational failure model, set up

within the CM framework, three items are necessary: (i) a continuum model
that defines the variables and equations of the continuum BVP to be solved,
(ii) a constitutive (material) model for the cracked and non-cracked parts of
the domain, and (iii) a spatial discretization procedure to turn the contin-
uum differential equations into discrete algebraic equations. If the resulting
computational discrete model has a flaw, its origin must be sought in one
of the links of the chain. The established fact that “well-aligned” meshes
produce good results strongly suggests that the main flaw is in the spatial
discretization procedure.
However, this evidence has not been generally recognized and often solu-

tions have been sought by modifying either the continuum or the constitutive
models. In the last decade, many so-called micropolar ([17], [18]), non-local
([17], [19], [20], among others) and gradient-enhanced ([17], [21], [22], [23],
[24]) models have been proposed, modifying the standard continuum problem
to introduce an internal length that acts as a localization limiter. On one
hand, this effectively prevents the development of either strain or displace-
ment discontinuities. On the other hand, even if these strategies have proved
effective to some extent, they pose theoretical and computational difficulties,
not fully mastered at the present moment. Just to mention a serious one,
non-local models do not predict maximum stress values and, therefore, crack
initiation, at the tip of a sharp crack, but rather at a finite distance ahead
of the tip [25]; this is physically unrealistic. Along a different line, viscous-
regularized, strain-rate dependent, models (see [17], [24], [26]) do not solve
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the question either, as they also prevent true strain localization and are not
effective in the inviscid limit.
Alternatively, the so-called strong discontinuity approach ([27], [28], [29],

[30], [31]) represents an effort to tackle the discretization problem directly.
The concept of finite elements with embedded discontinuities, as it is also
referred to, is certainly appealing, as it does not really depart from the usual
continuum framework (its theoretical formulation is very similar to that of
contact problems). Interestingly enough, their application invariably needs
the use of discontinuity tracking algorithms ([30], [31], [32], [33]), in order
to establish which elements lie in the crack and need to be enriched (Fig.
1f, where the elements with embedded discontinuities are marked). This, as
the explicit control on the energy dissipated in the formation of the crack,
represents another link with the established tradition of fracture mechanics.
Also, in references ([34] and [35]) it is shown that mesh objective solutions,

convergent upon refinement and exhibiting highly localized shear bands (or
slip lines), can be obtained using standard elements and local J2-plasticity
and damage models. The key to obtain these satisfactory solutions is to use
(i) the mixed format of the balance equations (which include the appropriate
continuity equation) and (ii) a stabilization technique for the interpolation
fields of the primary variables (displacements and pressure).
We attempt to show in this paper that the difficulties encountered in

crack propagation problems are related neither to the format of the stan-
dard continuum equations nor to the local definition of the constitutive laws
considering softening. As a consequence, the objectives of this paper are
threefold: (a) to investigate the numerical difficulty that causes the mesh
bias encountered in discretized tensile localization problems, (b) to propose
a numerical procedure to overcome this, and (c) to assess the performance of
the proposed procedure by means of solving selected numerical examples.
The outline of the paper is as follows. In the next section an isotropic

scalar Rankine damage model is presented. The necessary adjustment of the
softening modulus according to the size of the elements inside the localization
band is discussed. Later, the strong and weak forms of the corresponding
continuum and discrete problems are presented and the stability of the re-
sulting equations is discussed. Then, the mesh bias dependence observed
when using this standard formulation are explained. Tracking of the crack
through the FE mesh is presented as a remedy to overcome this problem.
Finally, numerical examples are presented to assess the proposed procedure
and to show the attained benefits.
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2 Isotropic Rankine damage model

2.1 Constitutive Equation

The continuum damage mechanics theory is based on the definition of the
effective stress, which is introduced in connection with the hypothesis of
strain equivalence [36]: the strain associated with a damaged state under the
applied stress σ is equivalent to the strain associated with its undamaged state
under the effective stress σ̄. In the present work, the effective stresses σ can
be computed in terms of the total strain tensor ε, ε =∇su, where u are the
displacements, as

σ = C : ε (1)

whereC is the usual (fourth order) isotropic linear—elastic constitutive tensor,
and (:) denotes the double contraction.
The constitutive equation for the damage model is defined as:

σ = (1− d) σ = (1− d) C : ε (2)

where we have introduced one internal variable, d, the damage index, whose
definition and evolution is given below.
As our aim is to use a scalar damage model sensitive only to tensile

stresses contributions, a split of the effective stress tensor into tensile and
compressive components is needed. In order to identify contributions with
respect to each one of these independent effective stress tensors, (+) and (−)
indices will be used, referring to tensile and compressive entities, respectively.
In this work, the stress split is performed as ([37], [38]):

σ+ =
3

j=1

σj pj ⊗ pj and σ− = σ − σ+ (3)

where σj denotes the j—th principal stress value from tensor σ, pj represents
the unit vector associated with its respective principal direction and the
symbol ⊗ denotes the tensor product. The symbols · are the Macaulay
brackets ( x = x, if x ≥ 0, x = 0, if x < 0).

