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Interpretation of dam deformation and leakage with

boosted regression trees

Abstract

Predictive models are essential in dam safety assessment. They have been
traditionally based on simple statistical tools such as the hydrostatic-season-
time (HST) model. These tools are well known to have limitations in terms
of accuracy and reliability. In the recent years, the examples of application
of machine learning and related techniques are becoming more frequent as an
alternative to HST. While they proved to feature higher flexibility and pre-
diction accuracy, they are also more difficult to interpret. As a consequence,
the vast majority of the research is limited to prediction accuracy estima-
tion. In this work, one of the most popular machine learning techniques
(boosted regression trees), was applied to model 8 radial displacements and
4 leakage flows at La Baells Dam. The possibilities of model interpretation
were explored: the relative influence of each predictor was computed, and
the partial dependence plots were obtained. Both results were analysed to
draw conclusions on dam response to environmental variables, and its evolu-
tion over time. The results show that this technique can efficiently identify
dam performance changes with higher flexibility and reliability than simple
regression models.
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1. Introduction

Dam monitoring is essential to ensure its proper operation and its long-
term safety [1]. One of the main tasks to be carried out is the comparison
between the expected response and that registered by the monitoring system,
to understand the dam behaviour and to detect potential anomalies. In this
context, predictive models are necessary to estimate the dam response in a
given situation.
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Data-based tools allow building predictive models based on monitoring
data, i.e., without explicitly considering the physical properties of the dam
and the foundation. The hydrostatic-season-time (HST) model [2] is the
most widely applied, and the only generally accepted by practitioners.

HST is based on multiple linear regression considering the three most
influential external variables: hydrostatic load, air temperature and time.
The main advantages of HST are:

1. It frequently provides useful estimations of displacements in concrete
dams [3].

2. It is simple and thus easily interpretable: the effect of each external
variable can be isolated in a straightforward manner, since they are
cumulative.

3. Since the thermal effect is considered as a periodic function, the time
series of air temperature are not required. This widens the possibili-
ties of application, as only the reservoir level variation is needs to be
available to build an HST model.

4. It is well known by practitioners and frequently applied in several coun-
tries [3].

Nonetheless, HST also features conceptual limitations that damage the
prediction accuracy [3] and may lead to misinterpretation of the results [4].
For example, it is based on the assumption that the hydrostatic load and
the temperature are independent, whereas it is obviously not the case: the
thermal field in the dam body, especially in the vicinity of the water surface,
is strongly dependant on the water temperature in the upstream face [5]. In
turn, the thermal load influences the stress and displacement fields.

Several modifications to the original HST model have been proposed to
overcome these drawbacks. They focus on improving the consideration of the
thermal load, by taking into account the actual air temperature instead of the
historical mean [6], or the effect of the water temperature on the upstream
face [3], [7].

In the recent years, non-parametric techniques have emerged as an alter-
native to HST for building data-based behaviour models [8], e.g. support
vector machines (SVN) [9], neural networks (NN) [10], adaptive neuro-fuzzy
systems (ANFIS) [11], among others [8]. In general, these tools are more suit-
able to model non-linear cause-effect relations, as well as interaction among
external variables, as that previously mentioned between hydrostatic load
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and temperature. On the contrary, they are typically more difficult to inter-
pret, what led them to be termed as “black box” models (e.g. [12]).

Most of the published works focused on building predictive models whose
accuracy was generally higher than that offered by HST (e.g. [10], [13],
[14]). Since the resulting model was seldom analysed, little information was
provided for dam safety assessment. Some exceptions worth mentioning,
though simple, were due to Santillán et al. [15], Mata [10] and Cheng and
Zheng [16].

Therefore, dam engineers face a dilemma: the HST model is widely known
and used and easily interpretable. However, it is based on some incorrect
assumptions, and its accuracy can be increased. On the other hand, more
flexible and accurate models are available, but they are more difficult to
implement and analyse. The same problem arose in the field of statistics
[17].

