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A HIGHLY SCALABLE PARALLEL IMPLEMENTATION OF
BALANCING DOMAIN DECOMPOSITION BY CONSTRAINTS∗

SANTIAGO BADIA† ‡ , ALBERTO F. MARTÍN† ‡ § , AND JAVIER PRINCIPE† ‡

Abstract. In this work we propose a novel parallelization approach of two-level balancing
domain decomposition by constraints preconditioning based on overlapping of fine-grid and coarse-
grid duties in time. The global set of MPI tasks is split into those that have fine-grid duties and
those that have coarse-grid duties, and the different computations and communications in the al-
gorithm are then re-scheduled and mapped in such a way that the maximum degree of overlapping
is achieved while preserving data dependencies among them. In many ranges of interest, the extra
cost associated to the coarse-grid problem can be fully masked by fine-grid related computations
(which are embarrassingly parallel). Apart from discussing code implementation details, the paper
also presents a comprehensive set of numerical experiments, that includes weak scalability analyses
with structured and unstructured meshes for the 3D Poisson and linear elasticity problems on a pair
of state-of-the-art multicore-based distributed-memory machines. This experimental study reveals
remarkable weak scalability in the solution of problems with thousands of millions of unknowns on
several tens of thousands of computational cores.
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1. Introduction. Scientific phenomena governed by partial differential equa-
tions (PDEs) can be approximated by finite element (FE) methods, which results in a
sparse linear system of equations to be solved via numerical linear algebra. The ever
increasing demand of reality in the simulation of the complex scientific and engineering
three-dimensional (3D) problems faced nowadays involves the solution of very large
sparse linear systems with several hundreds and even thousands of millions of equa-
tions/unknowns. The solution of these systems in a moderate time requires the vast
amount of computational resources provided by current multicore-based distributed-
memory machines. It is therefore essential to design parallel algorithms able to take
profit of their underlying architecture.

Domain decomposition (DD) preconditioning of Krylov iterative solvers provides a
natural framework for the development of fast parallel solvers tailored for distributed-
memory machines, as it has by construction the desirable design principle of maxi-
mizing local computations while minimizing interprocessor communication. One-level
DD preconditioners, such as the Neumann-Neumann preconditioner [29], are highly
parallel as they only require the solution of local problems and communication among
neighboring subdomains, but the condition number of the preconditioned system ma-
trix grows with the number of subdomains (processors) and/or the global size of the
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linear system. As a result, these algorithms are not scalable since the number of
preconditioned Krylov iterations increases with the number of cores.

Two-level DD preconditioners combine local and global corrections (in an addi-
tive or in a multiplicative fashion) in order to achieve quasi-optimal condition num-
ber bounds, i.e., independent of the number of subdomains and global problem size,
for second-order coercive problems. The global correction involves the solution of
a “small” (relative to the original linear system) coarse-grid problem that couples
all the subdomains. In the frame of non-overlapping DD methods (also referred to
as iterative sub-structuring or Schur complement methods), we find the Balancing
Neumann-Neumann preconditioner [21] (BNN), the Balancing DD by Constraints
preconditioner [9] (BDDC) and the family of FETI preconditioners [10, 11]. These
methods are quasi-optimal (algorithmically scalable) with a poly-logarithmic expres-
sion of the condition number of the preconditioned system κ = 1 + log2(H

h ), where h

and H are, respectively, the mesh and subdomain characteristic sizes, (H
h )d is the size

of the local problems and d is the space dimension. Consequently, in weak scaling [13]
scenarios (i.e., H

h fixed), the number of iterations of the preconditioned conjugate
gradient (PCG) solver is (asymptotically) independent of the number of processors.

However, weak scalability is endangered in practice, since the coarse solver size
increases (at best) linearly with the number of subdomains, which results in increasing
parallel overheads (i.e., loss of efficiency) with the number of processors. For large-
scale problems, the coarse problem rapidly becomes the bottleneck of the algorithm.
For the BDDC preconditioner, a strategy to alleviate this situation is the use of a
multilevel algorithm [23] where the coarse problem is only approximated. This way,
the CPU cost of the coarse problem is reduced but the condition number bound
increases exponentially with the number of levels [23].1 Alternatively, one cycle of the
AMG solver in BoomerAMG [18] has been used as inexact coarse solver in [20, 24]
for FETI-DP methods. Another approach, which does not spoil the preconditioner
robustness, is to use a distributed-memory solver for the coarse problem, e.g., the use
of the MPI-distributed sparse direct solver MUMPS [1] for BDDC [28] and FETI-DP
methods [16].

In any case, as far as we know, the coarse component is serialized in all the efficient
implementations of two-level DD preconditioners so far (see, e.g., [5, 6, 16, 17, 20, 24,
28]), i.e., no fine duties are performed in the meantime, since the subset of processors
with coarse duties have also fine duties. As a result, the computational time associated
to the application of the preconditioner and the memory usage of cores with coarse
duties irremediably increases with the number of processors, specially when sparse
direct solvers are used. Current trends in distributed-memory platforms will make
this situation even more dramatic.

However, the BDDC preconditioner is defined in such a way that the coarse
and fine correction spaces are orthogonal with respect to the energy norm and there
is no algorithmic limitation for the serialized computation of the coarse solver.2 We
consider that this key algorithmic property has not been properly exploited in current
implementations of BDDC and other additive Schwarz DD preconditioners. This is
the objective of this work. The contributions are the following:

• Novel parallelization approach of BDDC based on overlapped fine-grid and

1It is unclear from the detailed numerical experiments in [28] the benefit of the multilevel exten-
sion (see, e.g., Tables 4, 7, and 8 in [28]).

2This property is not true for multiplicative Schwarz preconditioners, e.g., the classical BNN
method. (See [3] for an additive version of the BNN method.)
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coarse-grid duties in time. These novel techniques are designed in order to
tackle the bottleneck associated with the solution of the coarse-grid problem.

• A comprehensive discussion of how these novel techniques are exploited in
order to reach maximum performance benefit, including code implementation
details for a MPMD (Multiple Program Multiple Data) parallel execution
mode.

• Weak scalability study of the new parallelization approach for the 3D Poisson
and linear elasticity problems up to 27K cores on structured meshes and up to
8K cores on unstructured meshes on a pair of state-of-the-art multicore-based
distributed-memory machines (HELIOS and CURIE).

This work is structured as follows. Section 2 is devoted to non-overlapping DD
and the BDDC preconditioner. In Section 3, we design a highly scalable parallel
distributed-memory implementation of the BDDC algorithm, which overlaps fine and
coarse computations. In Section 4, we report a comprehensive set of numerical ex-
periments that includes weak scalability analyses with structured and unstructured
meshes in 3D for Poisson and linear elasticity problems. Finally, in Section 5, we draw
some conclusions and define future lines of work.

2. Balancing Domain Decomposition.

2.1. General framework. Let us consider a bounded polyhedral domain Ω ⊂
Rd with d = 2, 3 and a uniform FE partition (mesh) T of Ω with characteristic
size h. Further, we consider a partition of the global mesh T into local meshes
{Ti : i = 1, . . . , nsbd}, which induces a domain decomposition of Ω into subdomains
{Ωi : i = 1, . . . , nsbd} (of characteristic size H) such that Ti is a conforming mesh
of Ωi. We denote the number of nodes in T and Ti as n and ni, respectively. The
interface of Ωi is defined as Γi = ∂Ωi \ ∂Ω and the whole interface (skeleton) of the
domain decomposition is Γ =

⋃nsbd

i=1 Γi.
As model problem, let us consider the Poisson problem on a domain Ω ⊂ Rd, with

homogeneous Dirichlet boundary conditions on ∂Ω, where d = 2, 3 is the number of
space dimensions. We also consider a uniform FE partition (mesh) T of Ω with
characteristic size h. We are interested in solving the set of linear equations

Ax = f, (2.1)

which arises from the Galerkin FE discretization of the continuous problem corre-
sponding to T .

The set of nodes of T that belong to Γ (resp. Γi) is denoted by Γh (resp. Γi
h),

and we denote its cardinality by nΓ (resp. niΓ). This partition of the domain into
non-overlapping subdomains induces the following block reordered structure of (2.1):[

AII AIΓ

AΓI AΓΓ

] [
xI
xΓ

]
=

[
fI
fΓ

]
, (2.2)

where xΓ contains the unknowns corresponding to the nodes in Γh and xI the remain-
ing ones, associated with subdomain interiors. Besides, AII presents a block diagonal
structure (and therefore very amenable to parallelization), i.e.,

AII = diag
(
A

(1)
II , A

(2)
II , . . . , A

(nsbd)
II

)
,

where A
(i)
II is the local matrix which represents the coupling of internal unknowns at

subdomain i. After the static condensation of xI from (2.2), this linear system is
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reduced to the Schur complement problem

SxΓ = g, where S = AΓΓ −AΓIA
−1
II AIΓ, and g = fΓ −AΓIA

−1
II fI . (2.3)

The vector space of interface nodal values in Γh is denoted by V̂; clearly, V̂ is equivalent
to RnΓ . We also define the local space Vi of interface nodal values on Γi

h, which is

equivalent to Rni
Γ .3 Clearly, the Schur complement matrix S : V̂× V̂→ R.

System (2.3) can be written as the assembly (sum) of local Schur complement
matrices and right hand side vectors as

S =

nsbd∑
i=1

Rt
iS

(i)Ri, g =

nsbd∑
i=1

Rt
ig

(i), (2.4)

where Ri : V̂ → Vi is the restriction operator and Rt
i its transpose. The former

applied to a vector y ∈ V̂ gives the vector of local values y(i) = Riy ∈ Vi, while the
latter applied to a local vector gives a global vector (filled with zeros for nodes not
belonging to subdomain i). The local Schur complement S(i) and local right hand
side vector g(i) are defined as:

S(i) = A
(i)
ΓΓ −A

(i)
ΓI(A

(i)
II )−1A

(i)
IΓ, g(i) = f

(i)
Γ −A

(i)
ΓI(A

(i)
II )−1f

(i)
I . (2.5)

Let V = V1× . . .×Vnsbd
. We denote by s(i) the i-th component of s ∈ V, i.e., its

restriction to Ωi. By definition, the cardinality of this space is nr =
∑nsbd

i=1 niΓ, which
is equivalent to Rnr .4 We denote by Ssub : V × V → R the sub-assembled cartesian
product Schur complement matrix composed by S(i), i.e.,

Ssub = diag(S(1), S(2), . . . , S(nsbd)).

It is possible to obtain an averaged global vector z ∈ V̂ from s ∈ V as

z =

nsbd∑
i=1

Iis
(i) = Is, (2.6)

where Ii = Rt
iWi : Vi → V̂ is the local injection operator, and Wi is a diagonal

weighting matrix such that

z =

nsbd∑
i=1

IiRiz, for any z ∈ V̂. (2.7)

If we denote by n (p) the number of subdomains sharing node p, Wi can be defined
as the diagonal matrix (Wi)pp = 1/n (p), p = 1, . . . , ni

Γ, although more elaborated
expressions must be considered for discontinuous physical properties [29]. I is the
cartesian product matrix composed by Ii.