2.2 Characterization of Damage

In order to define concepts such as loading, unloading, or reloading of general
3D stress states, a scalar positive quantity, termed as equivalent stress, is
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defined. With such a definition, distinct 3D stress states can be mapped to a
single equivalent 1D tensile test, which makes their quantitative comparison
possible [39], [40].
In the present work, the equivalent stress will assume the following form:

τ = σ̄1 (4)

where σ̄1 is the largest principal effective stress. Eq. (4) can written as:

τ = σ+ : Λ : σ+
1/2

(5)

where the non-dimensional fourth order tensor Λ = p1 ⊗ p1 ⊗ p1 ⊗ p1 has
been introduced. The role of this tensor is to define the shape of the damage
bounding surfaces in a effective stress space, as it will be explained below.
With the above definition for the equivalent effective stress, the damage

criterion, Φ, is introduced as:

Φ (τ , r) = τ − r ≤ 0 (6)

Variable r is an internal stress-like variable representing the current damage
threshold, as its value controls the size of the (monotonically) expanding
damage surface. The initial value of the damage threshold is ro = σo, where
σo is the initial uniaxial damage stress.
Note that the damage criterion is defined in the effective stress space.

In fact, the shape of the damage criterion in this space is defined by tensor
Λ. As stated before, in this work we will use Λ = p1 ⊗ p1 ⊗ p1 ⊗ p1, which
corresponds to the well-known Rankine criterion, which is open for purely
compressive stress states. Figure 2a shows a schematic representation of this

damage criterion. An alternative choice Λ=
3

j=1

pj ⊗ pj ⊗ pj ⊗ pj represents
a Rankine-type of criterion rounded for biaxial and triaxial tensile states.
The expansion of the damage bounding surface for loading, unloading

and reloading conditions is controlled by the Kuhn-Tucker relations and the
damage consistency condition, which are

ṙ ≥ 0 Φ (τ , r) ≤ 0 ṙΦ (τ , r) = 0 (7a)

if Φ (τ , r) = 0 then ṙ Φ̇ (τ , r) = 0 (7b)

leading, in view of Eq. (6), to the loading condition

ṙ = τ̇ (8)
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This, in turn, leads to the explicit definition of the current values of the
internal variable r in the form

r = max { ro, max(τ )} (9)

Note that Eq. (9) allows to compute the current values for r in terms of the
current value of τ , which depends explicitly on the current total strains (see
Eqs. (1) and (4)).
Finally, the damage index d = d(r) is explicitly defined in terms of the

corresponding current value of the damage threshold, so that it is a monoton-
ically increasing function such that 0 ≤ d ≤ 1.
In this work, we will use the following functions:

• Linear softening:

d(r) =

⎧⎨⎩ (1 +HS) 1− ro
r

ro ≤ r ≤ ru = ro 1 +
1

HS
1 r ≥ ru

(10)

• Exponential softening:

d(r) = 1− ro
r
exp −2HS r − ro

ro
ro ≤ r (11)

(a) (b)

Figure 2: Rankine damage model: (a) damage surface, (b) softening functions
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where HS ≥ 0 is a constant.
It is also possible to express the damage laws in the form [41]:

d(r) = 1− q(r)
r

ro ≤ r (12)

where the function q = q(r) = (1− d(r))r is the stress-like softening function.
In this format, the softening laws can be rewritten as
• Linear softening:

q(r) =
ro −HS(r − ro) ro ≤ r ≤ ru

0 r ≥ ru (13)

• Exponential softening:

q(r) = ro exp −2HS r − ro
ro

ro ≤ r (14)

Figure 2b shows a schematic representation of both these functions.

2.3 Mechanical dissipation

The mechanical free energy term for the damage model is defined in the
form:

W = (1− d)W e(ε) = (1− d) 1

2
ε : C : ε ≥ 0 (15a)

Thus, the rate of mechanical dissipation can be expressed as

Ḋ = W e ḋ ≥ 0 (16)

provided that the damage index increases monotonically, ḋ ≥ 0.

2.4 Strain-softening and fracture energy release

Expressions (10) and (11) are able to reproduce the softening branch that
occurs in a 1D tensile test after the peak stress is reached, with the tensile
stress decreasing to the strain axis, asymptotically in the exponential case.
The finite area retained between the stress-strain curve and the strain axis
defines the available energy to be dissipated in the control volume during
the softening process. If the softening curve and, consequently, this area
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are considered as material properties, FE results necessarily exhibit lack of
objectivity, as the strains tend to localize in a band that is only one element
across, independently of the element size. Upon mesh refinement, as element
size tends to zero, no energy is dissipated in the failure process. Clearly, this
is physically unacceptable.
This can be remedied by modifying the softening law in such a way that

the energy dissipated over a completely degraded finite element be equal to a
given value, which depends on the fracture energy of the material and on the
element size [14]. In each element, the computational width of the fracture
zone is called the element characteristic length lch ([42], [43], [44]); it is com-
puted depending on the geometric dimensions of the element. The specific
dissipated energy D is then scaled for each element so that the equation

D lch = Gf (17)

holds, where Gf is the mode I fracture energy of the material, regarded to be
a material property. This makes the softening modulusHS, which defines the
softening response, dependent on the element size. It also sets a maximum
size for the elements that can be used in the analysis.
The procedure is as follows: consider an ideal uniaxial tensile experiment

in which the tensile strain increases monotonically and quasi-statically from
an initial unstressed state to another in which full degradation takes place.
The specific energy dissipated in the process is:

D =
t=∞

t=0

Ḋdt (18)

=
t=∞

t=0

W e ḋ dt (19)

=
1

2E

r=∞

r=ro

r2d dr (20)

where E is the Young’s modulus and we have used Eqs. (16), (??), (1), (4),
(9) and the rate of damage has been expressed as ḋ = d ṙ.
We will consider in the following both the cases of linear and exponential

softening:

• Linear softening:
Using Eq. (10), d = (1 + HS)ro/r

2, for ro ≤ r ≤ ru, with ru =
ro (1 + 1/HS), and d = 0, otherwise. Recalling that ro = σo, and
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integrating, we have

D = 1 +
1

HS

σ2o
2E

(21)

and equating D = Gf /lch, we have

HS =
HS lch

1−HS lch
≥ 0 (22)

where HS = σ2o/ (2EGf) depends only on the material properties,
as Gf is the mode I fracture energy per unit area, σo is the uniaxial
strength and E is the Young’s modulus.