The objective of this work is to investigate the possibilities of interpreta-
tion of one of these black box models to:

1. Identify the effect of each external variable on the dam behaviour

2. Detect the temporal evolution of the dam response

3. Provide meaningful information to draw conclusions about dam safety

Among the plethora of machine learning techniques available [18], a pre-
vious comparative study [13] showed boosted regression trees (BRT) as one
of the more appropriate tools for the prediction of dam response. In this
paper, the technique was further explored, with focus on the interpretation
of the results for dam behaviour identification. In particular, the partial de-
pendence plots were examined to isolate the effect of each action, and the
relative influence (RI) was computed to identify the strength of each input-
output relation. Furthermore, the results were interpreted from an overall
viewpoint to draw conclusions on the dam behaviour.

The method was applied to the analysis of La Baells Dam, as compared
to the conventional HST model.

The rest of the paper is organised as follows. A brief introduction to
BRT is presented, including the methods for interpretation. Then, the case
study and the HST version taken as reference are described. The results are
included and interpreted in terms of the dam behaviour, and the differences
between both methods are discussed.
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2. Methods

2.1. Boosted regression trees

The objective of a predictive model is to estimate the value of an output
variable Y ∈ R (i.e. radial displacement or leakage), based on a set of
predictors (reservoir level, air temperature, etc.) X ∈ Rp, i.e. Y ≈ Ŷ =
F (X). The observed values are denoted as (xi, yi), i = 1, ..., N , where N is
the number of observations. Note that each xi is a vector with p components,
each of which is referred to as xji , when necessary. Similarly, Xj, j = 1, ..., p
stands for each dimension of the input space.

BRT models are built by combining two algorithms: a set of single mod-
els are fitted by means of decision trees [19], and their output is combined
to compute the overall prediction using boosting [20]. For the sake of com-
pleteness, a short description of both techniques follow, although excellent
introductions can be found in [21], [22], [23], [12].

2.1.1. Regression trees

Regression trees were first proposed as statistical models by Breiman et
al. [19]. They are based on the recursive division of the training data in
groups of “similar” cases. The output of a regression tree is the mean of the
output variable for the observations within each group.

When more than one predictor is considered (as usual), the best split
point for each is computed, and the one which results in greater error reduc-
tion is selected. As a consequence, non-relevant predictors are automatically
discarded by the algorithm, as the error reduction for a split in a low relevant
predictor will generally be lower than that in an informative one.

Other interesting properties of regression trees are:

• They are robust against outliers.

• They require little data pre-processing.

• They can handle numerical and categorical predictors.

• They are appropriate to model non-lineal relations, as well as interac-
tion among predictors.

By contrast, regression trees are unstable, i. e., small variations in the
training data lead to notably different results. Also, they are not appropriate
for certain input-output relations, such as a straight 45o line [23].
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2.1.2. Boosting

Boosting is a general scheme to build ensemble prediction models [20]. It
is based on the generation of a (frequently high) number of simple models
(also referred to as “weak learners”) on altered versions of the training data.
The overall prediction is computed as a weighted sum of the output of each
model in the ensemble. The rationale behind the method is that the average
of the prediction of many simple learners can outperform that from a complex
one [24].

The idea is to fit each learner to the residual of the previous ensemble.
The main steps of the original boosting algorithm when using regression trees
and the squared-error loss function can be summarised as follows [25]:

1. Start predicting with the average of the observations (constant):

F0 (X) = f0 (X) = ȳi

2. For m = 1 to M

(a) Compute the prediction error on the training set:

ỹi = yi − Fm−1 (xi)

(b) Draw a random sub-sample of the training set (Sm)
(c) Consider Sm and fit a new regression tree to the residuals of the

previous ensemble:

ỹi ≈ fm (X) , i ∈ Sm

(d) Update the ensemble:

Fm(X)⇐ Fm−1(X) + fm(X)

3. FM is the final model

It is generally accepted that this procedure is prone to over-fitting, be-
cause the training error decreases with each iteration [25]. To overcome this
problem, it is convenient to add a regularization parameter ν ∈ (0, 1), so
that step (d) turns into:

Fm(X)⇐ Fm−1(X) + ν · fm(X)
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Some empirical analyses showed that relatively low values of ν (below
0.1) greatly improve generalisation capability [20]. In practice, it is common
to set the regularisation parameter and consider a number of trees such that
the training error stabilises [21]. Subsequently, a certain number of terms are
pruned using for example cross-validation. This is the approach employed in
this work, with ν = 0.001 and a maximum of 10,000 trees. It was verified
that the training error reached the minimum before adding the maximum
number of trees.