At this point, we have observed that the original (global) problem can be recasted
as an interface problem (2.3). However, the Schur complement enforces continuity of

3The spaces V̂ and Vi can also be understood in a functional setting as the global and local
spaces of discrete harmonic functions (see [7]).

4In a functional setting, functions in V̂ are uni-valued on Γ. On the contrary, since nodes in Γh

are replicated, functions in V can take different values at different subdomains. As in [29], ·̂ is used
to denote uni-valued functions on Γ.



A HIGHLY SCALABLE PARALLEL IMPLEMENTATION OF BDDC 5

all interface nodes Γh. The assembly of its corresponding matrix S (of size nΓ)
in a set of processors and its subsequent factorization via a (distributed-memory)
direct solver is unacceptable for large core counts. On the other hand, the Schur
complement matrix is poorly conditioned; its condition number increases with the
size of the global problem and number of subdomains (see Section 2.3). Thus, the
definition of a preconditioner for the Schur complement matrix is required to obtain
a scalable linear solver.

2.2. Balancing DD by constraints preconditioner. The BDDC precondi-
tioner is a two-level DD preconditioner where a local fine-grid and a global coarse-grid
correction (that couples all subdomains and makes the preconditioner both scalable
and optimal) are combined. The idea of the BDDC preconditioner is to approximate
the original FE problem by another one in which we relax the continuity conditions,
drastically reducing the size of the modified Schur complement. Thus, the BDDC
Schur complement can now be assembled and solved, e.g., by a sparse direct solver.

The construction of the BDDC preconditioner is based on a topological classifi-
cation of the nodes on the interface into objects, which can be corners, or members
of edges or faces. This classification can be properly stated in the general case of
unstructured meshes and automatic mesh partitioners; see, e.g., the definition in [4].
Next, we associate to some (or all) of these objects a coarse DoF. The three most
common variants of the BDDC method are referred as BDDC(c), BDDC(ce) and
BDDC(cef), where we enforce continuity on only corner coarse DoFs, corner and edge
coarse DoFs, and corner, edge and face coarse DoFs, respectively.

For a given x ∈ V, the coarse DoF is the value of the function on the corner
or the mean value of the function on the edge/face (see [4]). We define the BDDC

space Ṽ as the subspace of vectors in V that are continuous on coarse DoFs; we note
that V̂ ⊂ Ṽ ⊂ V. Let us denote by SBDDC : Ṽ × Ṽ → R the Schur complement
related to Ṽ, i.e., the restriction of Ssub to Ṽ. The BDDC preconditioner is M−1

BDDC =
IS−1

BDDCI
t. We assume that this preconditioner is nonsingular. The well-posedness of

this preconditioner depends on the definition of the coarse DoFs; there are existing
mechanisms that modify the definition of objects in order to fulfill this assumption
(see [9, 31]).

Some additional work has to be performed in order to end up with an implemen-
tation of this problem that is well-suited for distributed-memory machines. Let us
define ncts as the number of coarse DoFs of the BDDC space and nicts as its local

counterpart. We define the local matrix of constraints Ci ∈ Rni
cts×ni

Γ such that given
a local vector of unknowns provides its local coarse DoFs values; we refer to [4] for a
detailed implementation of Ci. Next, we consider the following decomposition of the
BDDC space Ṽ into a fine space ṼF of vectors that vanish on coarse DoFs and the
Ssub−orthogonal complement ṼC, denoted as the coarse space. Since fine and coarse
spaces are Ssub−orthogonal by definition, fine and coarse correction can be computed
in parallel.

Since the fine space ṼF vanishes on coarse DoFs (which are the only DoFs that
involve continuity among subdomains), the fine correction involves local problems.
The local, fine-grid preconditioner in the BDDC method is defined as

M−1
F =

nsbd∑
i=1

Ii(S
(i)
F )−1Iti ,

where (S
(i)
F )−1 is a “constrained” inverse of the local Schur complement S(i). The
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application of (S
(i)
F )−1 to a vector, denoted as s

(i)
F = (S

(i)
F )−1r(i), involves the solution

of the following (constrained) linear system A
(i)
II A

(i)
IΓ 0

A
(i)
ΓI A

(i)
ΓΓ Ct

i

0 Ci 0


 t

s
(i)
F

λ

 =

 0
r(i)

0

 .
We can easily check that M−1

F is the inverse of the Schur complement related to ṼF.

The coarse space ṼC ⊂ V is built as

ṼC = span{Φ1,Φ2, . . . ,Φncts},

where every coarse function is associated to a coarse DoF. We denote by Φ the matrix
with columns Φi. The coarse basis Φ (the matrix with columns Φi) is the solution of
a multiple right-hand side global system. Fortunately, since the values on the coarse
DoFs are prescribed and the rest of DoFs are local, the coarse space can also be
computed via (parallel) local constrained Neumann problems, i.e., A

(i)
II A

(i)
IΓ 0

A
(i)
ΓI A

(i)
ΓΓ Ct

i

0 Ci 0


 Φ

(i)
I

Φ
(i)
Γ

Λ(i)

 =

 0
0

Id(i)

 ,
where Id(i) is the identity matrix of size nicts. Let us note that any function Φi

is associated to an object and its support is the set of subdomains that share this
object. Thus, at every subdomain we only compute the non-zero restrictions, i.e.,
the coarse space basis functions related to local coarse DoFs. We compute the coarse
matrix S0 as

S0 =

nsbd∑
i=1

Rt
0iΦ

(i)tA(i)Φ(i)R0i.

where R0i is the coarse matrix assembly operator, i.e. the local-to-global correspon-

dence for coarse DoFs. The subdomain contributions Φ(i)tA(i)Φ(i) can readily be
computed (in parallel) and assembled, e.g., in one processor. Once S0 is assembled,
the coarse correction can readily be computed, e.g., by a sparse direct or iterative
solver. The coarse residual ΦtItr is computed analogously (see [4]).

The final preconditioner can be written as the combination of coarse and fine-grid
contributions as

M−1
BDDC = M−1

C +M−1
F ,

where M−1
C = ΦS−1

0 Φt. We observe that the Ssub-orthogonality between coarse and
fine BDDC spaces allows one to overlap coarse and fine tasks in the application of the
BDDC preconditioner, which corresponds to the overlapping area #3 in the highly
scalable implementation of Section 3.3.

2.3. Condition numbers. Assuming a one-to-one mapping between subdo-
mains and processors, we denote the number of processors P = nsbd. The condition
number of the global matrix A is O(n

2
d ) whereas that of the Schur complement S is

O(n
1
dP

1
d ) [29]. It is well known that the number of iterations required by the PCG
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Krylov solver is O (
√
κ), where κ is the condition number of the preconditioned opera-

tor [25]. Therefore, the estimated number of PCG iterations is O(n
1
d ) and O(n

1
2dP

1
2d )

when it is applied to (2.1) and (2.3), respectively. Although the number of PCG it-
erations is certainly cut down by the re-statement of the problem on the interface by
the DD approach (since n � P for practical ranges of application), there is a lot of
margin for improvement via preconditioning.

On the other hand, when introducing the BDDC preconditioner, the condition
number can be bounded by (cf. [22])

κ
(
M−1

BDDCS
)
≤ C

[
1 +

1

d2
log2

( n
P

)]
,

which results in a constant number of PCG iterations for weak scaling analysis, i.e.,
increasing P and n but keeping constant its ratio (load per processor). This bound
does not apply in 3D for BDDC(c). Instead,

κ
(
M−1

BDDCS
)
≤ C n

P

[
1 +

1

d2
log2

( n
P

)]
. (2.8)

This bound is certainly worse than the previous one, since n/P (local problem size)
can easily be of the order of 104. The BDDC(c) method in 3D requires a larger
number of iterations to get convergence but the method is still weakly scalable.

3. A highly scalable distributed-memory implementation. In this section
we cover in detail a highly scalable distributed-memory implementation of the BDDC-
PCG parallel solver. The section is structured as follows. In Section 3.1 we cover the
basic building blocks that make up a parallel distributed-memory implementation of
the algorithm subject of study. In Section 3.2, we discuss several bottlenecks of the
typical implementation approach of two-level DD methods and the rationale behind
the techniques we are proposing to tackle them. In Section 3.3, we discuss in detail
how these novel techniques are exploited in order to reach maximum performance
benefit, and finally, Section 3.4 comprises a number of implementation details that
can be very useful for code developers.

3.1. Basic building blocks. In this section we briefly cover the basic build-
ing blocks that make up the parallel distributed-memory solution of large and sparse
linear systems by means of BDDC preconditioning. The solution of the global linear
system (2.1) is reduced to the preconditioned (iterative) solution of the interface prob-
lem (2.3), where MBDDC is used as a preconditioner for the latter problem. Krylov
subspace methods applied to the interface problem require the Schur complement-
vector multiplication to be computed with a “sufficiently high” level of accuracy. In
order to multiply S by a vector, several (i.e., as many as subdomains) local linear
systems of size proportional to subdomain size have to be solved. The memory avail-
able per core in current multicore-based machines limits the size of these local linear
systems within a range where sparse direct methods are significantly faster than pre-
conditioned Krylov subspace (local) solvers to reach the aforementioned “sufficiently
high” level of accuracy. Therefore, for efficiency purposes, it is highly recommended
to use sparse direct methods [8] in this setting.

Table 3.1 depicts the main phases involved in the solution of the global linear
system (2.1), when its solution is reduced to the preconditioned (iterative) solution of
the interface problem (2.3). We can distinguish an initial phase encompassing lines 1
and 2 of Algorithm 1, where the Schur complement and BDDC preconditioner are set
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up, respectively, and an iterative phase in line 5, where the conjugate gradient (CG)
method is accelerated using the BDDC preconditioner for the solution of the interface
problem (2.3). The former phase is illustrated with more detail in Algorithm 2. It
consists of a repeated sequence of the following four basic operations: application
of the preconditioner (lines 2 and 8), Schur complement-vector products (lines 1, 5,
and 7), inner products (lines 5, and 9), and vector updates (lines 1, 6, 7, and 10).5

Inbetween the PCG stage, a pair of Dirichlet problems for the interior nodes are solved
in lines 3 and 6 of Algorithm 1. The first one is required to set up the right-hand side
g of the interface linear system right before its iterative solution, while the second one
extends the solution to the interior nodes (xI) from the solution on the interface (xΓ)
once it has been computed iteratively.