• Exponential softening:
Using now Eq. (11), d = (ro + 2HS r) exp −2HS r−ro

ro
/r2, for

ro ≤ r ≤ ∞. Recalling that ro = σo, and integrating, we obtain an
expression which is identical to the result in (21).

Note that in Eq. (22) the specific softening parameter HS measures the
brittleness of the material, while the elemental softening parameter HS mea-
sures the brittleness of the finite element.
It must be remarked that the above computation of the total specific

dissipation is only exact for an uniaxial stress state. In a more general case,
the total dissipated energy is larger than that in expression (21). This is a
consequence of using an isotropic damage model with only one damage index,
where the damage due to the straining in one principal stress direction causes
degradation in all other directions. Fortunately, it is possible to formulate
more sophisticated damage models that lead to a more accurate control of
the released elastic energy. For instance, references [45], [46] and [47] present
a damage model with two different tension and compression damage indices
which greatly overcomes this problem.
In the framework of local models and finite element analysis, the state

variables are computed at the integration points in terms of the local strain
(and/or stress) history. Therefore, the characteristic length is related to the
volume (or area) of each finite element. For linear simplex elements, the
characteristic length can be taken as the representative size of the element,
lch = he. In this work, and assuming that the elements are equilateral, the size
of the element will be computed as h2e = 4/

√
3 Ae for triangular elements,

Ae being the area of the element, and as h3e = 12/
√
2 Ve for tetrahedral

elements, where Ve is the volume of the element.
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2.5 Tangent operator

Differentiating Eq. (2) with respect to time, we obtain

σ̇ = (1− d) σ̇ − ḋ σ (23)

The effective stresses σ are computed in terms of the total strain tensor ε as

σ = C : ε (24)

whereC is the usual (fourth order) linear—elastic isotropic constitutive tensor.
Differentiating this with respect to time, we have

σ̇ = C : ε̇ (25)

Despite the simplicity of the stress split postulated in Eq. (3), which
expresses σ+ in terms of the (positive) eigenvalues and eigenvectors of σ,
quite more involved operations are required to express σ̇

+
in terms of σ̇. It

can be shown that the appropriate expressions are [46]

σ̇
+
= P : σ̇ = P : C : ε̇ (26)

where the projection operator P is

P =
3

i=1

H (σi) P
ii ⊗Pii + 2

3

i,j=1
j>i

σi − σj
σi − σj

Pij ⊗Pij (27)

where H (·) is the Heaviside function, · are the Macaulay brackets and

Pij = Pji =
1

2
(pi ⊗ pj + pj ⊗ pi) = symm(pi ⊗ pj) (28)

On the other hand, recalling from the previous section that the rate of
the damage index can be expressed as

ḋ = d ṙ (29)

where the first derivative term can be obtained from Eqs. (10) or (11). On
loading, consistency requires that ṙ = τ̇ , and therefore, differentiating Eq.
(5), we can write

ṙ = τ̇ (30a)

=
1

τ
σ+ : Λ : σ̇

+
(30b)

=
1

τ
σ+ : Λ : P : C : ε̇ (30c)
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On unloading, it is ṙ = 0. Substituting this result in Eq. (29), and
the result in Eq. (23), jointly with Eqs. (24) and (26), yields the desired
expression

σ̇ = Ctan : ε̇ (31)

with

Ctan = (1− d) I−h σ+⊗σ+ : Λ : P : C (32)

where the coefficient h is

h =

⎧⎪⎨⎪⎩
d

τ
for loading

0 for unloading

(33)

Note that the tangent tensor in Eq. (32) is, in general, nonsymmetric.
This is often inconvenient for practical finite element applications, as it results
in a nonsymmetric tangent stiffness matrix. In those cases, and at the cost
of the loss of rate of convergence, the tangent matrix can be replaced with
the secant matrix, computed with the secant constitutive tensor

Csec = (1− d) C (34)

which is much simpler to compute and always symmetric.

2.6 Final remarks

Let us close this section about constitutive modelling with three remarks
about isotropic continuum damage and strain softening.
In the FM community a technique known as “element extinction” is some-

times used. This consists in simply deleting from the FE mesh those elements
lying along the crack path. The results obtained are satisfactory if the finite
element mesh used is fine enough. In a CM framework, such “extinction”
must be done with care, that is, taking into account the elastic energy re-
leased when performing it. This is, precisely, what an isotropic damage
accomplishes: when the damage index reaches its final value, d = 1, the to-
tally degraded element is effectively removed from the mesh; but this process
takes place gradually, and while it is occurring the elastic energy is released
at a rate determined by the brittleness of the particular element.

