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Abstract: With the popularization of electric vehicles (EVs), the out-of-order charging behaviors of
large numbers of EVs will bring new challenges to the safe and economic operation of power systems.
This paper studies an optimal charging strategy for EVs. For that a typical urban zone is divided into
four regions, a regional time-of-use (RTOU) electricity price model is proposed to guide EVs when
and where to charge considering spatial and temporal characteristics. In light of the elastic coefficient,
the user response to the RTOU electricity price is analyzed, and also a bilayer optimization charging
strategy including regional-layer and node-layer models is suggested to schedule the EVs. On the
one hand, the regional layer model is designed to coordinate the EVs located in different time and
space. On the other hand, the node layer model is built to schedule the EVs to charge in certain
nodes. According to the simulations of an IEEE 33-bus distribution network, the performance of the
proposed optimal charging strategy is verified. The results demonstrate that the proposed bilayer
optimization strategy can effectively decrease the charging cost of users, mitigate the peak-valley
load difference and the network loss. Besides, the RTOU electricity price shows better performance
than the time-of-use (TOU) electricity price.

Keywords: electric vehicles; user responsivity; optimization scheduling; RTOU electricity price
model; regional layer model; node layer model

1. Introduction

EVs represent a promising technology due to their environmental friendliness and potential to
reduce the dependence on fossil fuels [1]. However, the integration of massive numbers of EVs is still
regarded as a great challenge for electric power systems. The random charging behaviors of large-scale
EVs in spatial and temporal domains may lead to a series of problems in the power grid, such as
power congestion, under-voltage, and grid instability [2,3]. Considering that EVs can represent the
distributed and mobile power demands in the near future, it’s meaningful and valuable to study the
optimal charging strategy of EVs [4,5], so as to promote the large-scale application of EVs.

At present, studies on the optimal scheduling of EVs are generally performed considering spatial
and temporal characteristics. Some optimization models have been proposed to coordinate EV users
in the temporal domain [6–9]. In [6], to optimize the objective functions including the loss and cost of
purchased energy, an optimization approach to devise an efficient management strategy is proposed
for EVs. In [7], a multi-objective scheduling of EVs in a smart distribution system is proposed, so as
to minimize the total operation cost and emissions. In [8], to improve the security and economics
of the grid operation, a model concerning with optimal power flow, statistic characteristics of EVs,
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EV owners’ degree of satisfaction, and the power grid cost is suggested. In [9], the optimal charging
strategy of EVs is suggested to smooth the daily curve, and the results can confirm its effectiveness.

Regarding the optimization models which can coordinate EV users in spatial domain, a few
works have been done to date [10–12]. In [10], to reduce the impacts of disordered charging behaviors
on the distribution network, multi-objective optimization including charging time, distance and
dispatching charging load is investigated, and the complete EV charging load spatial allocation can
be achieved. In [11,12], the corresponding authors discuss the charging strategies of plug-in EVs
to improve the economic operation of the power grid and highlight the users’ benefits. In [13,14],
the optimization strategies are based on the bilayer optimization at transmission and distribution
system levels, and herein optimizing the peak-valley difference and reducing the network loss can be
achieved, respectively. However, the interests of EV charging stations are ignored in the aforementioned
works, and the incentive measures guiding the EVs to charge are not taken into account.

In fact, the electricity price is an effective means to guide the orderly charging behaviors of EVs.
The pricing scheme conveys price and quantity information to the load aggregator to control plug-in
EV fleet charging [15,16]. To apply peak shaving for power grid by scheduling the charging behaviors
of EVs, the peak-valley TOU electricity price is discussed in [17]. The TOU electricity price is discussed
in [18], and the optimal scheduling models of EVs based on the TOU price is proposed in [19,20].

The coordination strategies of plug-in EVs charging in smart grids based on real-time electricity
price are proposed in [21,22], and this strategies are able to minimize the power losses and improve
the voltage profiles. However, with the development of electricity market, charging stations will
arrange certain electricity price policy to attract EVs to charge, and meanwhile the electricity price
policy will be different in the temporal and spatial domains. Note that, the traditional electricity
price can’t satisfy this requirement. Therefore, a new electricity price policy considering temporal and
spatial characteristics must be studied. In addition, the charging behaviors of EVs may be absolutely
stochastic for charging station in reality, so only partial EVs will respond to the electricity price to
charge in related stations. Consequently, EV user responsivity to electricity price must be considered
in the optimal strategy of EVs. Table 1 generalizes the objectives of aforementioned works on the
optimal scheduling of EVs. In this paper, our research group proposes a regional time-of-use (RTOU)
electricity price-based optimal charging strategy for EVs considering the user responsivity. For that
a typical urban zone is divided into four regions, the RTOU electricity price model can guide EVs
when and where to charge, and also a bi-layer optimization charging strategy including regional-layer
and node-layer models is suggested to schedule the EVs. The paper is organized as follows: a RTOU
electricity price model is built in Section 2. Section 3 analyses the user responsivity to the RTOU
electricity price. A bi-layer optimization model for coordinating EVs is proposed in Section 4. Section 5
is devoted to simulations of an IEEE 33-bus distribution network, and the performance of the proposed
optimal charging strategy is verified. Finally, conclusions are drawn in Section 6.