Algorithm 1: Solve Ax = f via BDDC-PCG

1: Set-up Schur complement S See Algorithms 3 and 4

2: Set-up preconditioner MBDDC See Algorithms 6 and 7

3: g := fΓ −AΓIA
−1
II fI

4: Set initial solution x0

5: xΓ := PCG(S, MBDDC, g, x0) See Algorithm 2

6: xI := A−1
II (fI −AIΓxΓ)

Algorithm 2: x := PCG(S, MBDDC, g, x0)

1: r0 := g − Sx0 See Algorithm 5

2: z0 := M−1
BDDCr0 See Algorithm 8

3: p0 := z0
4: for j = 0, 1, . . . , till convergence do

5: αj := (rj , zj)/(Spj , pj) See Algorithm 5
6: xj+1 := xj + αjpj

7: rj+1 := rj − αjSpj See Algorithm 5

8: zj+1 := M−1
BDDCrj+1 See Algorithm 8

9: βj := (rj+1, zj+1)/(rj , zj)
10: pj+1 := zj+1 + βjpj
11: end

Table 3.1
General roadmap for the solution of the global linear system Ax = f via the BDDC-PCG solver.

In a distributed-memory implementation of Algorithms 1 and 2, all data struc-
tures (i.e., matrices and vectors) and computations are split and distributed among
MPI tasks conformally with the underlying non-overlapping partition of the domain.
We refer the reader to [4] for a comprehensive coverage of the efficient implementation
of Algorithms 1 and 2 in a distributed-memory framework. In the rest of the section,
we only identify and briefly describe those computations and communications (and
their corresponding complexities) that are required for Schur complement and pre-
conditioner set-up, as well as for their application at each PCG iteration. These basic
building blocks are those strictly necessary to present in Section 3.3 the rationale be-

5We stress that in the actual efficient implementation of Algorithm 2 only one preconditioner
application and Schur complement-vector product, three inner products (including that required to
compute ||rj ||2 for the evaluation of the convergence criterion), and three vector updates are required
per PCG iteration.
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hind the ideas that lead to a highly scalable parallel implementation of Algorithms 1
and 2.

In the rest of the section we consider that sparse direct methods are used for
the implementation of the basic building blocks in Algorithms 1 and 2. Table 3.2
summarizes the well-known [12] order of complexity of the different stages [8] in the
serial direct solution of sparse linear systems arising from the FE discretization of a
square or cube with a structured mesh with n DoFs, with d = 2, 3 the dimension of
the space.

Phase 2D complexity (d = 2) 3D complexity (d = 3)
Reordering O(n) O(n)

Symbolic Factorization O(n logn) O(n
4
3 )

Numerical Factorization O(n
3
2 ) O(n2)

Triangular Solution O(n logn) O(n
4
3 )

Table 3.2
Complexities of the different stages in the serial direct solution of sparse linear systems.

3.1.1. Schur complement basic building blocks. Let us first start the dis-
cussion with the Schur complement set-up, and its application to a vector at each PCG
iteration. The former is split into a symbolic and a numerical phase in Algorithms 3
and 4, respectively, while the latter is illustrated in Algorithm 5.

Algorithm 3: S
set-up (symbolic)

1: GA(i) → G
A

(i)
II

G
A

(i)
IΓ

G
A

(i)
ΓI

G
A

(i)
ΓΓ


2: Reord+Symb

fact(G
A

(i)
II

)

Algorithm 4: S
set-up (numerical)

1: A(i) →[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

]
2: Num fact(A

(i)
II )

Algorithm 5: yΓ :=
SxΓ

1: t := −A
(i)
IΓx

(i)
Γ

2: Solve A
(i)
II u = t

3: y
(i)
Γ := A

(i)
ΓΓx

(i)
Γ +A

(i)
ΓIu

In Algorithm 3, line 1, the graph that captures the coupling among local inte-
rior DoFs is first extracted from that which captures the coupling among all local
DoFs, which is then reordered and symbolically factorized in line 2. Similarly, in

Algorithm 4, A
(i)
II is extracted from A(i) and the sparse Cholesky factorization of A

(i)
II

is computed in line 2. Finally, Algorithm 5 follows a three-step process, where a local
Dirichlet problem is solved for the local interior nodes in line 2 by means of sparse
backward/forward substitution. The bulk of the computation is concentrated in line 2
of Algorithms 3, 4, and 5. Complexities for these computations are given in Table 3.2,
with n = niI the number of local interior DoFs in a subdomain. No communications
are required in any of these three algorithms.

3.1.2. Preconditioner basic building blocks. The BDDC preconditioner set-
up is split into a symbolic and a numerical phase in Algorithms 6 and 7, respectively,
while its application to a residual is depicted in Algorithm 8. Communication stages
are labeled as “GC” or “LC” depending on whether they are of global (i.e., all MPI
tasks involved) or local (i.e., MPI tasks communicate with each other within subsets
of tasks) nature, respectively. Algorithms 6, 7, and 8 require global gather/scatter
communication, and local exchanges among nearest neighbours.
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For Algorithm 6, it is assumed that a topological classification of the nodes in each
subdomain interface into geometrical entities (i.e., corners, edges, and faces) is already
available, as well as a global numbering of these entities [4]. This greatly simplifies the
(local) identification of coarse-grid DoFs in line 1 of Algorithm 6. Lines 2-3 are related
to the fine-grid preconditioning level, while lines 4-11 to the coarse-grid one. In the
former lines, the adjacency graph of the sparse coefficient matrix corresponding to the
Neumann problem is first locally assembled, which is then reordered and symbolically
factorized in line 3. In the latter lines, the adjacency graph which describes the
coupling among coarse DoFs is first assembled by means of a distributed-memory
algorithm in lines 4-11, and is then reordered and symbolically factorized in line 12.
It is important to stress that Algorithm 6 is more scalable than the one presented in [4],
as the latter does not parallelize the computation of the row counts and adjacency
lists of GS0

.

Algorithm 6: MBDDC set-up (symbolic)

1: Identify and count (nicts) local coarse DoFs
2: Construct G

A
(i)
F

3: Reord+Symb fact(G
A

(i)
F

)

4: Gather nicts GC
5: Gather global identifiers of geometric entities of each coarse DoF GC
6: Compute a global ordering of coarse DoFs (define R0i and its transpose)
7: Scatter global ordering of coarse DoFs GC
8: Fetch nicts of/from my neighbours LC
9: Fetch global identifiers of the coarse DoFs of my neighbours LC

10: Compute row counts/adjacency lists of GS0 for local coarse DoFs
11: Gather row counts/adjacency lists of GS0

GC
12: Reord+Symb fact(GS0

)

The computations in Algorithm 7 can be subdivided into those related to the
fine-grid preconditioning level (lines 1-2) and those related to the coarse-grid one
(lines 3-7). Fine-grid duties include the construction of the sparse coefficient matrix
corresponding to the Neumann problem and the computation of its sparse Cholesky
factorization in lines 1 and 2, respectively. At the coarse-grid preconditioning level,
a basis of the coarse-grid correction space is first computed in line 3. Once the
contributions from each subdomain to the coarse-grid coefficient matrix are computed
in line 4, the MPI task in charge of it then gathers these contributions and performs
the matrix assembly corresponding to R0i in order to build S0 in lines 5 and 6,
respectively. Finally, the MPI task in charge of the coarse-grid problem performs a
sparse Cholesky factorization of S0 (see line 7).

Algorithm 8 first injects the residual into the BDDC correction space via It (see
line 1). On the one hand, fine-grid preconditioning level duties include the extraction
of a correction from the fine-grid space by means of the solution of local Neumann
problems (see line 2). On the other hand, coarse-grid correction duties encompass
lines 3-8. Once the contributions from each subdomain to the coarse-grid residual are
computed in line 3, the MPI task in charge of it then gathers these contributions and
performs the vector assembly associated to R0i in order to build r0 in lines 4 and 5,
respectively. The MPI task in charge of the coarse-grid linear system solves it by
means of sparse forward/backward substitution, and then this solution is scattered
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Algorithm 7: MBDDC set-up (numerical)

1: Construct A
(i)
F =

 A
(i)
II A

(i)
IΓ 0

A
(i)
ΓI A

(i)
ΓΓ Ct

i

0 Ci 0


2: Num fact(A

(i)
F )

3: Solve

 A
(i)
II A

(i)
IΓ 0

A
(i)
ΓI A

(i)
ΓΓ Ct

i

0 Ci 0


 Φ

(i)
I

Φ
(i)
Γ

Λ(i)

 =

 0
0

Id(i)


4: Compute S

(i)
0 ← Φ(i)tA(i)Φ(i) = Φ(i)t(−CT

i Λ(i))

5: Gather S
(i)
0 GC

6: Compute S0 ←
∑nsbd

i=1 Rt
0iS

(i)
0 R0i

7: Num fact(S0)

from this task to all subdomains, so that all subdomains get the coarse-grid correction
on its local coarse DoFs. The solution on the local coarse DoFs is then extended to
subdomain interior nodes in line 8. Finally, both corrections are injected into the
original space of vectors via the weighting operator I (see line 9).

Algorithm 8: z := M−1
BDDCr

1: Compute r(i) ← Iti r LC

2: Solve

 A
(i)
II A

(i)
IΓ 0

A
(i)
ΓI A

(i)
ΓΓ Ct

i

0 Ci 0


 t

s
(i)
F

λ

 =

 0
r(i)

0


3: Compute r

(i)
0 ← Φ(i)tr(i)

4: Gather r
(i)
0 GC

5: Compute r0 ←
∑nsbd

i=1 Rt
0ir

(i)
0

6: Solve S0z0 = r0

7: Scatter z0 into z
(i)
0 , i = 1, 2, . . . , nsbd

8: Compute s
(i)
C ← Φ(i)z

(i)
0

9: Compute z(i) ← Ii(s
(i)
F + s

(i)
C ) LC

At the fine-grid preconditioning level, the bulk of the computation is concentrated
in lines 3, 2, and 2 of Algorithms 6, 7, and 8, respectively. Complexities for these
computations are given in Table 3.2, with n the number of local DoFs in a subdomain
(see Remark 3.1). At the coarse-grid preconditioning level, it is concentrated in line 12
of Algorithm 6, in lines 3, and 7 of Algorithm 7, and in line 6 of Algorithm 8, with n
in Table 3.2 the global number of coarse DoFs (except for line 3 of Algorithm 7 where
n is equal to the number of local DoFs in a subdomain).6

Remark 3.1. The implementation of BDDC within our codes follows the strategy

6 The global number of coarse DoFs is in turn proportional to the number of subdomains in the
partition for structured meshes [4]. However, we have experimentally observed a super-linear growth
of coarse DoFs with the number of subdomains when using automatic partitioning (see [2, 3]).
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comprehensively covered in [4] (and originally presented in [9]) in order to transform
lines 2 and 3 of Algorithm 7, and line 2 of Algorithm 8 in a four-step process, where
the computational bulk is concentrated in the factorization and solution, respectively,
of a local symmetric positive definite linear system. The size of this latter system is
equivalent for BDDC(c), BDDC(ce), and BDDC(cef).