14



The second remark is about using isotropic models to reproduce a phe-
nomenon like tensile cracking, which is actually directional. This choice
implies that the macroscopic anisotropy of the structural behaviour has to
be captured by means of the finite element approximation to within the res-
olution of the adopted mesh ([37], [45], [48]). The use of orthotropic models,
like the now old-fashioned, although still very popular, fixed and rotating
smeared crack models of the 1980’s presents serious stress locking problems,
reported but unsolved. The origin of this locking difficulties undoubtedly lies
in the inflexibility of the spatial discretization used.
The third remark is about the concept of strain softening itself. It is often

argued, particularly from the fracture mechanics community, that a material
with negative tangential moduli is not a sound concept, as such material
would be unstable and would not propagate waves. This may be true, but
the fact that the constitutive model, formulated in terms of nominal stresses
and strains, contemplates strain softening does not mean that strain softening
needs to have physical meaning. Damage models evaluate the stresses as an
area weighted average of the stresses acting on virgin material and on voids
or defects. To do this, they take into account the surface density of defects
in the material, which is, by concept [49], the damage index. In this sense,
the behaviour of the softening damaged material upon straining has perfect
meaning as an average of the non-softening virgin material and the growing
density of defects that are developing inside it.

3 Boundary value problem

3.1 Strong and weak forms

The strong form of the continuum mechanical problem can be stated as: find
the displacement field u, for given prescribed body forces f , such that:

∇ · σ+ f = 0 in Ω (35)

where Ω is the open and bounded domain of Rndim occupied by the solid in
a space of ndim dimensions. Eq. (35) is subjected to appropriate Diritchlet
and Neumann boundary conditions. In the following, we will assume these in
the form of prescribed displacements u = u on ∂Ωu, and prescribed tractions
t on ∂Ωt, respectively.
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Following the standard procedure, the corresponding discrete weak prob-
lem is

(∇svh,σh)− (vh, f)− vh,t ∂Ωt
= 0 ∀vh (36)

where vh ∈ Vh are the variations of the displacement field uh, Vh is a subspace
of H1 (Ω) , that is, the space of functions square integrable in Ω with square
integrable derivatives; (·, ·) denotes the inner product in L2 (Ω).
This discrete problem is nonlinear because of the dependence of the

stresses σh on the displacements uh. In practice, this nonlinearity is dealt
with assuming that the acting body forces and boundary tractions, f and t,
are applied incrementally, being dependent on (pseudo)time or other loading
parameter. Then, the problem is solved step-by-step in time (or load), and
iterating within each step until equilibrium (Eq. (36)) is satisfied.

3.2 Stability and well-posedness

Over the last years, many researchers have supported the idea that the under-
lying reason why the standard, local, rate-independent constitutive models
are inadequate to model localized straining correctly is the local change of
character of the governing equations (see, for instance, [17], [18], [19], [20],
[21], [22], [23], [24]). Let us consider this question by considering both the
continuum problem and the discrete problem.
Let us start the discussion on the continuum problem considering the case

of standard elasticity, with a non-uniform distribution of elastic moduli. The
irreducible governing Eq. (35) can be rewritten in terms of the deviatoric
and volumetric parts of the deformation as

∇ · (G∇su) +∇ (K ∇ · u ) + f = 0 in Ω (37)

where G and K are the shear and bulk moduli, respectively.
A standard stability (or energy) estimate for problem (37) is obtained by

multiplying the first two terms of the left hand side by u and integrating by
parts over the domain Ω, to yield

(∇su,G∇su) + (∇ · u,K ∇ · u) = u 2
E > 0 (38)

where · 2E is the energy norm (equal to the elastic free energy). For strictly
positive elastic moduli, G,K > 0, the stability of the elastic governing equa-
tion is evident.
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For an isotropic damage constitutive model, the stability estimate reads

(∇su,Gsec∇su) + (∇ · u,Ksec ∇ · u) > 0 (39)

where stability can be guaranteed as long as the secant moduli, Gsec = (1−
d)G and K sec = (1− d)K, remain strictly positive, that is, for damage index
d < 1. Therefore, in the problem of nonlinear solid continuum mechanics
with softening, the governing equation in terms of the total displacement u
(not the rate equation, written in terms of the incremental displacements)
remains stable as long as the secant moduli remain strictly positive.
Upon continuing straining, the damage index approaches 1 and the se-

cant moduli may eventually vanish. However, inequality (39) still holds if
the secant moduli vanish completely only in a subdomain S ⊂ Ω of zero
measure. This would be the case of a line crack in 2D or a surface crack in
3D. Anyhow, this indicates the possible origin of difficulties in the extension
and propagation of the areas where stiffness is completely lost.
For the discrete problem to be stable, it must hold