Five-fold cross-validation was applied to determine the amount of trees
in the final ensemble. The process was repeated using trees of depth 1 and 2
(interaction.depth), and the most accurate for each target was selected. The
rest of the parameters were set to their default values [26].

All the calculations were performed in the R environment [27].

2.2. Model interpretation

2.2.1. Relative influence (RI)

BRT models are robust against the presence of uninformative predictors,
as they are discarded during the selection of the best split. Moreover, it
seems reasonable to think that the most relevant predictors are more fre-
quently selected during training. In other words, the relative influence (RI)
of each input is proportional to the frequency with which they appear in the
ensemble. Friedman [20] proposed a formulation to compute a measure of RI
for BRT models based on this intuition. Both the relative presence and the
error reduction achieved are considered in the computation. The results are
normalised so that they add up to 100.

Based on this measurement, the most influential variables were identi-
fied for each output, and the results were interpreted in relation to dam
behaviour. In order to facilitate the analysis, the RI was plotted as word
clouds [28]. These plots resemble histograms, with the advantage of being
more appropriate to visualise a greater set of variables. The code represent-
ing each predictor was displayed with a font size proportional to its relative
influence with the library “wordcloud” [29].

Furthermore, two degrees of variable selection were applied, based on
the RI of each predictor. First, a BRT model (M1) was trained with all
the variables considered (section 2.4). Second, the inputs with RI (Xj) >
min (RI (Xj))+sd (RI (Xj)) were selected to build a new model (M2). This
criteria is heuristic and based on the 1-SE rule proposed by Breiman et al.
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[19]. Finally, a model with three predictors was generated (M3), featuring
the more relevant variables of each group: temperature, time and reservoir
level for radial displacements, and rainfall, time and level for leakage flows.

These three versions were generated to analyse the effect of the presence of
uninformative variables in the predictor set. Moreover, the simplest model
facilitates the analysis, as the effect of each action is concentrated in one
single predictor.

In this sense, the temporal evolution is particularly relevant for dam safety
evaluation, as it can help to identify a progressive deterioration of the dam
or the foundation, which might result in a serious fault if not corrected.

2.2.2. Partial dependence plots

Multi-linear regression models and HST in particular are based on the
assumption that the input variables are statistically independent, so the pre-
diction is computed as the sum of their contributions. As a result, the ef-
fect of each predictor in the response can be easily identified, by plotting
f(Xj),∀j = 1...p.

This method is not appropriate for BRT models, as interactions among
predictors are accounted for. While this results in more flexibility, it also
implies that the identification of the relation between predictors and response
is not straightforward.

Nonetheless, it is possible to examine the predictor-response relationship
by means of the partial dependence plots [20]. This tool can be applied to
any black box model, as it is based on the marginal effect of each predictor
on the output, as learned by the model. Let Xj be the variable of interest.
A set of equally spaced values are defined along its range: Xj = xjk. For each
of those values, the average of the model predictions is computed:

F̄
(
xjk
)

=
1

N

N∑
i=1

F
(
xjk, x

jc
i

)
(1)

where xjci is the value for all inputs other than Xj for the observation i.
Similar plots can be obtained for interactions among inputs: the average

prediction is computed for couples of fixed xjk, where j takes two different
values. Hence, the results can be plotted as a three-dimensional surface
(section 3.3). In this work, partial dependence plots were restricted to the
simplest model, which considered three predictors. Therefore, three 3D plots
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allowed investigating the pairwise interactions for all the inputs considered
in the simplified model.