Table 1. The researches on the optimal scheduling of EVs.

Research Perspective Literature Objective Function

Scheduling
Strategy

Temporal
domain

[6]
(1) power losses
(2) the cost of purchased energy

[7] (1) the total operational costs and emissions

[8]

(1) power loss
(2) adjustment frequency for power grid control equipment
(3) the smoothness for the power daily load curve
(4) EV owners’ degree of satisfaction

[9] (1) peak-valley difference

Spatial domain

[10]
(1) system charging time
(2) system charging capacity
(3) dispatching charging load

[11]
(1) generation cost
(2) network losses

[12] (1) the utilization of existing networks
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Table 1. Cont.

Research Perspective Literature Objective Function

Scheduling
Strategy

Temporal and
Spatial domain

[13]
(1) First level: the discharging cost of EV, charging station corresponding
transformer loading
(2) Second level: network Losses

[14]
(1) transmission system: fuel cost; the PM2.5 emission of a thermal unit; the
start-up and shut-down cost of thermal unit; charging cost; wind curtailment cost
(2) distribution system: network Losses

Incentive
Measures

Peak-Valley
TOU [17] (1) peak-valley difference

TOU
[19] (1) energy cost

[20] (1) charging cost

Real-Time
[21]

(1) the difference between load curve and ideal load curve
(2) network Losses

[22] (1) the total cost for charging all EVs within the day

Conclusions The new electricity price policy must be studied considering both temporal and spatial characteristics. Also, EV user
responsivity to electricity price and the interests of EV charging station must be considered.

2. The Model of RTOU Electricity Price

In light of the commercial operation demands of EVs, different charging stations may need
different electricity prices [23]. Thus, a RTOU electricity price model considering temporal and spatial
characteristics is discussed in this section. Compared with TOU electricity prices, the RTOU electricity
prices in different regions are different. In a certain region, the RTOU electricity price consists of
four electricity price levels [24], and the following equation can be obtained:

ρ =


ρ1 Pmin ≤ P ≤ P1

ρ2 P1 ≤ P ≤ P2

ρ3 P2 ≤ P ≤ P3

ρ4 P3 ≤ P ≤ Pmax

(1)

where ρ is the electricity price; ρ1, ρ2, ρ3 and ρ4 are the four-level electricity prices, respectively; P is
the daily load; Pmin and Pmax are the minimum and maximum daily loads in a day, respectively.

The values of ρ1, ρ2, ρ3 and ρ4 should be limited in a certain range according to the levels of user
consumption. ρmin is set to guarantee the benefits of the power grid considering commodity attribute
of the electric power; ρmax is set to guarantee the benefits of the EV users considering user acceptance
for the electricity price. Meanwhile, the revenue of the power grid must be included:

ρmin < ρ1 < ρ2 < ρ3 < ρ4 < ρmax (2)

M

∑
j=1

T

∑
t=1

Pa,j
t ρ

j
t ≥ C0 (3)

where ρmin and ρmax are the minimum and maximum electricity prices, respectively. Pa,j
t is the load at

time t in zone j after the application of RTOU electricity prices. M is the number of zones, and T is the
duration, with the default value of 24. C0 is the revenue of power grid before the application of RTOU
electricity price:

C0 =
T

∑
t=1

Pb
t ρ0 (4)

where Pb
t and ρ0 are the load at time t and the electricity price before the application of the RTOU

electricity price, respectively.
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The relationship between the electricity price levels and the electricity power is expressed as:

Pi+1 = Pi + ∆P (5)

where ∆P is the difference of the lower or upper load boundary between the adjacent electricity price
level, and it can be obtained by investigating local residents’ consumption habits and payment abilities.

In a way, ∆P can be simplified as:

∆P =
Pmax − Pmin

n
(6)

where n is the number of electricity price levels, and its value is set as 4.
Figure 1 shows the RTOU electricity price model. The load curve is divided into four levels

according to the maximal and minimal values of load level.
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Figure 1. The divided standard of RTOU electricity price model.