(∇suh,Gsec∇suh) + (∇ · uh,Ksec ∇ · uh) > 0 (40)

where now uh represents the discrete displacement field. Stability can be
maintained if uh is discontinuous, ensuring that the secant moduli vanish
completely only in a subdomain of zero measure in Ω. However, condition
(40) also holds if the secant moduli vanish only in a properly restricted subdo-
main in Ω, such as in a band of elements (one element across) overlapping the
crack. This opens the possibility of solving crack propagation problems using
standard elements with continuous displacement fields uh, if the extension of
the totally damaged areas is restricted to a band.
Let us now approach the question of well-posedness in a more empirical

way. For the sake of discussion, let us imagine that we proceed to solve
Eq. (36) by means of an incremental procedure, advancing in (pseudo)time,
and using sufficiently small time steps of size ∆t, in order to rule out of
the discussion the associated time discretization error. For each time step we
proceed in two stages: in the first stage, we solve for the displacement field at
time t in the domain with the distribution of damage “frozen” at the previous
time step, t − ∆t; in the second stage, we update the damage distribution
according to the strain field computed in the previous stage. This second
stage would involve two different operations: (i) the updating of the damage
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index of those elements already damaged in the previous time steps and (ii)
deciding which elements are newly damaged during the current time step.
This purely incremental procedure may not seem natural in the context of

non linear continuum mechanics, where equilibrium iterations are performed
for each time step and operations (i) and (ii) are done concurrently. However,
this is the procedure used in fracture mechanics to propagate a crack: first
stage, solve the problem for a given crack path and, second stage, update
the crack path, by advancing the crack tip a small distance, according to the
selected (empirical) criterion for crack propagation.
Observe now the implications of proceeding in this way. The first stage

(at frozen damage) consists of solving a linear elastic BVP, with a given
distribution of (positive) elastic moduli. Note that this stage can be solved
evaluating only the secant moduli, although this would correspond to a first
order linearization of the original nonlinear problem. Thus, the problem is
obviously linear, well-posed, elliptic, stable and the solution is unique. In the
second stage, updating the damage level for those elements already damaged
in previous time steps is straight-forward, as damage is an explicit function
of the strain field. Therefore, all the difficulties reside in deciding which
elements are newly damaged during the current time step. In principle, this
should not be a problem, as the damage criterion is also unambiguously
written in terms of the total strain. But, it turns out that the computed
damage distribution is “incorrect”, as it depends spuriously on the alignment
of the finite element mesh. The reason for this must be that the computed
strain distribution in the vicinity of the advancing front of damaged elements
(what we could consider the “tip of the crack”) is mesh-biased. In fact, in the
continuum problem the tip of the crack is a singular point and, therefore, the
L∞-norm of the error on the displacement gradients (strains) in the computed
discrete solution is unbounded.
We may conclude that the main difficulty in solving the problem of ten-

sile crack propagation using standard elements, with continuous displace-
ment fields and local constitutive models, with properly size-adjusted strain-
softening, is the approximation error due to the spatial discretization.
If the question of crack propagation is not an issue in the problem at

hand, there is no difficulty at all. For instance, consider the 1D problem
of a straight bar under tensile straining, with a small defect located at a
given position inside the bar. Obviously, the only reasonable solution is a
crack initiating and progressively opening at the location of the defect. If the
problem is solved with small enough time increments so to ensure that only
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the finite element containing the defect opens at the proper time step, and the
element size is adequately taken into account to adjust the local softening,
the global response of the bar, in terms of load vs. end displacement is unique
and mesh-size objective.

4 The problem of crack propagation

4.1 The convenience of crack tracking

In the discrete crack approach, the two basic ingredients of the formulation
are: (a) the criterion for crack propagation, which is always established in
terms of the stored elastic energy, and (b) the criterion for selecting the di-
rection of crack propagation, which is established empirically. Here, several
possibilities have been formulated [50]: the principal tensile stress direction,
the maximum circumferential stress direction and the direction that maxi-
mizes the strain energy release rate, etc.
In any case, the discrete crack approach requires the careful tracking of

the propagation of the crack through the FE mesh. Tracking algorithms are
always an essential part of FM based codes, as they are in the application of
the X-FEM.
On the other hand, in the smeared crack approach it has always been

implicitly assumed that the criterion for the onset of cracking, which is always
established in terms of stresses/strains, also must automatically define the
direction of propagation. This may be a natural assumption in the continuum
problem, with proper evaluation of stress and strain values and directions.
However, in the discrete problem the stress and strain fields evaluated in the
vicinity of the crack tip differ greatly from being exact. As a consequence,
the automatic application of the cracking criterion for the evaluation of the
direction of crack growth leads to an unacceptable dependence on the mesh
bias in this region. This local error must be overcome if reasonable solutions
are to be obtained with the smeared crack approach.
In the last decade, the so-called strong discontinuity approach has been

developed as a continuum mechanics alternative to the fracture mechanics
formulation. Remarkably, and although it has not been always explicitly
stated, successful applications of this approach also use tracking algorithms
to determine the direction of crack propagation. In fact, Mosler and Meschke
[32] have reported that if tracking is not used, the strong discontinuity for-
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mulation leads to the same spurious mesh bias dependence as the standard
weak discontinuity approach.
All this evidence point to the potential advantages of using a crack track-

ing algorithm in the discrete format of the crack propagation problem, also
if continuous displacement fields are used in the interpolation basis.

4.2 Tracking algorithms

Two requirements can be stated for a tracking algorithm to be successfully
used in crack propagation problems: (1) it must be consistently linked to the
cracking criterion, as this is the established cracking mechanism at continuum
level, and (2) it should not be completely dependent on the local values of
the discrete stress/strain fields, as these may be substantially off-track.
With regard to the first requirement, for a Rankine criterion based on

the value of the maximum tensile principal stress, it is consistent to assume
that the crack propagates in the plane orthogonal to the corresponding first
stress eigenvector. Regarding the second requirement, several possibilities
are feasible, and at least two have been proposed and successfully applied.
The first one is to apply a stress (or strain) recovery procedure to improve

the stress (or strain) fields computed in the vicinity of the crack tip. This is
readily done by applying smoothing techniques [51], from simple averaging
among adjacent elements to a more refined patch-based interpolation.
The second, more fundamental, approach is to consider the evaluation

of the propagation direction as a separate problem, obviously coupled to
that of solving the balance of momentum equation (36). This procedure
was proposed in reference [30] in the strong discontinuity framework, and
it has been already used in 2D and 3D applications [31]. In this work we
will use this second strategy in the context of standard finite elements. The
implementation of this technique is described in the following section.