3.2. Tackling bottlenecks associated to the solution of the coarse-grid
problem. In this section we comparatively overview two parallel distributed-memory
implementation approaches for BDDC. First, a typical implementation approach of
DD methods with two-level structure is covered.7 Then, our novel parallelization
approach is presented.

Figure 3.1 illustrates a typical implementation approach of two-level DD meth-
ods. On a first fine-grid preconditioning level, the subdomains resulting from the
non-overlapping partition of the global domain are mapped to the MPI tasks, with
a one-to-one mapping among subdomains, MPI tasks and computational cores of
the underlying distributed-memory computer. On this level, both computation and
message-passing among MPI tasks are inherently of local nature, therefore, highly
parallel. On the second level, the one corresponding to the global coupling among
subdomains, the coarse-grid problem is assembled and solved serially on one of the
MPI tasks (or redundantly solved serially in all MPI tasks of the main MPI commu-
nicator [4]) and therefore no parallelism is exploited at all.

global communication

fine-grid
correction

coarse-grid
correction

c
o
re

 1

c
o
re

 2

c
o
re

 3

c
o
re

 4

c
o
re

 P

TC

TF

time

idling

main MPI communicator

Fig. 3.1. Typical parallel distributed-memory implementation of Algorithms 6, 7 and 8.

In Figure 3.1, the fine-grid and coarse-grid computations are serialized in time,
when there are actually many chances to perform some of these computations in par-
allel. For example, in Algorithm 8, there is no data dependency among lines 2 and 6.
We refer the reader to Section 3.3 for a comprehensive treatment of parallelism oppor-
tunities within BDDC preconditioning. Besides, as the fine and coarse-grid corrections
are solved serially, the amount of parallel overhead caused by idle MPI tasks grows
with the same order of complexity as that of the complexity of the solver applied
to the coarse-grid problem. What is more problematic, given the memory available
per core in current multicore-based distributed-memory architectures (in the range
1-4 GBytes per core) and the order of memory complexity of sparse direct methods

7This implementation approach is followed by state-of-the art numerical libraries such as
PETSc [5] or Freefem++ [17].
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when applied to the coarse-problem, it is evident that for large-scale simulations the
Cholesky factor of the coarse-grid matrix will no longer fit into the memory available
per core. This does not only imply an inefficient usage of the underlying computa-
tional resources, but that the problem at hand cannot be solved. This bottleneck
will become even more severe in the near future, given the current design trend of
adding more and more cores at the node level. A multilevel extension [23, 28, 30] of
the two-level BDDC preconditioner and/or a distributed-memory solver for the coarse
problem [16, 24, 28] can reduce the effect of these bottlenecks, but still is not possible
to get rid of the parallel overhead associated to idle MPI tasks.

In order to tackle the aforementioned bottlenecks, we propose the novel imple-
mentation approach illustrated in Figure 3.2. The global set of MPI tasks (i.e., the
global MPI communicator) is split into those that have duties on the fine-grid pre-
conditioning level (fine-grid MPI communicator), and those that have duties on the
coarse-grid one (coarse-grid MPI communicator), so that the computation of fine-grid
and coarse-grid corrections can be overlapped in time. Besides, as there are separate
tasks devoted to the solution of the coarse-grid problem, additional node(s) resources
(memory and cores) can be allocated for this computation. The hope is that now
the number of tasks devoted to fine-grid duties (PF) and coarse-grid duties (PC) can
always be tuned for the problem at hand so that the coarse-grid computations are
(completely) masked due to the effect of overlapping. The degree of success of this
approach depends though on a number of factors such as, e.g., subdomain size/load
per core or the parallel scalability of the coarse-grid solver. Finally, we would like
to stress that the approach can also be applied in a multilevel setting [23, 28, 30] (by
splitting recursively the coarse-grid communicator into two additional communica-
tors), although only two-level preconditioning is explored in this work.
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Fig. 3.2. Highly scalable parallel distributed-memory implementation of Algorithms 6, 7 and 8.
It combines two novel implementation techniques: overlapping in time of fine-grid/coarse-grid du-
ties, and a parallel (a) multi-threaded or (b) distributed-memory solver for the coarse-grid problem.

Figure 3.2 illustrates two possible approaches for the parallel solution of the
coarse-grid problem. In Figure 3.2 (a), the task devoted to coarse-grid duties exploits
multithreading within a dedicated node using an OpenMP coarse-grid solver. In Fig-
ure 3.2 (b), this approach is generalized into a MPI-based solution that distributes
the coarse-grid problem (possibly) spanning multiple nodes. The former approach is
(significantly) easier to code than the latter, and can already efficiently solve very
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large-scale problems (as shown in Section 4). The latter approach is not explored
here, and is left as future work for the solution of extremely large-scale problems.

3.3. Computation/communication re-scheduling and mapping. In order
to extract the maximum performance benefit from the techniques proposed in Sec-
tion 3.2, the different computations and communications arising in Algorithms 1 and 2
(and their basic building blocks in Section 3.1.1 and 3.1.2) have to be re-scheduled
and mapped to the MPI tasks in such a way that the maximum degree of overlapping
among fine-grid and coarse-grid duties is achieved. This non-trivial exercise considers
these computations/communications as a whole (instead of being part of separated
algorithms) and modifies the order in which they are scheduled while taking care of
data dependencies among them. The solution that we have designed is depicted in
Table 3.3.

Table 3.3 clearly evidences three areas or regions, separated by global communi-
cation stages, where overlapping among fine-grid and coarse-grid duties is possible.
These three areas encompass the most three computationally-dominant operations of
the coarse-grid preconditioning level:

• Overlapping area #1: the reordering and symbolic factorization of GS0
is

overlapped with lines 2-3 of Algorithm 6, Algorithm 3, and the start of Al-
gorithm 7 (lines 1-4). In 3D, the complexity of the former computation is

O(n
4
3 ), with n being ncts, while that of the most computationally dominants

from the latter set, O(n
4
3 ), O(n

4
3 ), O(n2), and O(n

4
3 ), with n being ni.

• Overlapping area #2: the assembly and numerical factorization of S0 is over-
lapped with Algorithm 4, and those communications/computations preceding
the gathering of coarse-grid residual contributions within the first application
of the preconditioner in line 2 of Algorithm 2. These encompass line 3 of Al-
gorithm 1, line 1 of Algorithm 2 and lines 1 and 3 of Algorithm 8. The most
computationally dominant computation of the former set grows as O(n2),
with n being ncts, while the latter also grows as O(n2), but with n being ni.

• Overlapping area #3: the assembly of r0 and the solution of the coarse-grid
linear system is overlapped with the computation of the fine-grid correction.
The most computationally dominant operation in both sets grows as O(n

4
3 ),

with n being ncts and ni, respectively.

Summarizing, the three overlapping regions have the same order of complexity
for both the coarse and fine component, the difference being that the fine component
depends on the local problem size (load per processor) whereas the coarse one grows
with the number of coarse DoFs (which increase with the number of processors).

Table 3.3 as a whole only considers the S and MBDDC set-up stages and the header
of the PCG phase. During the PCG loop, overlapping among fine-grid/coarse-grid
duties is present within each application of the preconditioner (line 8 of Algorithm 2),
as depicted on the region of Table 3.3 below the dashed horizontal line. Overall, the
main conclusion that can be extracted from Table 3.3 is that there are great chances
for overlapping in the solution of linear systems via BDDC preconditioning.

3.4. Code implementation details. The techniques proposed in Section 3.2
and 3.3 have been implemented in the FEMPAR (FE Multiphysics and massively
PARallel) numerical software. FEMPAR is an in-house developed, parallel hybrid
OpenMP/MPI, object-oriented (OO) framework which, among other features, pro-
vides the basic tools for the efficient parallel distributed-memory implementation of
sub-structuring DD solvers [4]. Before this work, FEMPAR provided a typical parallel
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Fine-grid MPI tasks Coarse-grid MPI task

Identify and count (ni
cts) local coarse DoFs

Gather ni
cts

Gather global identifiers of geometric entities of each coarse DoF
Compute a global ordering of coarse DoFs

(define R0i and its transpose)
Scatter global ordering of coarse DoFs

Fetch ni
cts of/from my neighbours

Fetch global identifiers of the coarse DoFs of
my neighbours

Compute row counts/adjacency lists of GS0

for local coarse DoFs
Gather row counts/adjacency lists of GS0

Construct G
A

(i)
F

Reord+Symb fact(GS0 )

Reord+Symb fact(G
A

(i)
F

)

GA(i) →

 G
A

(i)
II

G
A

(i)
IΓ

G
A

(i)
ΓI

G
A

(i)
ΓΓ


Reord+Symb fact(G

A
(i)
II

)

Construct A
(i)
F

Num fact(A
(i)
F )

Solve A
(i)
II A

(i)
IΓ 0

A
(i)
ΓI A

(i)
ΓΓ Ct

i
0 Ci 0


 Φ

(i)
I

Φ
(i)
Γ

Λ(i)

 =

 0
0

Id(i)


Compute

S
(i)
0 ← Φ(i)tA(i)Φ(i) = Φ(i)t(−CT

i Λ(i))

Gather S
(i)
0

A(i) →
[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

]
Compute S0 ←

∑nsbd
i=1 Rt

0iS
(i)
0 R0i

Num fact(A
(i)
II ) Num fact(S0)

g := fΓ −AΓIA
−1
II fI

r0 := g − Sx0

Compute r(i) ← Iti r

Compute r
(i)
0 ← Φ(i)tr(i)

Gather r
(i)
0

Solve A
(i)
II A

(i)
IΓ 0

A
(i)
ΓI A

(i)
ΓΓ Ct

i
0 Ci 0


 t

s
(i)
F
λ

 =

 0

r(i)

0

 Compute r0 ←
∑nsbd

i=1 Rt
0ir

(i)
0

Solve S0z0 = r0

Scatter z0 into z
(i)
0 , i = 1, 2, . . . , nsbd

Compute s
(i)
C ← Φ(i)z

(i)
0

Compute z(i) ← Ii(s
(i)
F + s

(i)
C )

Table 3.3
Mapping of Algorithms 1 and 2 and its basic building blocks in Section 3.1.1 and 3.1.2 to

fine-grid and coarse-grid MPI tasks to achieve the maximum degree of overlapping in time.

distributed-memory implementation of two-level DD preconditioning. The implemen-
tation of the techniques proposed in this work required significant code re-factoring
within FEMPAR, as these techniques involve a switch from a classical SPMD (Single
Program Multiple Data) model of parallel execution to a less standard MPMD model
of execution. The following development tasks were (essentially) performed within
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FEMPAR.
Task 1. Implementation of two different paths/fluxes for the MPI tasks, the one

corresponding to the fine-grid tasks and that followed by the MPI task devoted to
coarse-grid duties. The global communicator is split into a sub-communicator which
includes the former tasks and another sub-communicator which includes the latter
task. All communication/computation subroutines in the FEMPAR stack were clas-
sified into those which have only to be executed by fine-grid tasks (e.g., a global
reduction for the computation of a scalar product, sparse matrix-vector multiplica-
tion), those which have only to be performed by the dedicated coarse-grid task (e.g.,
solution of the coarse-grid problem) and those which have to be executed by both
fine-grid and coarse-grid tasks (e.g, the assembly of the coarse-grid problem on the
dedicated MPI task from data distributed over the fine-grid tasks). The data flow
in such a way that all subroutines have access to the global communicator and both
sub-communicators. The rank of the MPI tasks on each communicator and the kind
of subroutine determines the action to be performed by each task. For example, when
the coarse-grid task enters a subroutine that has to be executed only by fine-grid
tasks, the subroutine immediately returns the control to the calling subroutine on the
coarse-grid task. As a result of this approach, the fine-grid tasks and the coarse-grid
task follow different paths in the code, so that the desired overlapping effect can be
achieved.