The four charging scenarios [25] include uncontrolled charging, delayed charging, off-peak
charging and continuous charging. The typical urban region consists of an industrial zone,
a commercial zone, a residential zone and an office zone. In the uncontrolled charging case, EVs start
to charge as soon as they are plugged in, and stop when the battery is fully charged. The delayed
charging case is similar to the uncontrolled charging scenario. However, it requires only a modest
infrastructure increase to delay initiation of household charging until 10 p.m. The off-peak charging
scenario can provide a charging signal to lead EVs to charge in the optimal time for lower charging cost.
For the continuous charging scenario, it assumes that the vehicle is continuously charged whenever it
is not in motion. In view of the four zones and four charging modes, there are 16 charging scenarios.
Since the analysis method for all of the scenarios is the same, one scenario is selected to investigate the
characteristics, and the demonstrative scenario is shown in Figure 2.
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Figure 2. The demonstrative scenario of typical regional load curves. (a) The residential region load
curve in the uncontrolled charging mode; (b) The office region load curve in delayed charging mode;
(c) The industrial region load curve in off-peak charging mode; (d) The commercial zone region curve
in continuous charging mode.

3. The User Responsivity to the RTOU Electricity Price

In fact, many factors will affect the charging behaviors of EVs [26], such as the price policies,
EV charging scenarios, user’s driving habits, SOC of batteries, and external environment. However,
the purpose of EVs changing charging habits is to gain more economic benefits [27], and these interests
are reflected in the electricity price. In this section, the electricity price is pointedly taken into account.
Price elasticity [28] indicates the relationship between the electricity price and the number of responsive
EVs, so the phenomenon of EV users’ response to electricity price can be described as follows:

∆N
N

= ε
∆ρ

ρ0
(7)

where ∆ρ is the variation of the electricity price, ρ0 is the original electricity price; ∆N, which represents
the electricity consumption of EVs, is the variation of the number of charging EVs. N is the original
number of charging EVs; ε is the elasticity coefficient.

In general, the EV users’ responses will be affected by the price at the current time and the prices
at other time. Meanwhile, after the application of the RTOU electricity prices, different regions have
different electricity prices, so EV users’ responses are not only related to the current regional price,
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but also affected by the price of other regions. Therefore, the regional self-elasticity coefficients and the
cross-elasticity coefficients are expressed as follows:

∆N jj
tt

N0j
t
= ε

jj
tt

∆ρ
j
t

ρ0

∆N jj
ts

N0j
t
= ε

jj
ts

∆ρ
j
s

ρ0

∆N jh
tt

N0j
t
= ε

jh
tt

∆ρh
t

ρ0
h 6= j

∆N jh
ts

N0j
t
= ε

jh
ts

∆ρh
s

ρ0
h 6= j

(8)

To simplify the calculation, the current regional and other regional mutual-elastic coefficients on
different periods are converted into self-elasticity coefficients on a single period:

ε
jj
t =

T
∑

s=1
ε

jj
ts

∆ρ
j
s

∆ρ
j
t

ε
jh
t =

T
∑

s=1
ε

jh
ts

∆ρh
s

∆ρ
j
t

h 6= j
(9)

where εjj
t and ε

jh
t are the current regional and other regional elasticity coefficients at t in zone

j, respectively.
The EVs charging elasticity coefficients of the current region and other regions are denoted as:

∆N jj
t

N0j
t
= ε

jj
t

∆ρ
j
t

ρ0
j = 1, 2, 3, 4

∆N jh
t

N0j
t
= ε

jh
t

∆ρ
j
t

ρ0
h 6= j

(10)

where N0j
t is the original number of EVs charging at time t in zone j.

Considering the influence of current regional and other regional elasticity coefficients, the number
of charging EVs responding to the RTOU electricity price is calculated as follows:

N j
t = N0j

t +
M

∑
h=1

∆N jh
t = N0j

t +
M

∑
h=1

N0j
tε

jh
t

∆ρ
jj
t

ρ0
(11)

To quantify the elasticity coefficients, the triangular fuzzy number [29] is introduced:

ε =
〈
ε ε ε

〉
(12)

where the fuzzy center ε represents the average elasticity coefficient; ε and ε are the minimum and
maximum price elasticity coefficients, respectively. The minimum and maximum number of EVs

charging N j
t and N j

t at time t in zone j are obtained by Equation (11) with the minimum and maximum

current regional coefficient εjj
t and other regional elasticity coefficients εjh

t .