2.3. HST model

A conventional HST model was fitted for comparison purposes:

Ŷ = F (t, h, s) = a0 + a1h+ a2h
2 + a3h

3 (2)

+a4h
4 + a5h

5 + a6e
−t

+a7t+ a8cos(s) + a9sin(s)

+a10sin
2(s) + a11sin(s)cos(s)

where

s =
d

365, 25
2π (3)

where d is the number of days since 1 January, t is the elapsed time (years),
h is the reservoir level, and a1, a2, ..., a11 are the coefficients to fit.

The contribution of each action can be computed by adding the corre-
spondent terms:

Ŷh = a1h+ a2h
2 + a3h

3 + a4h
4 + a5h

5 (4)

Ŷs = a8cos(s) + a9sin(s) (5)

+a10sin
2(s) + a11sin(s)cos(s)

Ŷt = a5e
−t + a6t (6)

This model was also employed to check the reliability of the temporal
behaviour identified by BRT models for some devices. After an HST model
was fitted to the training data, a modified version of the time series of the
target variable was generated by removing the temporal term (Ŷt) and adding
random noise of zero mean and a standard deviation equal to 0.5 (mm for
displacements; l/min for leakage):

Ymod = Ŷh + Ŷs +N(0, 0.5) (7)

The result is a time series whose dependence from the temperature and
the level approximates that of the actual displacement, while being totally
time-independent.
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Figure 1: Geometry and location of the monitoring devices in La Baells Dam. Left: view
from downstream. Right: highest cross-section.
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Figure 2: Time series of the reservoir level at La Baells Dam.

2.4. Case study

The data used for the study correspond to La Baells Dam. It is a double
curvature arch dam, with a height of 102 m, which entered into service in
1976. Among the available records, the study focused on 12 variables: 8
corresponded to radial displacements measured by pendulums (along the
upstream-downstream direction), and four to leakage flow. The location of
each monitoring device is depicted in Figure 1.

As for the environmental variables, the mean daily air temperature, the
reservoir level and the daily rainfall were available. Figure 2 depicts the
reservoir level variation in the period considered, whereas the other two are
included in the Appendix (Figures A1 and A2).

Since BRT models automatically discard those predictors not associated
with the output [30], the initial model considered a relatively large set of
inputs. The objective was to test that property (by introducing obviously
unimportant predictors), as well as to explore the rate of influence of several
variables whose relevance was not so obvious (e. g. the rate of variation of
the reservoir level). The complete list of predictors is included in table 1.

All the calculations were performed on a training set covering the period
1980-1997, when weekly records were available. The relative influence and the

9



Table 1: Predictor variables considered for the initial BRT model (M1).

Code Group Type
Period
(days)

Level Hydrostatic load Original -
Lev007

Hydrostatic load Moving average

7
Lev014 14
Lev030 30
Lev060 60
Lev090 90
Lev180 180
Tair

Air temperature Moving average

1
Tair007 7
Tair014 14
Tair030 30
Tair060 60
Tair090 90
Tair180 180
Rain

Rainfall Accumulated

1
Rain030 30
Rain060 60
Rain090 90
Rain180 180
NDay

Time Original
-

Year -
Month Season Original -
n010

Hydrostatic load Rate of variation
10

n020 20
n030 30
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partial dependence were computed with this data set. The model accuracy
was assessed for a validation set covering the period 1998-2008.

The goodness of fit was computed in terms of the mean absolute error
(MAE):

MAE =

∑N
i=1 |yi − F (xi)|

N
(8)

where N is the size of the training (or validation) set, yi are the observed
outputs and F (xi) the predicted values. As MAE is measured in the same
units as the variable to predict, it is an intuitive measure of accuracy. How-
ever, it is not appropriate to compare models for different targets, as it does
not account for the standard deviation of the output.

To overcome this limitation, the average relative variance (ARV) [31] was
also computed:

ARV =

∑N
i=1(yi − F (xi))

2∑N
i=1(yi − ȳ)2

=
MSE

σ2
(9)

where ȳ is the output mean. Given that ARV denotes the ratio between
the mean squared error (MSE) and the variance (σ2), it accounts both for
the magnitude and the deviation of the target variable.

2.5. Overall procedure

For each target, the complete process comprised the following steps:

1. Fit a BRT model on the training data with the variables in table 1
(M1).

2. Compute the RI and generate the word cloud.

3. Select the most relevant predictors with the 1-SE rule (see section 2.2.1)
and fit a new BRT model (M2).

4. Build a simple BRT model (M3) with the most influential variable of
each group (temperature, level and time for displacements, and rainfall,
level and time for leakage).

5. Generate the univariate and bivariate partial dependence plots for the
simplest model.

6. Compute the goodness of fit for each model in both the training and
the validation sets.
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3. Results and discussion

3.1. Model accuracy

Although the work focused on model interpretation and its implications
on dam safety, the goodness of fit was also checked in order to a) observe
the effect of variable selection, and b) check the prediction accuracy of the
model used for interpretation (M3).

Table 2 contains the error indices for each target, while more detailed
results are included in the Appendix. For those models with variable selec-
tion, the predictors are also listed. The results show that BRT efficiently
discarded irrelevant inputs, since the fitting accuracy was similar for each
version in most cases (i.e., the presence of uninformative predictors did not
damage the fitting accuracy).

The residuals were higher for the validation period, what reveals some
degree of over-fitting. A probable reason is that time was considered as any
other predictor, and thus extrapolation over time was required to calculate
the response in a more recent period. It is well known that non-parametric
models lose much of their accuracy when predictions are made outside the
range of variation of the input variables [32]. The increase in prediction error
is greater for those targets for which time influence is more important, as is
the case of the leakage in the left margin (up to four times larger). In these
cases (AFMI90PR and AFTOTMI), the usefulness of the ARV is clearly
observed: while the MAE is similar for the training and validation periods,
the ARV is notably greater in the latter case, because the variance is lower
in the most recent period (leakage flow decreased significantly over time).

3.2. Variable importance

3.2.1. Radial displacements

Figure 3 depicts the RI of the predictors for each radial displacement
considered. While Tair90 was the most relevant thermal input for the central
sections (P1DR and P2IR), Tair060 took its place for those in the vicinity of
the abutments (P5DR and P6IR). The higher thermal inertia of the central
blocks might be due to their greater average thickness.

As for the hydrostatic load, the reservoir level at the date of the record
was always more influential than all the moving averages, what reveals an
immediate response of the dam to this load.

The RI of the rate of reservoir level variation was similar to that of rainfall,
hence negligible.
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Table 2: Accuracy of each model and target for the training and validation sets. The
results and inputs considered by the most accurate version are highlighted in bold.

Train Validation
Target MAE ARV MAE ARV Inputs

P1DR1
0,64 0,03 0,91 0,08 All
0,68 0,03 0,81 0,06 Tair090,Level,NDay,Lev007,Lev014
0,69 0,03 0,78 0,06 NDay,Tair090,Level

P1DR4
0,46 0,03 0,65 0,08 All
0,50 0,03 0,66 0,08 Level,Tair090,NDay,Lev007,Lev014,Lev030
0,51 0,03 0,67 0,08 NDay,Tair090,Level

P2IR1
0,66 0,03 1,03 0,09 All
0,85 0,05 1,09 0,09 Tair090,Level,Lev007,Lev014
0,71 0,04 0,98 0,08 NDay,Tair090,Level

P2IR4
0,48 0,05 0,90 0,14 All
0,61 0,06 0,93 0,14 Level,Tair090,Lev007,Lev014,Lev030
0,53 0,06 0,94 0,16 NDay,Tair090,Level

P5DR1
0,66 0,05 0,82 0,08 All
0,64 0,05 0,87 0,10 Tair060,Level,Tair030
0,83 0,08 0,93 0,11 NDay,Tair060,Level

P5DR3
0,25 0,03 0,47 0,21 All
0,33 0,05 0,55 0,22 Tair060,Level,Tair030
0,31 0,04 0,52 0,24 NDay,Tair060,Level

P6IR1
0,60 0,04 0,80 0,09 All
0,65 0,05 0,78 0,08 Tair060,Tair030,Level,NDay
0,83 0,08 0,85 0,1 NDay,Tair060,Level