4.3 Evaluation of the propagation direction

Let us assume that the crack propagates following a surface (a line in 2D)
which is orthogonal to the direction of the maximum positive principal stress.
Then, to be able to predict the direction of propagation of the crack it is
necessary to evaluate the principal stress trajectories in the vicinity of the
crack tip. This can be accomplished in the following way.
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For a given time, let n be a field of unit vectors in the direction of the
maximum positive principal stress at each point of the domain Ω and s and
t be any two orthogonal unit vectors orthogonal to it. Let θ be a scalar
field such that its gradient is parallel to the given vector field n, so that
n =∇θ/ ∇θ . It is clear that the iso-level surfaces (lines in 2D) defined
by θ = const are orthogonal to n. Therefore, the crack propagates along
one particular iso-level surface S defined by θ = θ̄o. Thus, the problem
of evaluating the direction of crack propagation is equivalent to finding the
scalar field θ and determining the iso-level locus θ = θ̄o.
This can be formulated as the following linear BVP: find the scalar field

θ, such that:
∇ · (K ·∇θ) = 0 in Ω (41)

where Ω is the open and bounded domain of Rndim occupied by the solid in
a space of ndim dimensions.
Eq. (41) is subjected to appropriate boundary conditions. Let xo be

the point of the boundary where the crack is initiated and S̄ ⊂ S be the
part of the surface S where the cracking criterion has already been violated
(consolidated part of the crack). Dirichlet boundary conditions are specified
in (a) a part of the boundary ∂Ωθ ⊂ ∂Ω including the seminal point xo ∈ ∂Ωθ,
and so that θ (xo) = θ̄o and (b) along S̄, so that θ (x) = θ̄o for points x ∈ S̄;
natural boundary conditions are imposed elsewhere at ∂Ω (see Fig. 3).
The second-order tensor K couples the scalar problem (41) to the evolu-

tion of the mechanical problem, Eq. (35). It takes the form

K = t⊗ t+ s⊗ s+εn⊗ n (42)

where ε is a small perturbation value, ε = 10−4 ÷ 10−10. This enforces that
n =∇θ/ ∇θ .
The corresponding discrete weak problem is

(K ·∇θh,∇ηh) = 0 ∀ηh (43)

where ηh ∈ Qh⊂ H1 (Ω) are the variations of the scalar field θh.
Problem (43) is linear, elliptic and it only involves one unknown per node.

Besides, being a conduction-like problem, it is sufficiently well-behaved and
it does not present any singular point in the vicinity of the advancing crack.
It can be solved using the same FE mesh as problem (36) and the coupling
with it can be enforced once per time increment or, more rigorously, at each
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(a) (b)

Figure 3: Tracking algorithm: (a) definition, (b) iso-level curves

iteration. Once it is solved, and the elements e crossed by the iso-level locus
S, such that θ = θ̄o, are identified, these are subsequently known to the
mechanical solver when performing the check on the crack criterion; only
those elements crossed by S are allowed to crack, and those actually cracked
are added to the consolidated part of the track S̄ ⊂ S. From then on, the
corresponding boundary condition is imposed at the nodes pertaining to those
elements.
The described algorithm can be easily extended to track the propagation

of multiple cracks, simply by defining the i− th crack as the locus Si where
θ = θ̄

i
o and specifying the corresponding boundary conditions at S̄

i ⊂ Si.
Implementation of equation (43) is straightforward in a standard FE

framework, and it becomes trivial in those FE codes intended for coupled
multifield formulations, such as thermo-mechanical or seepage-mechanical
problems.

5 Numerical examples
The formulation presented in the preceding sections is illustrated below by
solving two different benchmark problems. Performance of the standard con-
tinuous displacement finite elements is tested considering 2D plane-strain 3-
noded linear triangular meshes. The poor behaviour of the linear simplex in
some particular situations, such as pure bending or quasi-incompressibility
is well-known, but this does not affect the following tests.
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The examples are solved using the continuum isotropic damage model
presented in Section 2 with exponential softening, adjusted according to the
element size. The following material properties are assumed for both exam-
ples: Young’s modulus E = 30 MPa, Poisson’s ratio ν = 0.2, tensile strength
σo = 2 KPa and mode I fracture energy Gf = 100 J/m2.
The discrete problem is solved incrementally, in a (pseudo)time step-by-

step manner. In all cases 200 equal time steps are performed to complete
the analyses. Within each step, a modified Newton-Raphson method (using
the secant stiffness matrix), together with a line search procedure, is used
to solve the corresponding non-linear system of equations. Convergence of a
time step is attained when the ratio between the norm of the iterative and
the incremental norm of the computed displacements is lower than 1 %.
Calculations are performed with an enhanced version of the finite element

program COMET [52], developed by the authors at the International Center
for Numerical Methods in Engineering (CIMNE). Pre and post-processing is
done with GiD, also developed at CIMNE [53].