4. The Bi-Layer Optimization Strategy for EVs Charging

4.1. The Framework of the Optimal Charging Strategy for EVs

The framework of the proposed optimal charging strategy for EVs is shown in Figure 3.



Energies 2016, 9, 670 7 of 18
Energies 2016, 9, 670 7 of 18 

 

Determining RTOU based on load curve

Considering constraints and solving this 
model

 Minimizing the charging cost of users 
and peak-valley difference by the 

objective function 

Outputing the results of  Evs charging 
time and region 

 Minimizing the network losses by the 
objective function

Output results

Regional 
model

Nodel 
model

Considering constraints and solving this 
model

Outputing the results of  Evs charging
node 

 

Figure 3. The framework of the optimal charging strategy for EVs. 

4.2. Regional Layer Model  

The regional layer model is to minimize the charging cost of EV users and alleviate the peak-

valley difference in the distribution network by coordinating the EVs at different time and space. The 

outputs of the regional layer model are the charging cost and peak-valley difference by guiding the 

charging time and charging region of the EVs. 

4.2.1. Objective Function 

1. Charging cost of users 

Regarding the fact that the charging cost of users is selected as the objective function, its 

expression is: 

 1
1 1

min
M T

j j

t c t
j t

f P N t
 

    (13) 

where Pc is the average charging power of EVs. Δt is the length of time interval, and herein it is set as 

one hour. 

2. Peak-valley difference 

To realize the economic operation of the power grid, the peak valley difference is also considered 

as an optimal objection [30]: 

2 max min
min( )f L L 

 
(14) 

where Lmax and Lmin are the peak load and valley load, respectively. 

A linear weighting method is used to calculate the multi-objective function: 

1 2
1 2

10 20

min
f f

F
f f

 
  

 
λ λ  (15) 
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4.2. Regional Layer Model

The regional layer model is to minimize the charging cost of EV users and alleviate the peak-valley
difference in the distribution network by coordinating the EVs at different time and space. The outputs
of the regional layer model are the charging cost and peak-valley difference by guiding the charging
time and charging region of the EVs.

4.2.1. Objective Function

1. Charging cost of users

Regarding the fact that the charging cost of users is selected as the objective function, its
expression is:

f1 = min
M

∑
j=1

T

∑
t=1

(
ρ

j
tPcN j

t ∆t
)

(13)

where Pc is the average charging power of EVs. ∆t is the length of time interval, and herein it is set as
one hour.

2. Peak-valley difference

To realize the economic operation of the power grid, the peak valley difference is also considered
as an optimal objection [30]:

f2 = min(Lmax − Lmin) (14)

where Lmax and Lmin are the peak load and valley load, respectively.
A linear weighting method is used to calculate the multi-objective function:

F = min
(
λ1

f1

f10
+ λ2

f2

f20

)
(15)
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where F is the total objective function. λ1 and λ2 are the weight coefficients, respectively. f 10 and f 20 is
the base charging cost and the peak-valley difference to elimination physical dimension. The value of
λ1 and λ2 can be determined by balancing the interests of the grid and the users, and herein λ1 = 0.5
and λ2 = 0.5 are adopted.

4.2.2. Constraints

1. Constraint of charging hours

To charge sufficient energy to EVs, the charging time should be long enough:

M

∑
j=1

T

∑
t=1

N j
t ≥ Nmax∆tc (16)

where ∆tc is the average charging time of EVs, and Nmax is the maximum number of available
charging EVs.

2. Constraint of total EVs number in the zone

The number of available charging EVs in the zone at every time can be constrained as follows:

M
∑

j=1
N j

t ≤ Nmax ∀t ∈ T (17)

N j
t ≤ Qj (18)

3. Constraint of user responsivity

After adjusting the electricity price, some EVs will be guided to charge in special charging stations,
and meanwhile there are still some EVs that do not respond to the RTOU electricity price. According
to the user responsivity model suggested in Section 3, the constraint of user responsivity to the RTOU
electricity price can be constrained as follows:

N j
t ≤ N j

t ≤ N j
t (19)

4.3. Node Layer Model

The node layer model optimization is to minimize the loss of the distribution network. Meanwhile,
the profits of the users and charging station are taken into consideration [31]. The outputs of the node
layer model are the EVs’ charging node and network loss by guiding the charging node of EVs.