Task 2. Explicit change of the order in which some subroutines are called within
the DD codes. For example, the classical order in Algorithm 8: (1) computation of
the fine-grid correction; (2) gather/assembly of the coarse-grid residual; (3) solution
of the coarse-grid problem; and (4) scatter of the solution, is rescheduled in such a way
that (2) is performed before (1) so that (1) and (3) can be performed in parallel. A
similar strategy was followed for the subroutines implementing the rest of algorithms.

Task 3. Replacement of MPI-1 intracommunicators by MPI-2 intercommunica-
tors (see [14, 15]) in order to accurately capture the communication pattern among
the fine-grid and coarse-grid tasks where appropriate (e.g., for transferring coarse-grid
residual contributions from the fine-grid tasks to the coarse-grid task).

Task 4. Design of solutions in order to let the coarse-grid task have access to
data available only on the fine-grid tasks. The data distribution is such that the
coarse-grid task does not have access to data related to the fine-grid preconditioning
level. For example, the coarse-grid task does not hold on its memory space a piece of
the fine-grid residual, so that it does not participate in the evaluation of its 2-norm,
and thus cannot decide whether the PCG iteration converged or not. We had to
extend our templated implementation of Krylov subspace solvers within FEMPAR so
that a new templated subroutine associated to the preconditioner allows to transfer
data from the fine-grid tasks to the coarse-grid task. Any preconditioner object (e.g.,
BDDC) that specializes FEMPAR’s templated Krylov subspace solvers has to provide
a new method which is in charge of this data transfer. This is easy to implement as
the preconditioner object has access to the MPI sub-communicators that split the
global communicator into fine-grid/coarse-grid tasks.

4. Numerical experiments. In this section we evaluate the weak scalability
of the proposed highly scalable parallel distributed-memory implementation of the
BDDC method, and compare it to that of the typical parallel implementation, for the
3D Poisson and linear elasticity problems on structured and unstructured meshes.

4.1. Experimental framework. The parallel codes in FEMPAR heavily use
standard computational kernels provided by highly-efficient vendor implementations
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of the BLAS. Besides, through proper interfaces to several third party libraries, the
local fine-grid and the global coarse-grid problems in two-level DD methods can be
solved by either sparse direct or approximate solvers. In this work, we explore PAR-
DISO [26, 27] software package for the direct solution of these problems. PARDISO
provides highly-efficient parallel multi-threaded code implementations of sparse direct
solvers.

All experiments reported in this section were obtained on a pair of similar large-
scale multicore-based distributed-memory machines:

• HELIOS, located in Rokkasho (Japan) at the Computer Simulation Centre
(CSC) of the International Fusion Energy Research Centre (IFERC). HELIOS
features 4,410 bullx B510 compute blades, arranged in a QDR Infiniband in-
terconnected cluster architecture. Each blade is equipped with two Intel Xeon
E5-2680 eight-core processors running at 2.7 GHz (16 computational cores in
total) and 64 GBytes of DDR3 memory (4GBytes per core), and runs a bullx
SUperCOmputer Suite A.E.2.1 operating system. The codes were compiled
using Intel Fortran compiler (12.1.6) with recommended optimization flags
and we used bullxmpi (1.1.16.5) tools and libraries for native message-passing.
The codes were linked against the BLAS/LAPACK, PARDISO available on
the Intel MKL library (version 10.3, build 12),

• CURIE, located in Bruyères-le-Châtel (France) at the Très Grand Centre
de Calcul (TGCC) of the French Alternative Energies and Atomic Energy
Commission (CEA). CURIE features 5,040 B510 bullx nodes, with a very
close hardware architecture and software stack to that of HELIOS. However,
slightly older versions of the Intel Fortran compiler (12.1.0) and the Intel
MKL library (version 10.3, build 7) are installed by default on CURIE.

4.2. BDDC for 3D Poisson with structured meshes on HELIOS. In this
section we evaluate the weak scalability of the codes subject of study when applied to
the solution of the Poisson problem on a rectangular prism Ω = [0, 2]× [0, 1]× [0, 1].
We consider a global conforming uniform mesh (partition) of Ω into hexahedra and a
trilinear FE discretization (i.e., Q1 FEs). The 3D mesh is partitioned into cubic grids
of P = 4m× 2m× 2m cubic subdomains. These subdomains are handled by as many
MPI tasks as subdomains, which are distributed over m3 = 23, 33, . . . , 123 compute
blades (128, 432, . . . , 27648 cores), with 4 × 2 × 2 subdomains/MPI Ranks per blade
and one MPI Rank per core. In the case of the typical parallel implementation, the
coarse-grid problem is handled by one of the tasks that also handles a subdomain.
However, for our novel parallel implementation, an additional MPI task is spawn
in order to perform coarse-grid related computations. This coarse-grid MPI task
is mapped to an additional blade and has full access to its memory (64 GBytes)
and computational resources (16 cores). The multi-threaded sparse direct solvers in
PARDISO are employed for the solution of the coarse-grid problem. PARDISO is
mapped within this node such that one thread is executed per core. The number of
threads/cores considered in the study will be 1, 2, 4, 8, and 16.

The quotient among subdomain and mesh characteristic sizes, i.e., H
h , provides

a measure of the local problem size.8 The number of FEs (i.e., hexaedra) on each
local cubic subdomain is indeed H

h ×
H
h ×

H
h , and that of the global mesh is given

by 4mH
h × 2mH

h × 2mH
h . The experiments performed in this section are selected in

8The number of subdomains is nsbd = O(H−d) and the size of the global problem (2.1) is
n = O(h−d). Thus, the local problem size is O((H

h
)d).



18 SANTIAGO BADIA, ALBERTO F. MARTÍN AND JAVIER PRINCIPE

order to evaluate at which rate the total computation time (i.e., that spent in all
phases of Algorithm 1) evolves with fixed H

h and increasing number of cores (within
the aforementioned range).9 As the trade-off among the factors determining the
scalability of the codes depends on H

h , we perform the study with several values of

fixed problem size H
h = 10, 20, 30, and 40.

4.2.1. Preliminary experimental study of overlapping areas. In order to
preliminary assess the potential behind the techniques proposed in Section 3 to tackle
the bottleneck associated to the computations in the coarse-grid preconditioning level,
we consider the three overlapping areas in isolation, and measure the computation
time of those operations that are related to the fine-grid preconditioning level (left
side of the overlapping areas in Table 3.3), and those related to the coarse-grid problem
(right side of the overlapping areas in Table 3.3).

Figure 4.1 reports the results of this preliminary experimental study for the three
overlapping areas (from left to right: area #1, #2 and #3) and the BDDC(c),
BDDC(ce), and BDDC(cef) solvers (from top to bottom) applied to the 3D Pois-
son problem on HELIOS. In each plot of Figure 4.1, the lines parallel to the x-axis
report the time spent in fine-grid preconditioning level computations with increasing
loads per core (from 103=1K to 403=64K FEs per core). This magnitude is constant
(i.e., does not depend on the number of subdomains) because computation and com-
munication on this level is local and therefore highly parallel/scalable. On the other
hand, computation times for the coarse-grid preconditioning level are reported for 1,
2, 4, 8 and 16 cores exploited within the blade devoted for these computations, except
for overlapping area #1 (first column of Figure 4.1), as the reordering and symbolic
factorization phase is not parallelized within PARDISO.

Let us now focus the discussion on the results achieved with the BDDC(c) solver
(i.e., first row of Figure 4.1). The main conclusion that can be extracted from over-
lapping area #1 (i.e., first column) is that with a relatively small load of 8K FEs
per core, the reordering and symbolic factorization of GS0

can be completely masked
up to 27K cores. This is because the computational time of the latter coarse-grid
computation grows at a very moderate pace with the number of subdomains, but
also because it can be overlapped with a large bunch of fine-grid computations (in
particular, the reordering and symbolic factorization of the graphs associated to the
Dirichlet/Neumann problems, the numerical factorization of the coefficient matrix
associated to the Dirichlet problem, and the local computation of the coarse-grid cor-
rection space basis vectors). For overlapping area #2, the numerical factorization of
S0 grows more rapidly with the number of subdomains (in particular as the square of
the number of subdomains). If only one core is used for the numerical factorization of
S0, a larger load of 27K FEs per core is required to completely mask this computation.
However, using additional cores for the coarse-grid problem, we can progressively get
rid of this increase until finally 4 cores are already sufficient to completely mask this
computation with a load of 8K FEs per core. A similar observation can be made for
overlapping area #3.

The results achieved with the BDDC(ce) and BDDC(cef) solvers are reported on
the second and third row of Figure 4.1, respectively. Additional continuity constraints
for the BDDC correction space (i.e., continuity of mean values on edges, and continu-
ity of mean values on edges and faces, respectively) result in increased preconditioning

9Ideally, the total computation time should remain constant under this scenario, meaning that the
algorithm-code-architecture combination has the ability to still be 100% efficient in the exploitation
of additional computational resources for the solution of proportionally larger problems.



A HIGHLY SCALABLE PARALLEL IMPLEMENTATION OF BDDC 19

 0 1 2 3 4 5 6

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
1.

 B
D

D
C

(c
)

1K
 F

E
s/

co
re

8K
 F

E
s/

co
re

27
K

 F
E

s/
co

re
64

K
 F

E
s/

co
re

 0 1 2 3 4 5 6

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
1.

 B
D

D
C

(c
)

C
-g

 0

 0
.5 1

 1
.5 2

 2
.5 3

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
2.

 B
D

D
C

(c
)

1K
 F

E
s/

co
re

8K
 F

E
s/

co
re

27
K

 F
E

s/
co

re
64

K
 F

E
s/

co
re

 0

 0
.5 1

 1
.5 2

 2
.5 3

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
2.