5.1 Perforated strip under tension

The first example is a plane-strain perforated strip subjected to axial vertical
straining imposed at both ends. Because of the symmetry of the domain and
boundary conditions, only one half of the domain (the right half) needs to
be considered. Dimensions of the strip are 20 × 40 cm × cm (width ×
height) and the radius of the perforation is r = 1 cm. This example is
selected because the initial geometry does not present any singular point;
tensile stresses are larger in the vicinity of the perforation and damage starts
there. Also, it represents an example of pure mode I fracture.
The computational domain is discretized in two different unstructured

meshes with average mesh sizes of he = 5 mm (2,023 nodes) and he = 2.5
mm (7,648 nodes). The central part of the two meshes is shown in Fig.
4. It can be seen that the pre-processor used tends to introduce patches of
equilateral triangles with predominant directions at −30o, +30o and +90o
with the horizontal axis.
Two separate analyses are performed using both meshes. The computed

deformed shapes of the strip in the vicinity of the perforation are shown in
Figures 4a.1 and 4b.1, respectively ( (half)-imposed vertical displacement
δ = 0.1 mm, with a displacement amplification factor of 100; the other
half-imposed displacement is applied at the opposite end of the strip). The
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(a.1) with tracking (b.1) with tracking

(a.2) without tracking (b.2) without tracking

Figure 4: Deformed geometries (x 100) on the central part of the two meshes
with and without tracking for perforated strip

different element sizes in both meshes can be appreciated in these figures. As
shown, the computed cracks in both analyses follow exactly the horizontal
axis of symmetry of the perforation, even if the elements in neither of the
two meshes are aligned along this line. If no tracking strategy is used, see
Figures 4a.2 and 4b.2, the crack initiates horizontally in both meshes, but it
soon departs from this course to spuriously follow a line of elements along
the mesh bias (+30o in this case).
Figure 5 shows (half)-load vs (half)-imposed vertical displacement curves

obtained in the two analyses. Because in this example the strain field is
almost uniform prior to the inception of the cracks, the response curve is
almost linear until the cracks form in a rather explosive manner, with a
nearly exponential softening branch after the limit load is attained.
Note that the overall global response is satisfactorily similar upon mesh
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Figure 5: Load versus displacement for perforated strip. Comparison be-
tween different mesh sizes

refinement, with the total area under the load-displacement curve converging
to the correct amount of energy dissipated to create the cracks. This should
be equal, for half of the domain, to Dtot= Gf × lcr × t = 100× 0.09× 1 = 9
J, where lcr is the length of the crack (9 cm) and t is the thickness (1 m).
The area under the curves is almost exactly, half of this value. No spurious
brittleness is observed when the size of the elements is reduced.
Figure 6 shows the results obtained using the proposed formulation on

the fine mesh. The three columns represent, respectively, the evolution, at
four different time steps of the analysis, of the: (a) contours of vertical dis-
placements, (b)contours of maximum principal strain and (c) max. principal
strain vectors. The progressive concentration of the displacement gradients
(strains) in the elements lying along the horizontal axis of symmetry is evi-
dent in the three columns. The bottom figures show how, when the failure
mechanism is fully developed, all the deformation concentrates in the formed
horizontal crack, while the elements outside this localization band are mostly
undeformed. Therefore, the resolution of the cracks is optimal for the mesh
used. In the third column, it can be observed that the correct failure mecha-
nism has been predicted although the directions of the computed maximum

25



(a) (b) (c)

Figure 6: Results for perforated strip using the proposed formulation. Evolu-
tion of: (a) vertical displacement, (b) maximum principal strain, (c) vectors
of max. principal strain
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principal strain vectors (as the related vectors of maximum principal effec-
tive stress) are clearly dependent on the mesh bias, as they are not vertical
everywhere. For the coarser mesh, similar results are obtained, although the
strain localization is smeared across a row of elements twice as large.
Finally, Figures 7a and 7b show the evolution, at three different time steps

of the analysis, of: (a) the vertical displacements, (b) the maximum principal
strain, along a vertical line orthogonal to the formed crack. In the first one,
the initially uniform gradient of displacements progressively localizes into a
very sharp jump across one single element. In the second one, the strain
profile progressively localizes with very sharp resolution.

(a)

(b)

Figure 7: Evolution of the profiles along a vertical line of: (a) vertical dis-
placement and (b) maximum principal strains for perforated strip
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5.2 Four point bending beam

The second example is a plane-strain doubly notched beam subjected to four
point bending. Figure 8a depicts the geometry of the problem; dimensions
of the beam are 134.0 × 30.6 cm × cm (width × height) and the length
and width of the notches are 8.2 cm and 0.5 cm, respectively. The load is
applied at the central (rigid) supports (at 8.0 cm from the center of the beam)
by imposing vertical displacements of opposite sign at the top and bottom
supports. The two supports near the extremes of the beam (at 20.3 cm) are
fixed. This example is selected because it presents two singular points at
the tips of the notches; tensile stresses are very large in the vicinity of these
regions and damage starts there. Also, it represents an excellent example of
mixed mode fracture.
The computational domain is discretized in three different unstructured

meshes with average mesh sizes of he = 20 mm (1,189 nodes), he = 10 mm
(2,217 nodes) and he = 5 mm (5,909 nodes). The central part of the three
meshes is shown in Fig. 9.
Three separate analyses are performed using these meshes. The computed

deformed shapes of the central part of the beam are shown in Figures 9a.1,
9b.1 and 9c.1, respectively (imposed vertical displacement δ = 0.1 mm, with
a displacement amplification factor of 100). The different element sizes in the