4.3.1. Objective Function

For the objective function related to the power loss, it is expressed as:

f3 = min
T

∑
t=1

PLoss,t (20)

where PLoss,t is denoted as:

PLoss,t =
K

∑
k=1

K

∑
m=1

0.5 ∗ (
∣∣Vk,t

∣∣2 Gkm + |Vm,t|2 Gkm − 2
∣∣Vk,t

∣∣ |Vm,t|Gkmcosθkm,t) (21)

where K is the set of all nodes except slack node. Vk,t and Vm,t are the voltages of node k and node m,
respectively. Gkm is the real part of admittance matrix; θkm,t is the phase angle difference between node
k and node m at time t.
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4.3.2. Constraints

1. Constraint of active and reactive power balance

The active and reactive power balance must be satisfied at each node:

PG
k,t − PD

k,t − PcNk
t − PT

k,t = 0 ∀k ∈ K, ∀t ∈ T (22)

QG
k,t −QD

k,t −QT
k,t = 0 ∀k ∈ K, ∀t ∈ T (23)

where PG
k,t and QG

k,t are the active and reactive power of node k at time t, respectively. PD
k,t and QD

k,t are
the active and reactive power load of node k at time t, respectively. PT

k,t and QT
k,t are the transmitted

active and reactive power of node k at time t, respectively:

PT
k,t = Vk,t ∑

m∈K
Vm,t(Gkmcosθkm,t + Bkmsinθkm,t)

QT
k,t = Vk,t ∑

m∈K
Vm,t(Gkmsinθkm,t − Bkmcosθkm,t)

(24)

where Bkm is the imaginary part of admittance matrix.

2. Constraint of node voltage

The node voltage should meet the following constraint conditions:

Vk,min ≤ Vk,t ≤ Vk,max ∀k ∈ K, ∀t ∈ T (25)

where Vk,min and Vk,max are the lower and upper limits of node voltage, respectively.

3. Constraint of security

To ensure the security of the distribution network, the transmission capacities of lines must be
limited in a safe range: ∣∣Pkm,t

∣∣ ≤ Pkm,max ∀k ∈ K, ∀t ∈ T (26)

where Pkm,max is the maximum transmission capacity of line k – m, and Pkm,t is the power flow of
transmission line k – m at time t:∣∣Pkm,t

∣∣ = ∣∣Vk,tVm,t(Gkmcosθkm,t + Bkmsinθkm,t)−Vk,tGkm
∣∣ (27)

4. Constraint of charging station revenue

After the RTOU electrical price is used, the revenues of the charge stations are not less than before:

Sk =

{
≥ 1 Nk

t > 0

0 Nk
t = 0

(28)

where Sk is the revenue coefficient of the charge station accessed to node k:

Sk =
C
C0
× 100% =

T
∑

t=1
ρ

j
tPcNk

t ∆t

ρ0
T
∑

t=1
PcNk

t ∆t
(29)

where C and C0 are the revenues with and without the RTOU electrical price, respectively.

5. Constraint for the total number of EVs in the regional
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The number of available charging EVs in a certain zone can be constrained as follows:

∑
k∈j

Nk
t = N j

t ∀t ∈ T (30)

6. Constraint of charging station service capacity

The EV charging stations are divided into four different grades [32]:

Nk
t ≤ Qk (31)

5. Case Studies

In this section, numeral simulations are carried out to illustrate the effectiveness of the proposed
charging strategy for EVs. As shown in Figure 4, an IEEE 33-bus distribution network is divided into
four regions consisting of an industrial zone, a commercial zone, a residential zone and an office zone.
Node 0 in the IEEE 33-bus system is a slack bus. In this distribution system, the base power is set as
100 MVA and the base voltage is set as 12.66 kV. The parameters of lines and the maximum load of
nodes are obtained from literature [33].
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During the simulations, ρ1 is set as 0.55 CNY/kWh; ρ2 is set as 0.60 CNY/kWh; ρ3 is set as
0.65 CNY/kWh; ρ4 is set as 0.70 CNY/kWh. The TOU electricity price and the RTOU electricity price
are shown in Figures 5 and 6, respectively.
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5.1. Optimization Results of the Regional Layer Model

Four cases are studied in this section as follows:

Case 1: there are 1200 EVs with uncontrolled charging mode, and the electricity price of charging
in this case is set as 0.65 CNY/kWh.

Case 2: there are 1200 EVs charging with the proposed optimization strategy, and the user
responsivity is considered. The price profiles of charging in this case are shown in
Figure 6.

Case 3: there are 1200 EVs charging with the proposed optimization strategy, and the user
responsivity isn’t considered. The price profiles of charging in this case are shown in
Figure 6.