 B
D

D
C

(c
)

C
-g

 o
n 

1 
co

re
(s

)
C

-g
 o

n 
2 

co
re

(s
)

C
-g

 o
n 

4 
co

re
(s

)
C

-g
 o

n 
8 

co
re

(s
)

C
-g

 o
n 

16
 c

or
e(

s)

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

 0
.0

8

 0
.0

9

 0
.1

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
3.

 B
D

D
C

(c
)

1K
 F

E
s/

co
re

8K
 F

E
s/

co
re

27
K

 F
E

s/
co

re
64

K
 F

E
s/

co
re

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

 0
.0

8

 0
.0

9

 0
.1

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
3.

 B
D

D
C

(c
)

C
-g

 o
n 

1 
co

re
(s

)
C

-g
 o

n 
2 

co
re

(s
)

C
-g

 o
n 

4 
co

re
(s

)
C

-g
 o

n 
8 

co
re

(s
)

C
-g

 o
n 

16
 c

or
e(

s)

 0 1 2 3 4 5 6

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
1.

 B
D

D
C

(c
e)

1K
 F

E
s/

co
re

8K
 F

E
s/

co
re

27
K

 F
E

s/
co

re
64

K
 F

E
s/

co
re

 0 1 2 3 4 5 6

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
1.

 B
D

D
C

(c
e)

C
-g

 0

 0
.5 1

 1
.5 2

 2
.5 3

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
2.

 B
D

D
C

(c
e)

1K
 F

E
s/

co
re

8K
 F

E
s/

co
re

27
K

 F
E

s/
co

re
64

K
 F

E
s/

co
re

 0

 0
.5 1

 1
.5 2

 2
.5 3

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
2.

 B
D

D
C

(c
e) C
-g

 o
n 

1 
co

re
(s

)
C

-g
 o

n 
2 

co
re

(s
)

C
-g

 o
n 

4 
co

re
(s

)
C

-g
 o

n 
8 

co
re

(s
)

C
-g

 o
n 

16
 c

or
e(

s)

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

 0
.0

8

 0
.0

9

 0
.1

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
3.

 B
D

D
C

(c
e)

1K
 F

E
s/

co
re

8K
 F

E
s/

co
re

27
K

 F
E

s/
co

re
64

K
 F

E
s/

co
re

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

 0
.0

8

 0
.0

9

 0
.1

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
3.

 B
D

D
C

(c
e)

C
-g

 o
n 

1 
co

re
(s

)
C

-g
 o

n 
2 

co
re

(s
)

C
-g

 o
n 

4 
co

re
(s

)
C

-g
 o

n 
8 

co
re

(s
)

C
-g

 o
n 

16
 c

or
e(

s)

 0 1 2 3 4 5 6

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
1.

 B
D

D
C

(c
ef

)

1K
 F

E
s/

co
re

8K
 F

E
s/

co
re

27
K

 F
E

s/
co

re
64

K
 F

E
s/

co
re

 0 1 2 3 4 5 6

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
1.

 B
D

D
C

(c
ef

)

C
-g

 0 1 2 3 4 5 6 7

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
2.

 B
D

D
C

(c
ef

)

1K
 F

E
s/

co
re

8K
 F

E
s/

co
re

27
K

 F
E

s/
co

re
64

K
 F

E
s/

co
re

 0 1 2 3 4 5 6 7

12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
2.

 B
D

D
C

(c
ef

) C
-g

 o
n 

1 
co

re
(s

)
C

-g
 o

n 
2 

co
re

(s
)

C
-g

 o
n 

4 
co

re
(s

)
C

-g
 o

n 
8 

co
re

(s
)

C
-g

 o
n 

16
 c

or
e(

s)

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
.1

2

 0
.1

4

 0
.1

6

 0
.1

8 12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
3.

 B
D

D
C

(c
ef

)

1K
 F

E
s/

co
re

8K
 F

E
s/

co
re

27
K

 F
E

s/
co

re
64

K
 F

E
s/

co
re

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
.1

2

 0
.1

4

 0
.1

6

 0
.1

8 12
8

2K
3.

5K
5.

5K
8K

11
.7

K
16

K
21

.3
K

27
.6

K

Wall clock time (secs.)

#c
or

es

O
ve

rla
pp

in
g 

ar
ea

 #
3.

 B
D

D
C

(c
ef

)

C
-g

 o
n 

1 
co

re
(s

)
C

-g
 o

n 
2 

co
re

(s
)

C
-g

 o
n 

4 
co

re
(s

)
C

-g
 o

n 
8 

co
re

(s
)

C
-g

 o
n 

16
 c

or
e(

s)

F
ig
.
4
.1

.
C

o
m

p
u

ta
ti

o
n

ti
m

es
o

f
fi

n
e-

gr
id

a
n

d
co

a
rs

e-
gr

id
(C

-g
)

co
m

p
u

ta
ti

o
n

s
fo

r
th

e
th

re
e

o
ve

rl
a

p
p

in
g

a
re

a
s

(f
ro

m
le

ft
to

ri
gh

t:
a

re
a

#
1

,
#

2
a

n
d

#
3

)
a

n
d

th
e

B
D

D
C

(c
),

B
D

D
C

(c
e)

,
a

n
d

B
D

D
C

(c
ef

)
so

lv
er

s
(f

ro
m

to
p

to
bo

tt
o

m
)

a
p

p
li

ed
to

th
e

3
D

P
o

is
so

n
p

ro
bl

em
o

n
H

E
L

IO
S

.



20 SANTIAGO BADIA, ALBERTO F. MARTÍN AND JAVIER PRINCIPE

robustness at the price of a larger, with a denser stencil, coarse-grid problem.10 This
does not actually affects the complexity of the phases in a sparse direct solver when
applied to the coarse-grid problem, but the constant that determines the computa-
tion times observed in practice. This is immediately observed in Figure 4.1, e.g., in
overlapping area #1, where the computation time spent in the symbolic factoriza-
tion of GS0

grows more rapidly for BDDC(ce) versus BDDC(c), and for BDDC(cef)
versus BDDC(ce) . Note that additional continuity constraints do not actually in-
crease the computation time spent in fine-grid calculations within overlapping areas
#1 and #3. As pointed out in Remark 3.1, the size of the (symmetric positive defi-
nite) matrix that its symbolically and numerically factorized in overlapping area #1,
and extensively that of the local linear system which is solved during overlapping area
#3, is equivalent for the BDDC(c), BDDC(ce) and BDDC(cef) solvers, justifying this
observation.

As a consequence of these factors, the balance achieved among the computation
time of fine-grid/coarse-grid computations for BDDC(ce) and BDDC(cef) solvers is
altered in such a way that, e.g., in overlapping area #1, a load of 27K FEs per core is
not sufficient to completely mask the symbolic factorization of GS0

beyond 16K and
8K cores for the BDDC(ce) and BDDC(cef), respectively. If we turn our attention to
overlapping areas #2 and #3, we can conclude that it is highly advisable to exploit
16 cores for the numerical factorization and solution of the coarse-grid problem. With
a load of 27K FEs per core, this is not even sufficient to completely mask coarse-grid
computations beyond 21.3K and 16K cores for BDDC(ce) and overlapping areas #2
and #3, respectively, and beyond 16K and 11.7K cores for BDDC(cef). However, if
the load is scaled up to 64K FEs per core, the coarse-grid computations in all three
overlapping areas are completely masked for both BDDC(ce) and BDDC(cef) solvers.
We note that this is not such a large load per core, as 550 MBytes are approximately
consumed per core on the fine-grid tasks, compared to the 1-4 Gbytes of memory
available per core in current multicore-based distributed-memory machines. In other
words, by means of a further increase in the load per core, there is still chance for the
proposed techniques to be effective in the solution of larger-scale 3D Poisson problems
on larger number of cores.

4.2.2. Raw weak scalability. Figures 4.2 (a), (b), and (c) compare the weak
scalability for the total computation time (in seconds) of the typical parallel im-
plementation (curves labeled as “no overlapping”) to that of our novel parallel im-
plementation with additional number of cores devoted to the multi-threaded solu-
tion of the coarse-grid problem (curves labeled as “Coarse-grid on c core(s)”, with
c = 1, 2, . . . , 16), for the BDDC(c), BDDC(ce) and BDDC(cef) solvers, respectively.
We did not run the typical parallel implementation beyond the 5.5K core limit be-
cause we were limited in the consumption of the underlying parallel resources. In
line 4 of Algorithm 1, we set the initial solution vector guess x0 = 0, and the PCG
iteration (see Algorithm 2) is stopped whenever the residual rk at a given iteration
k satisfies ‖rk‖2 ≤ 10−6‖r0‖2. This set-up also applies to the rest of experiments in
this paper.

Figure 4.2 (a) reveals a significant improvement of the scalability of our novel
implementation of the BDDC(c) solver compared to that of the typical parallel im-
plementation with the smallest load of 1K FEs per core. For such a small load per

10For example, adding edge constraints to a correction space which only enforces continuity of
values across corners, is similar to the effect of having tricuadratic elements on the coarse-grid mesh
instead of trilinear ones [4].
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Fig. 4.2. Weak scalability for the total computational time of the (a) BDDC(c), (b) BDDC(ce),
and (c) BDDC(cef) solvers for the 3D Poisson problem on HELIOS. Left: H

h
= 10, 20. Right:

H
h

= 30, 40. The parallel multi-threaded sparse direct solution of the coarse-grid linear system was
mapped to an additional blade. Weak scaling curves are reported for 1, 2, 4, 8 and 16 cores exploited
within this blade.

core, the balance among the computation times of fine-grid and coarse-grid com-
putations is such that the latter dominates the total computation time, justifying
(part of) the loss of parallel efficiency that we observe with increasing number of
cores. However, with the help of the novel techniques proposed in this paper, we
can observe a first scalability boost due to the effect of overlapping, and a further
improvement using additional cores for the coarse-grid problem. With a larger load
of 8K FEs per core, overlapping just suffices to mask coarse-grid computations up to
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11.7K cores.11 Beyond this limit, additional cores have to be employed in the solution
of the coarse-grid problem, as expected by our experimental study with overlapping
areas in Section 4.2.1. With larger loads per core (i.e., 27K/64 FEs per core), it can be
observed that the proposed techniques are highly successful in tackling the coarse-grid
problem bottlenecks up to 27K cores, as any loss of parallel efficiency only depends on
how fast the BDDC(c)-PCG achieves an asymptotically constant converge rate with
the number of cores.

The reader may have realized that we did not report the results with the smallest
load of 1K FEs per core for the BDDC(ce) and BDDC(cef) solvers in Figures 4.2 (b)
and (c), respectively. This is justified by the fact that the curves corresponding
to this load were almost coincident to those of the 8K FEs per core (specially for
the BDDC(cef) solver). This observation reveals that using such small loads per core
results in the coarse-grid computations largely dominating the total computation time.
On these scenarios, overlapping has little impact on improving the scalability of the
whole solution process, and any scalability boost mainly comes from the exploitation
of additional cores for the coarse-grid problem, as observed in the left-hand side of
Figures 4.2 (b) and (c). However, as the load per core is increased in the right
side of Figures 4.2 (b) and (c), the combination of both overlapping and a parallel
multi-threaded sparse direct solver becomes increasingly more effective to mask the
extra costs associated to the the coarse-grid problem, until finally these extra costs
are completely masked up to 27K cores using the largest load of 64K FEs/core. For
example, to have an idea of the significance of this result, in Figure 4.2 (b), a problem
with 8.2 MDoFs was solved in the same time (approximately 10 seconds) on 128 cores
than a problem with 1769 MDoFs (i.e., 216 larger) on 27K cores.