P6IR3
0,23 0,02 0,40 0,08 All
0,37 0,05 0,67 0,17 Tair060,Level,Tair030
0,29 0,03 0,43 0,09 NDay,Tair060,Level

AFMD50PR
1,28 0,16 0,93 0,19 All
1,45 0,17 1,36 0,28 Level,Lev014,Lev007
1,16 0,14 1,23 0,48 NDay,Rain090,Level

AFMI90PR
0,08 0,09 0,15 0,51 All
0,08 0,10 0,12 0,45 Lev007,NDay,Level,Lev014,Lev030
0,08 0,10 0,12 0,46 NDay,Rain030,Lev007

AFTOTMD
1,64 0,15 1,67 0,37 All
1,87 0,19 1,73 0,45 Level,Lev007,Lev014
1,69 0,18 1,97 0,52 NDay,Rain180,Level

AFTOTMI
0,41 0,11 0,44 0,40 All
0,44 0,12 0,44 0,42 NDay,Lev060,Lev014,Lev007,Lev030,Lev180,Lev090,Level
0,54 0,18 0,46 0,60 NDay,Rain180,Lev060
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Figure 3: Word clouds for the radial displacements analysed.
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Figure 4: Relative influence of inputs in radial displacements, aggregated by type. The
values in parenthesis correspond to the relative influence of time. Since the result is
normalised, they sum 100 for each location. Hence, the distance to the x + y = 100 line
(dashed) is proportional to the importance of the time effect. It should be noted that the
devices in symmetrical locations with respect to the dam axis are grouped (i.e. P6IR3 and
P5DR3). The arrows highlight the path of increasing influence of temperature in both
plots, also symmetrical.

From an overall viewpoint, a high degree of symmetry was observed, with
the remarkable exception of the greater influence of NDay for P1DR1 and
P1DR4 (Figure 3). This issue was further investigated by aggregating the
relative influence of inputs by type: hydrostatic load, air temperature and
time (Table 1). Figure 4 shows the result for each location considered. The
symmetry is neatly observed, as well as the increasing RI of the temperature
with respect to that of the hydrostatic load, from the foundation towards the
crown, and from the centre to the abutments.

3.2.2. Leakage

The RI of the inputs for the leakage flows revealed a clear different be-
haviour between the right (AFMD50PR and AFTOTMD) and the left mar-
gins (AFMI90PR and AFTOTMI). While the former responded mainly to
the hydrostatic load, with little inertia, the latter showed a remarkable de-
pendence on time, as well as a greater relevance of several rolling means of
reservoir level. Figure 5 shows the word clouds for the leakage flows.

The low inertia with respect to the hydrostatic load suggests that most
of the leakage flow comes from the reservoir, while the effect of rainfall is
negligible.

Finally, it should be noted that temperature was irrelevant.
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AFMD50PR AFMI90PR

Figure 5: Word clouds for the leakage measurement locations analysed

3.3. Partial dependence

3.3.1. Radial displacements

Figure 6 displays the univariate partial dependence plots for the radial
displacements. The association between the air temperature and the reser-
voir level is intuitive: high temperature generates displacements towards
upstream (positive direction in the vertical axis), due to concrete expansion,
coerced by the abutments. The effect of the hydrostatic load is the opposite:
high levels imply greater load and displacement towards downstream, and
vice-versa.

These plots also show that the air temperature had greater influence
than reservoir level for P5D and P6I (steeper curves with greater range of
variation). The inverse effect was observed for P1DR4 and P2IR4, whereas
both had similar relevance for P1DR1 and P2IR1. These results are coherent
with the computed RI (Figures 3 and 4).

A deeper analysis was performed for P1DR1, which featured the greatest
influence of time. The correspondent plot in Figure 6 shows a small step at
the beginning of the period, followed by a sensibly constant behaviour until
1990, and a second larger step that stabilised afterwards. The bivariate plots
for P1DR1 in Figure 7 show the step around 1991-1992 for the whole ranges
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Figure 6: Partial dependence plot for the radial displacements analysed. Movement to-
wards downstream correspond to lower values in the vertical axis, and vice-versa.
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Figure 7: Interaction plots for P1DR1. It should be noted that the step along the temporal
axis is observed for all the range of temperature and level.

Figure 8: P1DR1. Contribution of the air temperature, the hydrostatic load and the time
as drawn from the HST model.

of level and temperature.
This qualitative behaviour was observed for all displacements with lower

magnitude, except for P5DR3. The effect was more clearly registered for
P1DR1 and P1DR4, which in turn showed a greater influence of time (see
Figure 3 and the Appendix).

Figure 8 shows the contribution of each action as obtained with the HST
model. Unlike the previous case, the influence of time is linear, equivalent to
a constant-rate displacement towards downstream.

This different model interpretation deserved a further verification. Not
only because the results were substantially different, but also because the
time effect is essential for the early detection of dam deterioration. In view
of the temporal variation as captured by the BRT model, it could be con-
cluded that some anomaly happened around 1991, which stabilised in the
later years. On the contrary, the HST model interpreted a constant drift to-
wards downstream of roughly 0.2 mm/year which might be serious in terms
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Date Tair090 (ºC) Level (m.a.s.l.)

Figure 9: Partial dependence plot for the artificial time-independent data. P1DR1. It
should be noted that time influence is negligible.

of the dam safety.
As mentioned above, the shape of the output-time dependency must be

defined a priori for HST (in this case, a combination of exponential and
negative linear functions was chosen), while in principle it can take any form
for BRT. Therefore, it could be concluded that the actual behaviour of the
dam was that showed by the BRT model, and that the result of the HST was
due to the previously imposed restriction.

However, the average reservoir level in the period 1991-1997 was signifi-
cantly higher than before 1991 (Figure 2), and might be the cause of the step
registered in Figure 6: it represents a greater displacement towards down-
stream in the most recent period, which is consistent with the higher average
hydrostatic load.

The verification was performed by fitting a new BRT model to the ar-
tificial data generated (Ŷmod) without time variation (eq. 7). It should be
recalled that the artificial time series data maintains the original reservoir
level variation, and thus the higher load in the 1991-1997 period. Figure 9
contains the partial dependence plot for this BRT model, which clearly shows
that the independence of the artificial data with respect to time was correctly
captured. This result confirms that the step in the time dependence captured
by BRT is not a consequence of the higher hydrostatic load in 1991-1997.

As regards the HST model, it can be concluded that the linear trend is
the best least squares fit that can be obtained to the observed behaviour
(constant-step-constant) with a linear function. This might lead to a wrong
interpretation of dam performance, not supported by the observed data.

It should be mentioned that more sophisticated versions of the HST model
can be employed, and in particular a step can be considered, as Carrère and
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Noret-Duchêne showed in their analysis of the Schlegeiss Dam [33]. However,
they only decided to try a step after observing a previous linear fit, where
the sudden change in dam behaviour could be noted. In general, it can be
difficult to identify a change in dam behaviour by simple data exploration,
as is the case of La Baells Dam (see Figure A3). In this sense, the non-
parametric nature of BRT models helps to identify performance changes of
any type.

3.3.2. Leakage flows

Although the word clouds showed that neither rainfall nor temperature
were influential on the leakage flow, partial dependence plots were generated
as a further verification for the simplest model (M3 model; section 2.5).

Figure 10 contains the results, which confirm the conclusion of the word
clouds: the time effect is irrelevant in the right abutment, except by certain
erratic behaviour in the first two years and in the last three. On the contrary,
a sharp decrease in leakage flow is revealed around 1983 for both locations
in the left abutment. A lower decrease is observed in later years.

These results might be due to the colmatation of the cracking network in
the left abutment, which would have led to lower permeability and leakage
flow.

The shape of the effect of the hydrostatic load is sensibly exponential,
with low influence for reservoir level below 610 m.a.s.l.

4. Summary and Conclusions

BRT models with different degree of variable selection were fitted to 8
radial displacements and 4 leakage flows at La Baells Dam. The relative
influence of each input was computed and depicted via word clouds, which
offered an efficient visualisation of the overall response of the dam. These
graphs, together with the univariate and bivariate partial dependence plots,
allowed interpretation of the BRT models: useful information regarding dam
behaviour was obtained, such as the thermal inertia, the variation over time,
and the performance of each area of the dam body.

The results showed a symmetrical behaviour of the dam in terms of dis-
placements, as well as some interesting patterns, which will be the subject
of future research:

• the thermal inertia was higher near the abutments.
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Figure 10: Partial dependence plot for leakage flows.

• the RI of the temperature with respect to that of the hydrostatic load
increased from the foundation towards the crown, and from the centre
to the abutments.

As regards the leakage flows, the different behaviour over time of each
abutment was identified.

The amount of predictors considered in the BRT model did not signifi-
cantly affect the prediction accuracy: the results confirm that the algorithm
efficiently discard the less relevant inputs.

The application of BRT models to make predictions for a more recent
period than that used for training involves extrapolation over time (provided
that some time dependent predictor is considered). Hence, results should
be analysed carefully, in particular if the time effect seems relevant. This
applies to any data-based model considering time as input, including HST.

A sudden change in radial displacements was identified by the BRT model,
especially for P1DR1. By contrast, the HST model suggested a constant-
rate drift in the downstream direction. It was verified that the step towards
downstream captured by the BRT model was not due to the higher average
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hydrostatic load actually registered for the 1991-1997 period. This suggests
that partial dependence plots based on BRT models are more effective to
identify performance changes, as they are not coerced by the shape of the
regression functions that need to be defined a priori for HST.

The flexibility and robustness of BRT models make them suitable to
model any output variable, as well as to identify changes in dam behaviour.
Nevertheless, data-based models should never be the only source of infor-
mation to make decisions on dam safety. Their results need to be checked
against those provided by other means, such as deterministic models. Also,
all available information about the dam behaviour should be taken into ac-
count, especially that obtained by visual inspection.
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for the prediction of dam behaviour: A review and some methodologi-
cal considerations, Archives of Computational Methods in Engineering
(2015) 1–21.
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Appendix A.

All the plots generated during the analysis are included herein: the time
series of mean air temperature and daily rainfall, and a set of plots for each
target variable:

• The 2D and 3D partial dependence plots for BRT Model 3 fitted to the
original data
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• The location of each device within the dam body

• The 2D partial dependence plot for BRT Model 3 fitted on the altered
version of the target (independent of time)

• The word cloud for Model 1

• Observations versus BRT model predictions for the training and vali-
dation sets, together with the model residuals.

The partial dependence for the artificial data was included to highlight
that the BRT models correctly captured the time independence when it was
imposed in the time series of the target variable.
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Figure A1: Time series of the mean air temperature at La Baells dam site.
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Figure A2: Time series of the daily rainfal at La Baells dam site.
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Figure A3: P1DR1. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c)
Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of relative
influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A4: P1DR4. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c)
Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of relative
influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A5: P2IR1. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c)
Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of relative
influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A6: P2IR4. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c)
Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of relative
influence; (f) Model fit and residuals for the train and the validation sets.

30



(e)

(a)

(b)

(f)

(d)

(c)

Train Validation

P5DR1

Figure A7: P5DR1. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c)
Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of relative
influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A8: P5DR3. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c)
Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of relative
influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A9: P6IR1. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c)
Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of relative
influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A10: P6IR3. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c)
Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of relative
influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A11: AFMD50PR. (a) 3D partial dependence plot; (b) 2D Partial dependence
plot; (c) Idem for artificial data (time-independent); (d) Device location; (e) Word cloud
of relative influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A12: AFMI90PR. (a) 3D partial dependence plot; (b) 2D Partial dependence plot;
(c) Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of
relative influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A13: AFTOTMD. (a) 3D partial dependence plot; (b) 2D Partial dependence plot;
(c) Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of
relative influence; (f) Model fit and residuals for the train and the validation sets.
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Figure A14: AFTOTMI. (a) 3D partial dependence plot; (b) 2D Partial dependence plot;
(c) Idem for artificial data (time-independent); (d) Device location; (e) Word cloud of
relative influence; (f) Model fit and residuals for the train and the validation sets.
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