Case 4: there are 1200 EVs charging with the proposed optimization strategy, and the user
responsivity is considered. The price profiles of charging in this case are shown in Figure 5.
Compared with user responsivity to the RTOU electricity price, the phenomenon of EVs
charging in the cross-region can be ignored.

The optimization of the regional model is a mixed-integer linear programming (MILP) problem
which can be solved by the GMP-CPLEX solver in AIMMS [34]. The expectations of the objective
function, peak-valley difference and charging cost for four cases are shown in Table 2, and the load
curves are shown in Figure 7. Compared with case 1, the peak-valley difference and the user charging
cost are decreased in cases 2, 3, 4. Without considering user responsivity in case 3, the performance
of the peak-valley difference and the user charging cost will be better than that in case 2, because all
the EVs are dispatched to charge by the RTOU electricity price. Compared with case 4 using the TOU
electricity price, the optimal results of case 2 using the RTOU electricity price will be better.

Table 2. The simulation results of EVs optimization.

Case Case 1 Case 2 Case 3 Case 4

peak-valley difference (MW) 11.43 10.725 8.07 10.437
charging cost (CNY) 14,500 13,600 12,100 14,200

objective function 2.35 2.21 1.82 2.24

The optimization results in the regional layer model are shown in Figure 8. Compared to the
random charging behaviors of EVs in case 1, the optimized charging loads of EVs are concentrated
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at the time when the basic load and electricity price are small in cases 2–4. The impacts of user
responsivity on EVs schedule are compared between case 2 and case 3. Without considering user
responsivity in case 3, the total charging loads of EVs may concentrate during 1:00 a.m.–7:00 a.m.
However, partial EVs prefer to charge at 8:00 a.m.–10:00 a.m. and 17:00 p.m.–19:00 p.m. in case 2.
The impacts of different price profiles on EVs scheduling are compared between case 2 and case 4.
Compared with case 2 using the RTOU electricity price, more EVs charging load concentrates at the
time when the electricity price is small.
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Figure 7. The load curves before and after the regional dispatch.
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Figure 8. The optimization results of the regional dispatch for EVs. There are four panels, they should
be listed as: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

The regional simulation results are analyzed when different RTOU electricity prices and price
elasticity coefficients are considered, so as to verify this paper’s viewpoint.

When ρ1 is set as 0.5 CNY/kWh; ρ2 is set as 0.65 CNY/kWh; ρ3 is set as 0.75 CNY/kWh; ρ4 is set
as 0.90 CNY/kWh, the simulation results of the four cases are shown as Figure 9.
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Figure 9. The optimization results of different RTOU electricity prices. There are four panels,
they should be listed as: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

From Table 3, it is concluded that the change of tariff may only affect the specific values of
scheduling results, but not change the qualitative conclusions shown in this paper. When driving
habits, SOC of batteries and external environment change, the number of responsive EVs will change
accordingly. In this paper, it means that the price elasticity coefficients will change. Table 4 shows
the simulation results of different price elasticity coefficients. In Table 4, the change of price elasticity
coefficients may only affect the specific values of scheduling results, but not change the qualitative
conclusions. Moreover, driving habits, SOC of batteries and external environment have no effect on
the proposed scheduling strategy.

Table 3. The simulation results of different RTOU electricity prices.

Case Case 1 Case 2 Case 3 Case 4

peak-valley difference (MW) 11.43 9.97 8.07 10.7
charging cost (CNY) 14,500 12,920 12,100 13,400

objective function 2.53 2.07 1.82 2.18

Table 4. The simulation results of different price elasticity coefficients.

Case Case 1 Case 2 Case 3 Case 4

peak-valley difference (MW) 11.43 10.525 6.67 10.72
charging cost (CNY) 16,700 12,960 12,300 13,800

objective function 2.35 2.13 1.69 2.22

5.2. The Optimization Results of the Node Layer Model

Four cases are studied in this section as follows:

Case 5: The number of EVs charging in the four regions is the same as case 1, and the charging
behaviors of EVs are uncontrolled.

Case 6: The number of EVs charging in the four regions is the optimization results in case 2.
Case 7: The number of EVs charging in the four regions is the optimization results in case 3.
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Case 8: The number of EVs charging in the four regions is the optimization results in case 4.

The optimization problem is a mixed-integer nonlinear programming (MINLP) which can be
solved by the GMP-AOA solver in AIMMS [34]. The optimization results in the node layer model are
shown in Figure 10. Figure 11 shows the EVs spatial distribution at 10:00 a.m. in case 6. From Figures 10
and 11, the conclusion can be drawn that the optimized spatial charging distributions of EVs are
concentrated in the nodes 1, 18, 5, 6, 11, 12, 13, 25, 26, 27 and 28 close to the beginning bus of each
region. Thus, if the charging stations are located in the aforementioned nodes, the network losses
caused by EVs charging loads can be well reduced.
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Figure 10. The optimization results of node dispatch for EVs. There are four panels, they should be
listed as: (a) Case 5; (b) Case 6; (c) Case 7; (d) Case 8.

Energies 2016, 9, 670 14 of 18 

 

The optimization problem is a mixed-integer nonlinear programming (MINLP) which can be 

solved by the GMP-AOA solver in AIMMS [34]. The optimization results in the node layer model are 

shown in Figure 10. Figure 11 shows the EVs spatial distribution at 10:00 a.m. in case 6. From Figures 

10 and 11, the conclusion can be drawn that the optimized spatial charging distributions of EVs are 

concentrated in the nodes 1, 18, 5, 6, 11, 12, 13, 25, 26, 27 and 28 close to the beginning bus of each 

region. Thus, if the charging stations are located in the aforementioned nodes, the network losses 

caused by EVs charging loads can be well reduced.  

  
(a) (b) 

  
(c) (d) 

Figure 10. The optimization results of node dispatch for EVs. There are four panels, they should be 

listed as: (a) Case 5; (b) Case 6; (c) Case 7; (d) Case 8. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21

22 23 24

25 26 27 28 29 30 31 32

Residential zone

Commercial zone

Office zone

Charge

Industrial zone  
Figure 11. The spatial distributions of EVs charging at 10 a.m. in case 6 in the network. 

Figure 12 shows the network losses before and after optimization. The total network losses in 

case 5, case 6, case 7 and case 8 will be 0.0453 MW, 0.0303 MW, 0.0309 MW, and 0.0406 MW, 

respectively. Regarding case 2 and case 3 where user responsivity are respectively considered and 

ignored, their impacts on case 6 and case 7 are analyzed, respectively. Since the more concentration 

of EVs charging loads in time-domain in case 3 causes the loads decentralization in spatial domain, 

the optimization results in case 6 show better performance than that in case 7. For case 2 and case 4 

where the RTOU electricity price and the TOU electricity price are adopted, respectively, their 

1

7

13
19

0

20

40

60

80

100

N1 N2 N4 N23 N6 N9 N12 N15 N25 N28 N31

T
im

e
/hth

e
 n

u
m

b
e
r
 

o
f 

c
h

a
r
g

in
g

 E
V

s

Nodes

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

1

7

13
19

0

20

40

60

80

100

N1 N2 N4 N23 N6 N9 N12 N15 N25 N28 N31

ti
m

e
/h

th
e
 n

u
m

b
e
r
 

o
f 

c
h

a
r
g

in
g

 E
V

s

Nodes

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

1

7

13
19

0

20

40

60

80

100

N1 N2 N4 N23 N6 N9 N12 N15 N25 N28 N31

T
im

e
/h

th
e
 n

u
m

b
e
r
 

o
f 

c
h

a
r
g

in
g

 E
V

s

Nodes

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

1

7

13

19

0

20

40

60

80

100

N1 N2 N4 N23 N6 N9 N12 N15 N25 N28 N31

T
im

e
/h

th
e
 n

u
m

b
e
r
 

o
f 

c
h

a
r
g

in
g

 E
V

s

Nodes

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

Figure 11. The spatial distributions of EVs charging at 10 a.m. in case 6 in the network.

Figure 12 shows the network losses before and after optimization. The total network losses
in case 5, case 6, case 7 and case 8 will be 0.0453 MW, 0.0303 MW, 0.0309 MW, and 0.0406 MW,
respectively. Regarding case 2 and case 3 where user responsivity are respectively considered and
ignored, their impacts on case 6 and case 7 are analyzed, respectively. Since the more concentration of



Energies 2016, 9, 670 15 of 18

EVs charging loads in time-domain in case 3 causes the loads decentralization in spatial domain, the
optimization results in case 6 show better performance than that in case 7. For case 2 and case 4 where
the RTOU electricity price and the TOU electricity price are adopted, respectively, their impacts on the
node layer model are analyzed in case 6 and case 8. From the figure, the total network losses in case 6
are smaller than that in case 8. In addition, the curves of the network losses have different peak time,
and the reason is that the temporal distribution of charging EVs is different in the four cases.

Figure 13 shows the voltage distributions under different cases. Compared with case 5, it is found
that case 6, case 7 and case 8 will show better performance on the voltage levels of end nodes. Regarding
case 2 and case 3 where user responsivity are respectively considered and ignored, their impacts on
case 6 and case 7 are studied, respectively.
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Figure 12. The network losses before and after optimization dispatch.

Energies 2016, 9, 670 15 of 18 

 

impacts on the node layer model are analyzed in case 6 and case 8. From the figure, the total network 

losses in case 6 are smaller than that in case 8. In addition, the curves of the network losses have 

different peak time, and the reason is that the temporal distribution of charging EVs is different in 

the four cases. 

Figure 13 shows the voltage distributions under different cases. Compared with case 5, it is 

found that case 6, case 7 and case 8 will show better performance on the voltage levels of end nodes. 

Regarding case 2 and case 3 where user responsivity are respectively considered and ignored, their 

impacts on case 6 and case 7 are studied, respectively.  

 
Figure 12. The network losses before and after optimization dispatch. 

  
(a) (b) 

  
(c) (d) 

Figure 13. The voltage distributions of the distribution network. There are four panels, they should 

be listed as: (a) Case 5; (b) Case 6; (c) Case 7; (d) Case 8. 

In view of that the more concentration of EVs charging loads in time-domain in case 3 causes 

the loads decentralization in spatial domain, the optimization results in case 6 show better 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.5

1

1.5

2

2.5

3
x 10

-3

Time/h

Po
w

er
/M

W

 

 

case 5

case 6

case 7

case 8

0

5

10

15

20

25

05101520253035

0.95

1

1.05

time/h

 

nodes

 

v
o
ta

lg
e

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

0

5

10

15

20

25

05101520253035

0.95

1

1.05

time/h

 

nodes

 

v
o
ta

lg
e

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

0

5

10

15

20

25

05101520253035

0.95

1

1.05

time/h

 

nodes

 

v
o
ta

lg
e

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

0

5

10

15

20

25

05101520253035

0.95

1

1.05

time/h

 

nodes

 

v
o
ta

lg
e

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Figure 13. The voltage distributions of the distribution network. There are four panels, they should be
listed as: (a) Case 5; (b) Case 6; (c) Case 7; (d) Case 8.
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In view of that the more concentration of EVs charging loads in time-domain in case 3 causes the
loads decentralization in spatial domain, the optimization results in case 6 show better performance
than that in case 7. For case 2 and case 4 where the RTOU electricity price and the TOU electricity price
are used, respectively, their impacts on the node layer model are analyzed in case 6 and case 8. It is
observed that, the voltage levels of end nodes in case 6 are more preferable.

6. Conclusions

This paper’s main contribution is to propose a RTOU electricity price-based bilayer optimization
charging strategy for EVs, and herein the benefits of distribution network and users are both taken
into account. To analyze the impacts of the RTOU electricity price on the charging behaviors of EVs,
the user responsivity is investigated by the method of elastic coefficient. From the simulations of
an IEEE 33-bus distribution network, the performance of the proposed optimal charging strategy is
verified, and some conclusions are drawn as follows:

(1) The effectiveness of the proposed optimization charging strategy can be confirmed. For the
regional layer model which is designed to coordinate the EVs located in different time and space,
it can shave the peak and fill the valley of load profiles, and the charging cost of users is well
reduced. Concerning the node layer model which is built to schedule the EVs to charge in certain
nodes, its application can decrease the network losses to a certain extent.

(2) Compared with the TOU electricity price, the RTOU electricity price can obtain better
optimization results.

(3) When the user responsivity to the RTOU electricity price is taken into consideration, the optimal
scheduling results are more similar to reality.

(4) If the charging stations are located in the nodes being close to the beginning bus of each region,
the distribution network can potentially obtain better economic benefits.

In the near future, the optimal RTOU electricity price, real time tariff and feasible incentive
measures will be studied further. Besides, some follow-up works related to the node layer model will
be performed, and the EVs’ scheduling strategy based on the integration of transportation network
and power grid will be taken into account. The results will be reported in later articles.
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Abbreviations

Index:

t, s Set of time
j, h Set of region
k, m Set of Nodes

List of Main Variables:

Nj
t Number of charging EVs at time t in region j

Nk
t Number of charging EVs at time t in node k

Vk
t Voltage in node k

PLoss,t Network loss of distribution network at time t
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List of Main Parameters:

ρ
j
t Electricity price at time t in region j

Qj Maximum number of available charging EVs in region j
Qk Service capacity of charging station in node k
Pkm,t Power flow on transmission line k – m at time t
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