Although actually not observed in Figure 4.2 (as we did not run the typical
parallel implementation beyond 5.5K cores), we stress that the proposed techniques
also allow to scale much further in the number of cores and size of the global problem,
as the typical implementation exhausts the memory of one core much more rapidly
than the highly-scalable implementation does with the memory of one node, specially
with “large” (i.e., relatively to the memory capacity per core) loads per core.

4.3. BDDC for 3D linear elasticity with structured meshes on HE-
LIOS. In this section we evaluate the weak scalability of the codes subject of study
when applied to a vector-valued problem, the numerical approximation of the (com-
pressible) linear elasticity PDE (with Lamé parameters equal to one) using Q1 FEs
on a rectangular prism Ω = [0, 2]× [0, 1]× [0, 1]. The same experiment set-up to that
selected for the Poisson problem (see Section 4.2) is considered here, but we now set
H
h = 35 (i.e., 43K FEs/core) as the largest local problem size. This load per core is

smaller than the largest one considered for the Poisson problem (i.e., H
h = 40). The

linear elasticity problem is a vector-valued problem with 3 unknowns per FE mesh
node. This implies that, for a given FE mesh (i.e., that corresponding to the local
Dirichlet/Neumann problems, or the global coarse-grid problem), the size of the dis-
crete operator is 3 times larger to that of the Poisson problem, and has 9 times more
nonzero entries. Roughly speaking, these factors also apply to the sparse Cholesky
factor of the discrete operators. Indeed, with H

h = 35 the memory consumption per

fine-grid task is approximately 2.7 GBytes, compared to the 550 MBytes for H
h = 40

11We stress that the loss of parallel efficiency observed in the figure up to this core limit is
completely due to the fact that the BDDC(c)-PCG solver did not yet reach an asymptotically constant
convergence rate.
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in the case of the Poisson problem.

Figure 4.3 compares the weak scalability of both parallel implementations when
applied to the linear elasticity problem. Although not reported here for brevity,
we also studied the overlapping areas in isolation in the case of the linear elasticity
problem. Overall, very similar observations from those made in Figure 4.2 can be
made, with subtle differences, as the balance among the constants that determine
the actual communication/computation times of the basic building blocks, and thus
the scalability of both solutions, is affected by the switch from 1 to 3 unknowns per
FE mesh node. For scenarios (largely) dominated by coarse-grid computations, as
e.g., the left-hand sides of Figure 4.3 (b) and (c), (almost) any boost in the parallel
scalability comes from the exploitation of multi-threading parallelism for the solution
of the coarse-grid problem. However, for a “sufficiently large load per core” (e.g., 8K
FEs per core in the left side of Figure 4.3 (a), or 30K FEs per core in the right side
of Figures 4.3 (b) and (c)) just overlapping is already highly successful in tackling
the extra costs associated to the solution of the coarse-grid problem within a first
range of cores. Beyond this range, the combination of both techniques is required to
(efficiently) scale the codes up to 27K cores.

It is important to stress that the study of the overlapping areas in the case of the
linear elasticity problem revealed that the proposed techniques are close to reach its
limits beyond 27K cores, in the sense that beyond this limit the coarse-grid compu-
tations start dominating the total computation time, even when 16 cores are used for
their multi-threaded computation. Besides, by means of a further increase in the load
per core, there is little chance for the proposed techniques to still be (highly) weakly
scalable in the solution of larger-scale 3D linear elasticity problems on larger num-
ber of cores, as the largest load per core considered in the study already consumes
an amount of memory which is close to (if not higher than) the memory available
per core in current distributed-memory computers. Beyond 27K cores, a multilevel
extension of the BDDC method (so that the computational/memory demands in the
solution of the coarse-grid problem are reduced) and/or a distributed-memory coarse-
grid problem (so that additional nodes/cores can be devoted for this computation)
becomes a must to still be highly weakly scalable for the 3D linear elasticity problem
on structured meshes.

4.4. BDDC for 3D Poisson with a complex domain and unstructured
meshes on CURIE. The purpose of this section is to experimentally show that the
proposed novel implementation can also significantly improve the scalability of the
typical parallel implementation when applied to a more realistic case. More realistic
cases include a domain with a more complex geometry than the one considered so
far (i.e., rectangular prism) and are discretized by means of unstructured FE meshes
which are split using automatic partitioners. We stress, however, that the purpose of
the section is not to comprehensively assess the weak scalability of the highly scalable
parallel implementation as we did with the structured test case in Sections 4.2, and
4.3. This would require, on the one hand, to consider a wide range of test cases
instead of a single example (as the rate at which the size of the coarse-grid increases,
and therefore the scalability of the BDDC preconditioning approach, is dependent on
the underlying geometry of the domain). On the other hand, this would also require
to explore wider ranges for the number of subdomains and scale of the problem to the
ones considered here.

The codes subject of study were applied to the discrete operator resulting from the
linear FE discretization (i.e., P1-elements) of the 3D Poisson problem on the domain
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Fig. 4.3. Weak scalability for the total computational time of the (a) BDDC(c), (b) BDDC(ce),
and (c) BDDC(cef) solvers for the 3D linear elasticity problem on HELIOS. Left: H

h
= 10, 20. Right:

H
h

= 30, 35. The parallel multi-threaded sparse direct solution of the coarse-grid (C-g) linear system
was mapped to an additional blade. Weak scaling curves are reported for 1, 2, 4, 8 and 16 cores
exploited within this blade.

depicted in the top part of Table 4.1. We started from three conforming unstructured
tetrahedral meshes. These were generated using three different (increasingly smaller)
mesh diameters h, such that when partitioned into 16 subdomains, a local problem
size of L1 ≈ 13.6K nodes/68.4K tetrahedra, L2 ≈ 45.1K nodes/241K tetrahedra, and
L3 ≈ 99.6K nodes/547K tetrahedra are obtained, respectively. The global number of
nodes and tetrahedra in these three meshes are given in the bottom part of Table 4.1,
in the row corresponding to 16 subdomains. Each of these three meshes was uniformly
refined up to three times. Given that each level of uniform refinement multiplies the
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number of tetrahedra by a factor of 8, by increasing in the same proportion the
number of subdomains (cores) at each level of mesh refinement (from 16 to 8192),
we (approximately) have the desired scenario of fixed load per subdomain/core, and
increasing number of cores. The global number of nodes and tetrahedra in the meshes
that resulted from each level of uniform mesh refinement are given in the bottom of
Table 4.1, in the rows corresponding to 128, 1024, and 8192 subdomains. All meshes
were partitioned on a shared-memory multiprocessor with 2TBytes of memory using
the multilevel graph bisection algorithms available in METIS 5.1.0 [19]. The largest
mesh could not be partitioned because shared-memory capacity was exceeded, as
indicated by a † in the bottom part of Table 4.1.

L1 L2 L3
#subdomains #nodes #FEs #nodes #FEs #nodes #FEs

16 217K 1.09M 722K 3.86M 1.59M 8.76M
128 1.59M 8.76M 5.45M 30.6M 12.2M 70.1M
1024 12.2M 70.1M 42.4M 247M 95.5M 561M
8192 95.5M 561M 334M 1.97G † †

Table 4.1
Complex domain with two cylindrical holes (top) and number of nodes and tetrahedra (#FEs)

in the unstructured computational meshes used for the weak scalability study in Table 4.2 (bot-
tom). These meshes were partitioned into 16, 128, 1024, and 8192 parts using METIS 5.1.0 [19]
(64-bit integer version), so that three different computational loads per subdomain of L1 ≈ 13.6K
nodes/68.4K tetrahedra, L2 ≈ 45.1K nodes/241K tetrahedra, and L3 ≈ 99.6K nodes/547K tetra-
hedra are considered for the study. A † indicates that METIS could not partition the corresponding
(huge) mesh because main shared-memory capacity (2TBytes) was exceeded.

Table 4.2 reports the total computational time (row labeled as “Tovlap”) for the
highly scalable parallel implementation of the BDDC(c), BDDC(ce), and BDDC(cef)
solvers when applied to the problem described in Table 4.1 using 16 cores for the
multi-threaded sparse direct solution of the coarse-grid problem, and the number of
PCG iterations (row labeled as “#iter”) required to reduce six orders of magnitude

the 2-norm of the original residual. The ratio
Tno ovlap

Tovlap
measures the improvement of

the implementation proposed with respect to the typical pure MPI implementation
of the solvers. The size and non-zeros in the coarse-grid sparse coefficient matrix are
also provided in the rows labeled as “nc” and “nz”, respectively. At this point it is
important to mention that the BDDC method was supplied with a corner detection
mechanism that ensures the well-posedness (i.e., invertibility) of the local Neumann
problems and that of the global coarse-grid problem. In particular, in line of the
strategy proposed in [31] for structural problems, we are using a naive strategy for
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the Poisson problem that meets this requirement by ensuring that a corner exists
per each pair of subdomains that share a face. In general, this naive strategy adds
more corners than those that are actually strictly required, so that the experiment
can be somehow seen as a worst-case scenario for the rate at which the size of the
coarse-grid problem grows with the number of subdomains (and therefore for the
scalability of the codes subject of study). Indeed, while for the structured case the
size of the coarse-grid problem increases linearly with the number of subdomains, it
is superlinear for the unstructured case reported in Table 4.2. These (significantly)
faster growth is justified by the combined effect of an irregular/non-uniform geometry
and underlying partition, and the extra corners added by the aforementioned corner
detection mechanism.12

A larger growth factor for the size of the coarse-grid problem immediately implies
that coarse-grid related computations become earlier dominant for fixed load per core
and increasing number of subdomains. This is confirmed in Table 4.2, that reveals two
different scenarios for the weak scalability of Tovlap. Within the range [16-1024] cores,
there is only a mild increase for Tovlap with fixed load per core and increasing number
of subdomains for the BDDC(ce) and BDDC(cef) solvers. This mild increase is due
to the fact that either Tovlap was dominated by fine-grid computations (as e.g., with 16
and 128 subdomains with all loads per core, and 1024 subdomains with L3), or because
the combination of overlapping of fine-grid/coarse-grid computations and a multi-
threaded coarse-grid solver was highly successful to mask the extra cost associated to
the solution of the coarse-grid problem (as, e.g, with 1024 subdomains and L1, L2).