Figure 8: Geometry and load for four point bending beam
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(a.1) with tracking (b.1) with tracking (c.1) with tracking

(a.2) without tracking (b.2) without tracking (c.2) without tracking

Figure 9: Deformed geometries (x 100) on the three meshes with and without
tracking for four point bending beam

meshes can be appreciated in these figures. As shown, the computed cracks
in all the analyses follow very closely the same path, starting at the tip of
the notches and turning upwards to the point of application of the loads. No
spurious mesh bias is observed in any of the meshes.
If no tracking strategy is used, see Figures 9a.2, 9b.2 and 9c.2, the crack

initiates correctly in all cases, but they turn upwards almost immediately to
run along with the respective mesh alignment and too close to the notches.
Figure 10 shows load vs imposed vertical displacement curves obtained in

the three analyses. In this example the loading branch curves slowly as the
cracks progress, turning into the softening branch once the failure mechanism
is fully developed. The load does not vanish completely because only damage
due to tensile effective stresses is considered, and the state of stresses near
the loading supports is mostly compressive.
The overall global response is very similar upon mesh refinement, al-

though the effect of the different spatial discretizations can be observed even
in the global elastic stiffness of the beam. This shows that solving problems
involving singular stress points requires a high level of resolution.
The total area under the load-displacement curves represents the correct

amount of energy necessary to create the cracks. This should be equal, for
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Figure 10: Load versus displacement for four point bending beam. Compar-
ison between different mesh sizes

one crack, to Dtot= Gf×lcr×t = 100×0.25×1 = 25 J, where lcr is the length
of the crack (aprox. 25 cm) and t is the thickness (1 m). The area under
the curves is almost exactly equal to this value. No spurious brittleness is
observed when the size of the elements is reduced.
Figure 11 shows the results obtained using the proposed formulation on

the fine mesh. The three columns represent, respectively, the evolution,
at four different time steps of the analysis, of: (a) the contours of vertical
displacements, (b) the contours of maximum principal strain and (c) the
maximum principal strain vectors. As in the previous example, the bottom
figures show how, when the failure mechanism is fully developed, all the
deformation concentrates in the formed cracks, while the elements outside
these bands are mostly undeformed. Again, the resolution of the cracks is
optimal for the mesh used. In the third column, it can be observed that
the correct failure mechanism has been predicted although the directions of
the computed maximum principal strain vectors (as the related vectors of
maximum principal effective stress) are clearly dependent on the mesh bias,
as they are not orthogonal to the crack path everywhere. Note in the left
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(a) (b) (c)

Figure 11: Results for four point bending beam using the proposed formula-
tion. Evolution of: (a) vertical displacement, (b) maximum principal strain,
(c) vectors of max. principal strain
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bottom plot how, once both cracks are formed, the central part of the beam
rotates almost as a rigid body around the center of the beam.
For the coarser meshes, similar results are obtained, although the strain

localization is smeared across a row of larger elements (see Fig. 9).
Finally, Figures 12a and 12b show the evolution, at three different time

steps of the analysis, of: (a) the vertical displacements, (b) the maximum
principal strain, along an horizontal line along the longitudinal axis of the
beamwhich crosses both cracks. Again, it can be observed how displacements
progressively localize into two very sharp jumps across one single element.

(a)

(b)

Figure 12: Evolution of the profiles along a vertical line of: (a) vertical
displacement and (b) maximum principal strains for four point bending beam
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6 Conclusions
This paper shows that it is possible to tackle the solution of problems in-
volving strain localization due to tensile straining (cracking) via the smeared
crack approach, that is, using standard finite elements, such as linear trian-
gles, and standard local constitutive models, such as an isotropic continuum
damage model, and to obtain mesh objective results, such that: (a) the solu-
tion of the corresponding BVP can be computed in a step-by-step incremental
manner, (b) the position and orientation of the localization paths (cracks)
is independent of the directional bias of the FE mesh, and (c) the global
post-peak load-deflection curves are independent of the size of the elements
used.
This is attained by considering the determination of the direction of prop-

agation of the strain localization band as a separate problem, coupled to that
of solving the balance of momentum equation. The convenience of doing this
is deduced from the stability analysis of the weak form of the associated
discrete mechanical problem. Also, it stems from established practice with
the discrete crack approach, both in the fracture and continuum mechanics
frameworks.
The resulting formulation is convergent upon mesh refinement, virtually

free of the spurious size and bias mesh dependence usually found when di-
rectly applying the smeared crack concept to strain localization problems.
The derived method yields a robust scheme, suitable for engineering appli-
cations in 2D and 3D.
Numerical examples show, on one hand, that the use of a crack propa-

gation algorithm notoriously helps to avoid the dependence of the predicted
failure mechanisms on the mesh directional bias; on the other, that relating
the softening parameter of the constitutive model to the fracture energy of
the material and to the size of the finite elements in the localization band
enables to control the dissipated energy during the localization (fracture)
process, yielding a correct structural response in the softening regime. Fi-
nally, computed solutions indicate that, as expected, continuous displacement
interpolations can reproduce very sharp gradients if the mesh resolution is
fine enough.
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