This is confirmed by small ratios
Tno ovlap

Tovlap
for the former case (e.g., 1.05 for BDDC(ce),

128 subdomains, and L1), and larger ones for the latter (e.g., 1.88 for BDDC(cef),
1024 subdomains, and L1). For the BDDC(c) solver there is a higher increase of Tovlap,
and the higher the load per core, the higher the increase (see row labeled as “#iter” in
Table 4.2); this behaviour, that was also present in the structured case, can be justified
by the higher increase of PCG iterations with the number of subdomains and is a
direct consequence of the factor n/P in the condition number bound (2.8). However,
for 8192 subdomains, a larger increase for Tovlap is observed, specially for BDDC(ce)
and BDDC(cef), as the coarse-grid problem becomes dominant for L1 and L2. For

these cases, the largest ratios
Tno ovlap

Tovlap
are observed (e.g., 3.02 for BDDC(cef), 8192

subdomains and L1) with the more dominant the coarse-grid problem, the larger the
ratio (as most of the improvement comes from the use of multi-threaded parallelism in
the solution of the coarse-grid problem). Although by means of a further increase in
the load per core (i.e., a further level of mesh refinement), there is still chance for the
proposed techniques to still scale efficiently on larger number of cores (as the memory
consumed per core was approximately 350, 560, and 890 MBytes for L1, L2 and L3,
respectively), it is clear from this realistic test case that a distributed-memory and/or
a multilevel extension of the two-level BDDC solver becomes earlier necessary with
the number of subdomains given the larger growth factor for the size of the coarse-grid
problem.

5. Conclusions and future work. The scalability of a pure MPI, SPMD im-
plementation of the BDDC-PCG algorithm is degraded, since the coarse-grid prob-
lem size grows with the number of processors. This growth is linear for structured

12This behavior has already been discussed in [3]. In fact, this is the reason why a pure MPI
implementation of BNN is generally faster than BDDC for unstructured meshes [3]; the number of
coarse DoFs in the BNN method is always proportional to the number of subdomains.



A HIGHLY SCALABLE PARALLEL IMPLEMENTATION OF BDDC 27

S
o
lv
er

#
su
b
d
o
m
a
in
s

1
6

1
2
8

1
0
2
4

8
1
9
2

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

L
3

L
1

L
2

B
D
D
C
(c
)

T
o
vl
a
p

0
.8
0

4
.5
5

1
6
.0

1
.4
6

8
.9
3

3
1
.3

1
.8
7

1
2
.7

4
5
.4

5
.5
8

1
6
.4

#
it
er

2
3

2
6

2
7

6
6

7
7

8
6

8
7

1
2
0

1
3
8

8
8

1
3
7

T
n
o

o
vl
a
p

T
o
vl
a
p

1
.0
2

1
.0
2

1
.0
2

1
.0
3

1
.0
3

1
.0
1

1
.1
6

1
.0
2

1
.0
1

1
.8
5

1
.5
8

n
c

2
6

2
7

3
2

2
6
7

2
7
1

2
8
3

2
,8
7
8

2
,8
0
2

2
,7
0
9

4
0
,3
0
4

3
7
,8
5
5

n
n
z c

1
8
6

2
3
9

3
0
4

4
,0
4
5

4
,1
2
3

4
,4
5
5

1
0
5
,4
4
0

1
0
0
,6
5
6

9
2
,9
6
7

2
,5
9
1
,2
6
6

2
,3
2
9
,8
8
3

B
D
D
C
(c
e)

T
o
vl
a
p

0
.7
4

4
.1
8

1
4
.5

0
.8
6

5
.0
7

1
7
.7

1
.1
3

6
.0
6

2
1
.6

1
4
.8

1
7
.5

#
it
er

1
7

1
9

1
9

2
1

2
4

2
4

2
6

2
9

3
0

3
1

3
6

T
n
o

o
vl
a
p

T
o
vl
a
p

1
.0
3

1
.0
2

1
.0
2

1
.0
5

1
.0
4

1
.0
2

1
.5
8

1
.1
2

1
.0
1

2
.6
9

2
.8
6

n
c

4
2

4
8

5
1

6
4
1

6
4
4

6
7
1

9
,2
4
5

9
,5
2
5

9
,3
8
7

1
1
9
,9
5
8

1
2
2
,1
4
9

n
n
z c

6
1
2

8
7
4

9
4
5

2
8
,4
7
7

2
7
,6
1
2

3
0
,3
0
5

8
6
1
,8
3
7

9
1
6
,6
1
7

9
1
1
,2
7
7

1
7
,8
3
6
,9
4
2

1
8
,6
1
7
,3
8
7

B
D
D
C
(c
ef
)

T
o
vl
a
p

0
.7
6

4
.1
6

1
4
.6

0
.9
0

5
.1
7

1
7
.7

1
.2
2

6
.2
4

2
2
.1

2
4
.1

2
7
.8

#
it
er

1
6

1
8

1
8

1
9

2
3

2
2

2
4

2
7

2
9

3
0

3
4

T
n
o

o
vl
a
p

T
o
vl
a
p

1
.0
1

1
.0
2

1
.0
3

1
.0
3

1
.0
5

1
.0
1

1
.8
8

1
.1
9

1
.0
3

3
.0
2

3
.0
5

n
c

7
3

8
3

8
4

1
,0
4
0

1
,0
4
6

1
,0
8
0

1
3
,9
5
4

1
4
,3
4
6

1
4
,2
0
0

1
6
9
,7
9
6

1
7
3
,3
6
1

n
n
z c

1
,6
2
5

2
,2
1
5

2
,2
2
8

5
8
,7
0
2

5
7
,5
8
4

6
2
,1
9
6

1
,5
1
7
,0
5
0

1
,6
1
0
,8
0
6

1
,6
0
4
,9
3
2

2
8
,7
0
7
,1
7
4

3
0
,0
8
2
,2
6
3

T
a
b
l
e
4
.2

W
ea

k
sc

a
la

bi
li

ty
o

n
C

U
R

IE
fo

r
th

e
to

ta
l

co
m

p
u

ta
ti

o
n

ti
m

e
(T

o
vl
a
p
)

in
se

co
n

d
s

a
n

d
n

u
m

be
r

o
f

P
C

G
it

er
a

ti
o

n
s

(#
it

er
)

fo
r

th
e

h
ig

h
ly

sc
a

la
bl

e
im

p
le

m
en

ta
ti

o
n

o
f

th
e

B
D

D
C

(c
),

B
D

D
C

(c
e)

a
n

d
B

D
D

C
(c

ef
)

so
lv

er
s

fo
r

th
e

3
D

P
o

is
so

n
p

ro
bl

em
o

n
a

co
m

p
le

x
d

o
m

a
in

(s
ee

T
a

bl
e

4
.1

).
A

sp
a

rs
e

d
ir

ec
t

so
lv

er
w

a
s

u
se

d
fo

r
th

e
so

lu
ti

o
n

o
f

lo
ca

l
D

ir
ic

h
le

t/
N

eu
m

a
n

n
p

ro
bl

em
s,

a
s

w
el

l
a

s
fo

r
th

e
so

lu
ti

o
n

o
f

th
e

gl
o

ba
l

co
a

rs
e-

gr
id

p
ro

bl
em

.
F

o
r
T
o
vl
a
p
,

1
6

co
re

s
w

er
e

u
se

d
in

th
e

m
u

lt
i-

th
re

a
d

ed

sp
a

rs
e

d
ir

ec
t

so
lu

ti
o

n
o

f
th

e
co

a
rs

e-
gr

id
p

ro
bl

em
.

T
h

e
ra

ti
o

T
n
o

o
vl
a
p

T
o
vl
a
p

m
ea

su
re

s
th

e
im

p
ro

ve
m

en
t

o
f

th
e

im
p

le
m

en
ta

ti
o

n
p

ro
po

se
d

w
it

h
re

sp
ec

t
to

th
e

ty
p

ic
a

l
p

u
re

M
P

I
im

p
le

m
en

ta
ti

o
n

o
f

th
e

so
lv

er
s.

T
h

e
si

ze
(n

c
)

a
n

d
n

o
n

-z
er

o
s

(n
z
)

in
th

e
co

a
rs

e-
gr

id
sp

a
rs

e
co

effi
ci

en
t

m
a

tr
ix

a
re

a
ls

o
p

ro
vi

d
ed

.



28 SANTIAGO BADIA, ALBERTO F. MARTÍN AND JAVIER PRINCIPE

meshes/partitions but it has been observed to be super-linear when automatic mesh
partitioners are used. The cost of the coarse problem can be small compared to the
fine (fully parallel) one for large loads per processor and modest numbers of pro-
cessors. However, using sparse direct solvers for the local (Dirichlet and Neumann)
problems and the coarse problem, the coarse problem becomes dominant in the order
of some thousands of cores (considering the 1-4 Gbytes of memory available per core
in current multicore-based distributed-memory machines). Further, as we increase
the number of processors, processors with coarse and fine duties can exceed memory
limits. The use of distributed-memory coarse solvers [16, 24, 28] reduces this loss of
scalability (by reducing the computational time of the coarse solver) and the growth
of memory consumption but this step is still serialized.

In this work, we have proposed a novel implementation of the BDDC-PCG parallel
linear solver based on overlapping fine-grid/coarse-grid duties in time. The global set
of cores is split into those that have fine-grid duties and those that have coarse-grid
duties. Next, the different computations and communications arising in the BDDC-
PCG algorithm have been re-scheduled and mapped in such a way that the maximum
degree of overlapping is achieved. E.g., for sparse direct solvers they correspond to
symbolic factorization, numerical factorization and backward/forward substitutions.
This work has been performed for exact (direct) solvers for both local and coarse
problems and implemented as a MPMD model of execution. The extension of this
approach to inexact (AMG) solvers can be found in [2].

The overlap between coarse and fine computations in the BDDC preconditioner
application is possible due to the orthogonality with respect to the energy norm of fine
and coarse duties. (This approach can also be applied to other additive Schwarz pre-
conditioners, e.g., the FETI-DP method.) The resulting technique tackles/ameliorates
the bottleneck associated with the solution of the coarse-grid problem on all possible
scenarios. If the fine-grid correction is more expensive to compute than the coarse-grid
correction, then the solution of the coarse-grid correction is fully masked by the effect
of overlapping. Else, the coarse-grid correction computation time can be reduced us-
ing additional threads/cores. This way, even for the two-level BDDC method, perfect
weak scalability plots can be attained up to 27,648 cores.13 These results have been
obtained with an OpenMP multi-threaded sparse direct solver (limiting the number
of coarse cores to one full node). The use of distributed-memory coarse solvers (as
commented above) and/or multilevel extensions of the overlapped implementation of
the BDDC method will easily boost its perfect scalability to the order of hundreds of
thousands of cores. This will be the objective of our future work.
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structuring, Mathematics and Computers in Simulation 82 (2012), no. 10, 1799–1811.

http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf

