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SUMMARY

A formal analogy between the equations of pure plastic and viscoplastic flow theory for void-containing
metals and those of standard non-linear elasticity is presented. The formulation s particularized for the
analysis of axisymmetric sheet metal forming problems using simple two node linear finite elements. Details of
the treatment of friction and strain hardening pheénomena, time increment computation and elastic effects are
also given. Exampies of the effect of void porosity on the hemispherical stretching of a circular sheet are
prescnted

INTRODUCTION

An effective way for developing computational models for problems of continuous deformation of
metals is to treat the material as an incompressible viscous fluid of a non-Newtonian kind. This
procedure, formally identical to that of pure viscoplasticity theory, is usually known as the ‘flow
approach’ and it has been extensively used in recent years in conjunction with the finite element-
method for solving a variety of bulk and sheet metal forming problems.”~?

Mouch of the success of the finite element flow formulation is due to its simplicity. It is well known
that, if inertia terms are neglected, the flow equations for a von Mises type of material are
analogous to those of classical non-linear incompressible elasticity with velocities, strain rates and
non-linear viscosity playing the role of displacements, strains and shear modulus of the equivalent
elasticity model; respectively. This allows finite element computer programs for metal forming
analysis to be directly obtdined by a simple mochﬁcatzon of standard finite element packages
written for 2D and 3D elasticity.!-? -

Ome of the weak points of the viscous flow approach i is its inability to predzct degradatlon and
failure of the deforming material. Thus, important effects like metal fracture are, in principle,
impossible to reproduce with the standard plastic or viscoplastic flow models.

In ductile metals softening and ultimate failure by nucleation, growth and coalescence of
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microscopic voids are important fracture mechanisms. Voids nucleate mainly at second phase
particles by particle fracture or by interfacial decohesion, and subsequently the voids grow due to
intensive plastic strammg when the hgaments between nelghbourmg voids have thinned down
sufficiently.

In this paper, the effect of nucleation, growth and coalescence of voids in the deformation of a
plastic metal is studied. The layout of the paper is the following, In the next section it is shown how
the equations of pure plastic flow of the voided metal are analogous to those of non-linear
compressible elasticity. This allows finite element solutions to be obtained for such potentially
difficult problems in a simple manner by directly using computer programs written for standard
2D and 3D elasticity. This formal analogy is shown to hold also for the case of viscous flow of a
void-containing material.

‘In the sections which follow the flow formulation is particularized for the analysis of
axisymmetric thin sheet metal forming problems and details of the corresponding shell and
membrane formulations using simple two node axisymmetric elements are given.

Tmportant aspects like the treatment of friction and strain hardening phenomena, time step
computation and inclusion of elastic effects are also briefly discussed. Finally, examples of
application to the hemispherical stretching of a circular sheet of metal, including the effect of voids,
are presented.

PLASTICITY OF VOID-CONTAINING METALS

A rational model that describes the nucleation, growth and finally coalescence of voids in metals
can be developed on the basis of the so-called Gurson model.® The model has the formal structure
of non-associated plasticity equations with plastic dilatancy effects taken appropriately into
account.®~1 The ductile fracture process is described as an apparent loss of active material volume
with a corresponding decay of the average macroscopic stress. Applications of this model for
sheet metal forming problems using an elastoplastic formulation have been presented by Chu.!¢ In
the present study the effect of elasticity, of small importance in the presence of large plastic
deformations, will be initially neglected: A procedurc for dealing with elastic effects will be
discussed in a later section. '

The yield condition for a randomly voided material with sphencal {for 3D problems) or circular
cylindrical voids (for plane stress problems) may be assumed as®

3 0.D 3]

bloi 0w ) =37 50 427 0 o(2)-qer=0 "

where o;; is the microscopic Cauchy stress, o is the Cauchy stress deviator; oy is the tensile yield
limit of the matrix material and f is the void volume fraction.

The summation convention is employed in (1). The matrix material is assumed incompressible.
Note that for porosity parameter f =0, equation (1) reduces to the classical von Mises yield
condition of the form ' :

bloyd) =300 10 o

¢ = gy being the current tensile yield limit. Accordlng to concepts discussed in References 815, the
change of the void volume fraction during the increment of deformation is taken as

f=forh+de ()

where subscripts g, n and c stand for growth, nucleation and coalescence of voids. Also, it can be
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assumed that

fe=0~1N)El ' (4)
and the stress-controlled nucleation can be postulated in the form?
. k. 6n ' '
fn—;;( M+T) | )

the material parameter k being the volume fraction of particles converted to voids per unit
fractional increase in stress. Nucleation is assumed to occur only if the approximate value of the

maximum normal stress gy + 0y, /3 exceeds in the current time increment of its previous maximum.

The term f, in equation (3) will be discussed later. ‘

' After some routine calculations® ~** it is possible to arfive at the typical non associated flow rule

£ = %ﬁij(zskzak'z) ' | (6)
in which
3ol
ISijmzj_;'l‘ﬁléij
2ng=§%+£25£;
s
p=L o)
kd C—
32=ﬁ1+6£=51+k"3_f
o W+ fAS)? (C—[loy e ok wfaS
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where & is the classical isotrepic' hardening parameter for the matrix mat_ei‘ial

R . .
we=l =200 _afc4 7 | )
ch oy
and _
A=£’«fu’5~, S=sinhd, C=cosh4 ' (%
2oy :

It can be easily seen that for standard plastic materialé f=0,k=0and w=1, and then E=¢
and B, = f, = 0. Consequently, in this case the classical associated fow rule is obtained from
equation (6) as

1 ] .
: ég?)zgsij(skro'kz)' o (10)
with
I .
sy=23i | (11)

Y28
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Equation (10) can be rewritten in a more convenient form as

|
&y = 27 5 (12)
. where u can be interpreted as the ‘viscosity’ of the equivalent viscous fluid, given by
g
=52 (13)

- with U o . :

_ = f3 . (14)
Equations (12) and (13) are the basis of the standard ‘plastic flow’ approdch which has been
extensively used for the analysis of meta] forming problems.!~” Note that in equation (13) the value

of p tends to infinity as £® tends to zero, so in numerical computation ‘a large but finite cut
off value for y must be assumed to allow for zones of rigid or nedrly rigid behaviour.

ANALOGY OF THE PLASTIC VOIDED MATERIAL WITH
STANDARD ELASTICITY ‘

Using the expressions of 153y and ,s;; of equation (7), and after some algebra, equation (6} can be
written as ' :

w 1.03 ob ‘ . .
ng)*?a[ja_j-i-ﬁﬁij:l . (15)
with . _
The deviatoric stresses can be written as _ _
oR=oy—pdy; ' o 17

where P=0y/3 1s the mean pressure. _ L ,
-Substituting equation (17)in (15), and using the value of B, of equation (7), it can finally be found
that : . '

' 1 . - .

s'g?J - e Los;~ 29pd;;] _ _ - (18)
with l _ .

G':%f _ : {19)

R ) I

 Ifwe compare équation {18) with the constitutive equation for classical elasticity

1 3y '
Eif=ﬁ[ﬁsj—%1_}_vp5u] . (21)

where G and v are the shear modulus and Poisson’s ratio of the elastic material, respectively, we can
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easily conclude that the equations for plastic flow of a voided metal are analogous to those of
classical (compressible) elasticity. Therefore, standard finite element programs developed for 2D
and 3D elasticity problems can be automatically used for the analysis of plastic deformation of
voided metals by just replacing displacements and strains by velocities and strain rates,
respectively, the shear modulus G by the parameter G of equation (19) and the Poisson’s ratio v by
29/(3 — 27), with ¥ given by equation (20). Note from equations (19) and (20) the stress and strain
rate dependence of G and ¥, which makes the analogous elastic p:oblem non-linear. The numerical
solution must therefore be found iteratively. However, in practice a simple direct iteration scheme
i enough to reach convergence in a few iterations.
Equation {19} can be put in a much simpler form sultabie for numerical computations. Thus,

making use of equations (3)—(9), one can obtain

G= W fAS — k(€ — f)IEE® — (1 = [)(C— Noydl) — F(C— f)on (@)

Therefore, if the coalescence term is neglected, which is the case for values of £ < 0-20,1° the
expression for & can be computed in terms of current values of strain rates, stresses, porosity and
hardenmg modulus. Moreover, it can be found after some mathematics that the value of G for this

case is given simply by ' _
= oy [wH+ fAS .
Gmome | —— 2" 23
3 ( i—7 ) ®)
which is a very convenient expression for use in thé_ numerical process.”

For classical plastic materials w=1,f=8,=w=0 and oy=4¢, and therefore, from
equations (23) (or {19)) and (20), we have

G

= pL
(24)

Bal

V=v==

Thus, the incompressible form of the deformation is recovered, and the expression for G
coincides with that of the viscosity of the standard plastic flow problem (see equation (13)).”

Finally, the term f, in equation (3) can be numerically accounted for in the following way.
According to Reference 10 coalescence takes place at f = 0-20. Thus, an extremely simple yet
effective numerical scheme can be used to reproduce this phenomenon if, at points for which
f =02, a proportional increase in fis assumed for a number of fixed incremental steps (= 5), up
to f =1, for which the material carrying capacity in that point is effectively zero.'**? Note that
for this case the expressions of G and 7 given respectively by equations (19) and (20) must be used.

INCLUSION OF VISCOPLASTIC EFFECTS IN THE FLOW EQUATIONS OF
VOID-CONTAINING METALS

In Reference 3 the analogy between equations of linear elasticity and those of rigid-plasticity has
been shown to hold for non-voided materials also in the case of viscous properties of a plastic solid.
For the lack of any meaningful theory describing the time-dependent behaviour within the
framework of Gurson’s model, a similar analogy can hardly be obtained for porous materials (an
attempt presented in Reference 14 seems to be two complex algebraically to allow for such a’
derivation).

However, it seems that an approximate way of including viscous effects in a void-containing
material could be accounted for by proceeding as follows.
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Using the classical overstress concept of viscoplasticity® we can define

- . : ' -~ {3¢B0P E
| . e )

where \/v: is introduced to make the overstress parameter zero in the non-viscous case (when

V30568 = /way; see equation (8)).

By postulating the expressions for the viscoplastic strain rate as
&P =" 15, for x>0

P =) for ©<0 (26)

where y is the material fluidity, we obtain
ggp} = %ég"}ég") =yx" ‘%‘1 3518y =PI /W Zﬁf 27
Thus, ' R ' '
o)\ 1w DD ' ‘
gl Joriop
( ij ) - /° IJCVU_O_M 28)
I W+ 23 2w T

which can be considered as a viscous'counterpart of the relation (equation (1))

- [36P6?

It is seen that for finite values of the fluidity v the current macro stresses o; may now significantly
exceed those allowed in Gurson’s model-—the excess stresses are bigger when strain rates are
higher.

Let us rewrite the last equation as

| g )wﬂ} 35050
oy 1| ————e = o : . @9
M[ (WKNW_+2!3§ 2w _ ”

. 30808 ’
O = /E—Jw—f (30)

we-see that accounting for viscous properties corresponds roughly speaking to replacing the matrix
yield value 6y by : '

Comparing it with the condition

)]
oy| 1 +| ——mon
L et wr2pt)
Using this observation we write equétiou (19) as ‘

- [ : ( N /é(vp) ) HNJ
| 1+ [ —— s
M- Py W+ 285/

G= g

(31

An additional justification for the-above ad hoc assumption stems from the fact that the last
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equation for particular case of non- v01ded material (w=1,8,=0, B2 =0} leads to

Zom ifn
— &+( )
c—;:____l’___'_

3E0E)

- (32}

which exactly coincides with the relation derived in References 3 and 4. Thus, it seems that after

appropiate calibration, the expression for G .of equation (32) could be used in practical

computations of void-containing viscoplastic materials since it accounts for all the basic

ingredients required in such a case. Note that the simplified form of G given by equation (23) can
_ again be effectively used with the new value of the matrix yield limit, ¢,,, as explained above.

APPLICATION TO THIN SHEET METAL FOR.MING'

The analogy presented in the previous section allows the immediate treatment of large plastic or
viscoplastic deformations of voided thin sheets of metals making direct use of classical shell theory.
The solution scheme is thus as follows. '

(1) Identify an elastic shell formulation. If standard finite element techniques are used a.discrete
system of equations is obtained, upon discretization, of the form®->-¢

Ka= ‘ (33)

where K is the shell stiffness matrix, and a and { are the displacement and nodal forces vectors,
respectively. The equivalent ‘viscous voided shell’ 1s formufated by simply identifying displace-
ments and strains with velocities and strain rates, respectively, and the shear modulus and
Poisson’s ratio with the parameters G and 27/(3 — 27), respectively.

Equation (33) becomes a system of non—]inear equations which must be solved iteratively. In the
initial solution values of the velocities a° void volume fraction f and parameters G and 7 are
assumed.

(2) Solve for a*. If direct iteration is used., the first iteration becomes

" al =[K(a%)]"f (34)

(3) Check for convergence of velocities. If desired convergence is not achieved go back to (2).

(4) Once convergence has been achieved the geometry is updated by aAt, where At is an
appropriate time step size. Also, the boundary conditions must be changed if new points of the
sheet have come into contact with the tool surface. Finally, the sheet thickness and void volume
fraction are also updated accordingly to the values of the thickness and. volumetnc strains,
respectively. '

(5) The process is restarted mth the new values of the sheet geometry and void volume fraction.

. The algorithm is thus very simple and it also allows other effects like strain hardening and
friction conditions in the sheet/tool interface to be included in a straightforward manner as will be
briefly explained later.

We have to note that direct iteration usually yields convergence of the velocity field after a
small number of iterations. This is due to the well posed boundary value nature of the problem in
which velocities are prescribed at the tool-blank contact nodes, and forces (reactions) are obtained

‘a posteriori from the converged velocity field. Thus, for each solution the initial velocities can be
guessed to be not too far from their correct values and convergence is rapidly achieved. Special
care, however, must be taken to define a cut-off value of the equivalent shear modulus in zones of
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the sheet with zero, or almost zero, porosity and where no rigid deformations are expected, to
prevent ill conditioning of the stiffness matrix, as already mentioned (see equation (13)).

In the next sections we present details of the finite element viscous voided shell formulation for
axisymmetric sheet metal forming problems. -

FINITE ELEMENT AXISYMMETRIC VISCOUS VOIDED
SHELL FORMULATION '

In this section a finite element viscous shell formulation for the analysis of axisymmetric sheet
forming processes including the effect of voids is presented. As previously explained, the basis of the
success of such a formulation lies in the efficiency of the analogous elastic shell solution. We will use
here the axisymmetric finite element shell formulation with simple two node linear elements
developed by Zienkiewicz et al!” This formulation has been successfully used by Ofiate and
Zienkiewicz® for the analysis of thin sheet metal forming problems using the standard plastic flow
approach.
The shell formulation is based on the following basic assumptions: -

1) normals to the shell midsurface before deformation temain straight but not necessarily
orthogonal to the midsurface after deformation; :

2) the normal stress ¢, is negligible;

3) the term (i --#/R}~1, where t and R are the shell thickness and radius of curvature,
respectively;

4) the loading is also axisymmetric.

Velocity field
Assumption 1 allows the local velocities of a point to be expressed as (see Figure 1)
W=u,~z8 (35) '

w = w)

where 7’ is the co-ordinate in the thickness direction, index ‘o’ indicates midsurface velocities

Tre

Jr

L U.lg

Figure 1. Axisymmetric shell. Geometry, velocity and stress field
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and 0 is the normal rotation velocity. Global and local velocities are related by
: cos¢p —sing O
u=Tu with T= sin ¢ cos¢g O : ©(30)
: 0 0 ]

where vectors u and v’ and angle ¢ are shown in Figure 1.

Strain rate field

_The local strain rate vector is given by*’

. o’

& _ax, -
g=lg, b=d 2 , _ 37)

. ow

) & TE

Using equations (35) -and (36) and assumption 3, vector & ‘can be written, after some
transformations, as - :

é}’—!—z’K, . .
ge={i5+7K, y=5% (38)
'}}rﬂ
where o - .
E= [é?, &g, Kr: KG:'];rG:IT ‘ ) . ' (39)
with )
o fu, . 0w,
a,—cos¢~§;~+s1n¢as -
) 'uo
Gp=—
"
a6 S | | |
o n ‘ o : 40) -
K, =% ( )
K9=:'—'6(,:OS¢
: r
yre——smqb +cos¢> -0
ahd )
' 1 0 2 0 0
§=[(0 1.0 2 0 (41)
00 0 0 1:

In (39) € is the cenerahzed stram rate .vector and (&2, €3), (KF,KG) and 7,4 correspond to
membrane, flexural and shear generalized strain rates, respectwely
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Stress field. Constitutive equation

- The comstitutive equation relating stresses and strain rates is directly obtained from
standard plane stress elasticity!” and the relationships between G and v with Gand 7 explained
previously, as

G = [G_r: G, v-"'rﬁ'].r = Dé ) A (42) -
For an isotropic material '
dll d12 0
D=|dy dyy 0O
_ 0 0 di,
with ,
- 2G(3-27%)
dyy=dy, = W
4Gy
dig=dyy = 3 _4y (43)
dyy=G

where G and 7 are given by equations (19). and (20), respectlvely For the sign criterion of the
stresses, see Figure 1.

Virtual work equation

The equation of virtual velocities is written as
12 s '
27 j f d¢Tordsdz’ =2z j Suftrds 4 2% Z oulp;r; (44)
—t/2

where t and p; correspond to surface and pomt Ioad vectors respectively. The left hand side
of (44) can be rewritten using equations (38) and (42) as

+1f2- . '
2n f j 8&Terdsdz’ —2nf 68T Dér ds (45)
12 0
where ' . ‘
. +i/2 vz Dn - ZD, 0 :
b= j S™DSdy = f 7D, (YD, 0 |dz (46)
—1/2 =2 0 ) 0 : d33
and ‘ T
dll dlZ]
D_= (47
[dlz d22
with d;;, dy, and d,, having been defined in equation {43). For further use we also define
. +t/2 - +tf2
D= f D, dz; D= j 7D, dz
-z . . —1/2
N +tf2 N +tf2 A .
D, = J. #)D, dz’ and D= J dyadz (48)
-2 —t/2

where D_, Dmb, D, and D, are the resultant constitutive matrices for membrane
bendmg—mcmbrane coupling, bendlng and shear effects, respectively. ‘
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e

Figure 2. Straight and curved cne dimensional elements for axisymmetric shell analysis

Finite element discretization. Linear element

With the above shell formulation we note that a finite element interpolation involving only
continuity of the velocity field is required. Thus, any of the C, 1soparametr10 one dimensional
finite element interpolations are possible. Based on previous experiences,”!” we have chosen
here the simple two node linear element of Flgure 2. Therefore, the velocity field is expressed as

‘ u= Z N;a; - ' : ‘ (49)
where ;
N;=NI; and a;=[u,w,;,0:]" (50)

In (50) N; and a; arc the linear shape functmn (see Figure 2) and the vector of global velocities
of node i, and K; is the 3 x 3 unit matrix.”

The generalized strain rate vector of equation (39) can be expresscd in terms of the element
nodal velocities as

. S . :
3= Y B, | .6y
- i=1 - :
where _ ' -
N, GN
i} v 0
cos ¢ PR sin ¢ s
il 0 0
Bmi ’
‘ ' aN, |
= y= 1~ _ .2 52
B, = { B, 0 | 0 = ‘ (52)
B 0 0 _N, cos ¢
81 i
0N, aN,
_— sin ¢ . cos ¢ % N; ]
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In (52) B,;, B,; and B,; are the membrane bending and shear contrlbutzons to the nodal
strain rate matrix B;.

Equations (49) and (51) can be used to obtam the standard dlscretlzed system of equilibrium
equations upon substitution in the virtual work expression as

Ka=f | (53)

where the element contribution to the stiffness matrix K and the nodal force vector f are

Kg_;:)=2nf BIDB,rds
Itel

_ (54)
£ = 27 j Nitrds + 2ar;p,
i)

where I is the element length.

Note that owing to the strain dependence of G and ¥ parameters, the computation of the
stiffness matrix implies a double integral (see equations (54) and (46)). Thisis in practice performed
using numerical integration.

It has been shown*7 that for a successful use of the linear axisymmetric shell element for thin
situations, one point Gaussian quadrature must.be used for the integration of K{§ along ‘the
element length.!” This allows one to obtain an explicit form of K as

K = 2zBTDB 71 . (33)

where the bar denotes values at the element mid point.

Matrix B; is teadily obtained by substituting the terms N, and 8N, /0s in equation (52) by
1/2 and {— 1)1, respectively.

It is worth pointing out that computation of D still involves a numerical integration
across the thickness for evaluating the integral of equation {46) at the element mid point. However,
for well developed forming stages'in which membrane effects dominate the solution,® a single.
(Gaussian point across the thickness suffices for a precise evaluation of equation (46).

The membrane, membrane—bending coupling, bending and shear contributions to the stiffness
matrix K{2 can be deduced from equations (46), (52) and (54) as

+1/2 N +/2 N .
Kg;} = JA BLiDmijT dS + N (B':Ix;-iDmbBbj + BgiDmmej)r ds

=2 —tf2

+1/2 " +1/2 . ) s
+j BY.D,B,,rds+ J BID,B,rds . (56)
_:'[2 . —I,f2 B ) -

- K:(;z; + KS‘:{LLJ 3(361‘} -+ Kgf}

AXISYMMETRIC VISCOUS VOIDED MEMBRANE FORMULATION

‘The viscous membrane formulation can be easily derived from the general case presented in the
previous sections by simply neglecting in all expressions the bending and shear terms. Therefore,
the relevant matrices and vectors are now defined as

velocity vector: u=[u,,w,]T (57a)
generalized strain rate vector: t=[5,8]" {57b)

stress vector: o G¢=[a,,0,]" {57¢c)
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constitutive matrices:. \ D=D,_; D= D, (57d)

where D_ ‘was given in equation (47). Note that equation (57d) is a direct comsequence of
the independence of material properties from the thickness co-ordinate, as it is in classical
membrane theory. Finally, the explicit expression of the stiffness matrix for the linear element
is given simply by

K = 27BL, DB, {7 (58)

where the bar again denotes values at the element mid point.

TIME INCREMENT COMPUTATION AND GEOMETRY UPDATING

As already mentioned, in sheet forming problems a.continuous updating of co-ordinates is
obviously necessary to follow the sheet geometry changes. This implies that the sheet geometry
has to be updated every time convergence of the velocity field is achieved and the limit of the
blank/tool contact surface subsequently adjusted.

We will be concerned here with the calculation of the time increment for which the first node
of the non-contacting region comes into contact with an indenting hemispherical punch; however,
the same procedure could be applied to study the contact with the fixed tooling region.

The equation of the punch in the co-ordinate axes of Figure 3 is

r2 472 =R2 | 59

where R, is the punch radius. If (r,,z,) and (us,W,) are respectively the co-ordinates and
velocities of the next node to come into contact (see Figure 3) at time ¢, the new co-ordinates
© (¥y,z4) at time t + At will be
Fiy =Py g AT
. (60)
Ty =2, + (W, — W, )AL
where W, is the punch velocity. From Figure 3 we see that node 4 will come into contact when

Zh=z, : - (6D)

\\\\\\\\_
m\\\\\\\ R

Figure 3. Co-ordinate axes for time step computation
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The value of z, at time ¢ -+ At is obtained from eqﬁation (59). Therefore node 4 will come into
contact if

Zy A+ (Wa = W) At =\ /R2 —(r, + uy At)? : (62)
which i's‘a non-finear equation' in Az If direct iteratior is used, we have

' Atn+1:\/R§—(r4-i~u4Ar}2wz4

W — W, (63)
The process stops when o :
At — At
-5 001 (64)

A"

Convergence of the above computations has proved to be very fast and inexpensive.

The simplest updating procedure is to use the time step calculated in equation (63) to increment
the blank co-ordinates by aAt to their new deformed position so that we can be sure that the
deformed blank does not cross the punch surface. However, the use of large time steps leads to
instability and usually a small fraction of the time step calculated in equation {63) must be used.

An alternative procedure which has proved to be very efficient is to use a fixed time step Az -
throughout the analysis and calculate the position of the next contact point, which, obviously, in
general it will not coincide with the next free node. Once the position of the contact point has been
obtained the finite element mesh is slightly modified so that the closest node is displaced to coincide
with the contact point. : '

This method has the advantage that for each time step the contact region is modified in a simple
manner, thus avoiding the numerical oscillations which occur when the contact peoints are lintited
to the nodes and the distance between them is not sufficiently small, Obviously, the time step
chosen should not be so large that the next contact point les outside the next free element of the
non-contacting region.

USE OF CONSTANT SPATIAL VELOCITY FIELD

It can be easily checked that in most sheet forming problems the ‘spatial’ velocity field does not
change much between two consecutive solutions once the forming process reaches a well developed
stage. Consider, for example, the case shown by Baynham and Zienkiewicz!® of the deep drawing
ola circular sheet with a flat bottom punch. Figure 4 shows the shape of the blank at two positions
of the punch (J apart) for a well developed process (that is one where punch displacement is greater
than the sum of the punch and die profile radii). If the radial and axial components of instantaneous
velocity for the two blank geometries are plotted against the radial co-ordinate {(sec Figure 4) it is
found that the shape of the curve is very similar for the two punch positions.

If, however, the velocity of a particular point of the blank is compared at two punch travel
positions (for example, by plotting the velocity against the radius of the blank in the first position) it
is found that some parts of the blank undergo a severe change of velocity. Such a comparison is
made in Figure 4 and, clearly, the points which undergo the greatest change of velocity are those
near the die profile radius. ‘ _

Thus, if a Lagrangian approach is employed in which the velocity of the material points is used to
update the blank geometry, the time steps A¢ must be small. On the other hand, if a Bulerian
approachis used in which the constant spatial velocity ficld is used to update the geometry, then the
same velocity field can be used for a greater length of time and so the number of resolutions is
reduced significantly. : : ‘

i
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Figure 4. Radial velocity of material of blank: {z) spatial velocity field; (b) material velocity field for punch positions &
apart'® -

In this paper this Jatter method is used in combination with the constant time step algorithm,
shown in the last section, as follows. '

(a) - Once the velocity field-has been obtained for a blank position, a record is kept of the spatial
velocity field in that particular position, which is taken as ‘initial’ in the foltowing updatings
of the blank. o ,

{b) Theblank geometryis updated using the spatial velocity field with a constant time step. After
each updating the geometry of the blank is checked and modified so that it follows the
tooling and punch profiles. ' ‘

“{c) Step (b)isrepeated a few times using the same spatial velocity field. However, after a number

of time steps the new converged velocity field must be computed for a more precise
evaluation of punch force and blank strains.

TREATMENT OF FRICTION

The algorithm used to simulate friction éffects between the contact interfaces is more complex than
for continuum problems where non-directional friction laws can be introduced.® Here we have
used a treatment of friction based on the iterative adjustment of nodal reactions corresponding to
contact blank punch/tool nodes until they satisfy a Coulomb type of friction law. Thus, at the end
of each iteration the reactions at each contact node in a ‘friction co-ordinate system’ are checked. If
the value of the force along the slippage direction (the &; direction in Figure 5) exceeds the value of
the normal force times a friction coefficient, the node is allowed to slip in the appropriate direction
and a prescribed friction force is applied at the node. The normal velocity of the node is then
constrained to the value of the normal velocity of the punch, or to zero if the node is in contact with
a fixed point of the tool/punch. Friction boundary conditions require that a transformation of the
equilibrium equations at the friction co-ordinate system, defined in the direction of velocities #; and
W, in Figure 5 (where direction #; is the average of the directions of two elements meeting at the
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Figure 5. Treatment of friction

contact node i), must be performed, so that the friction boundary conditions in velocities and forces
can be appropriately imposed or checked. The new stiffness matrix of the element in the friction
co-ordinate system K;; is obtained by the standard transformation :

RY=LIKPL, - (65)

where K’ is given by equation (54} and matrix L, is shown in Figure 5. ‘

Equation (65) allows velocities and forces at the contact node in the friction co-ordinate system
to be obtained, thus allowing for an easy checking of the friction forces and a direct prescription of
the adequate boundary conditions. On the other hand, once the convergence of the solution has
been achieved, velocities and forces are transformed into their Cartesian nodal components using
matrix L. : .

STRAIN HARDENING EFFECTS

The change of vield strength with the deformation process is easily included in the calculation. In
most cases the yield stress is a function of the total effective strain invariant. For Lagrangian
(material) co-ordinates computation of £ éan be found by direct integration of the corresponding
‘rate & defined by :

OE
5= £ (66)
. Thus, at each stage ofr the deformation the value of £ cén be simply evaluated as
’ AT R i - )
é“““wa“-}l[ Edt & +EAL (67)
, . 7 _ .

and the-yield.stfess appropriately updated.
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INCLUSION. OF ELASTIC EFFECTS IN THE VISCOUS VOIDED -
' - SHELL FORMULATION

The viscous shell formulations presented in previous sections exclude elastic effects by the nature of
the constitutive relations assumed in the viscous flow approach. This implies that the removal of
loads is not accompanied by an elastic springback, and therefore, the resulting residual stresses
can not be calculated. _

Ome simple procedure for recovery of residual stresses 1s to assume that the removal of the forces
from the final viscous configuration is purely elastic and is resolved by a small deformation elastic
(o1 elastoplastic) program. This procedure, originally presented by Zienkiewicz et al.,® introduces
some approximations since the influence of the elastic deformation in the final sheet shape is’
ignored. This, however, is of little significance in most sheet metal deformation problems.

Nevertheless, inclusion of elastic effects may be of interest in some situations and below we
generalize a procedure suggested by Zienkiewicz’ and Thompson and Berman” for dealing with
elastic effects in the viscous voided shell formulation.

If eldstic effects are included the total strain rate is given by

gy =&Y + 8P . (68)
On the other hand, if we assume that the elastic deformations are incompressible we can write

1y : .
e("} ”“*'—-—'O‘D (69)

‘where G is the elastic shear modulus and a is the co-rotational (or Jaumann) derivative of the
deviatoric Cauchy stress. For updated LagrangIan problems such derivatives are given by

N 8ol

o = akJ + O pop+ 5 (70)
where T _

W= %(uj.i - ui,j) ’ - (71)

is the rigid body rotation rate caused by the motion. Equation (70) simply takes into account stress
changes associated with rotation of the axes of the.material. The assumption of compressible elastic
effects is also possible and this simply implies a modification of equatxon {69) to account for the
effect of Poisson’s ratio.

- From equatlons (68} and (1 8) we obtain

c=D(E — £ (72

where D is the equwalent elasticity matrix of the viscous voided material obtained i in terms of G
and v parameters, as explained in previous sections.

Equation (72) shows that if the elastic strain rate is assumed to be known from the previous
iteration the problem is similar to the classical initial stress method in which the additional stress
terms — D& are added to the equilibrium flow equations as an ‘unbalanced force’ and connected.
Thus, the discretized equilibrium equations have the form

Ka=T~f (73)

where K and f are the stiffness matrix and force vector for the flow approach and the extra force
vector f, is given for the axisymmetric viscous shall case as

£ = 2m j BTDECrds (74)
Hel

where £ is obtained from equations (39) and {69).
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The iterative solution of equation (73) may prove to be not convergent if the effects of elasticity
are large, but the exact limits have yet to be detérmined. Research in this area is currently being
developed by the authors.

EXAMPLES

The efficiency of the formulation presented in previous sections is checked with a well known
example of hermsphencal stretching of a circular isotropic sheet for whlch experimental results
are available.'® :

The geometrical configuration of the problem is shown in F igure 6. Fifty linear elements have
been used for the analysis. The uniaxial stress-gffective strain curve of the matrix material is
given by

G =54+ 27-88%°% tons/in®, £< 036
G= 54+ 2445375 tons/in?, 036 <32
=220 tonsfin®; & > 220

In the first case-studied a friction coefficient of 0-04 has been used, as suggested in Reference 19.
The problem has been analysed for different initial void volume fractions of f, = 0-00,0-01 and
0-05, and nucleation parameters k =0-00 and 0:02 in all elements. Numerical results for the
punch load—displacement curves for various values of f, dnd k are shown in Figure 7(a). From
these results it can be deduced that: :

(a) An increase of the initial void porosity and nucleatzon parameters causes a progressive
reduction of the load carrying capacity of the sheet. Values of the maximum punch load obtained
for f, =000 and 0-01 with k =0-0 and 0-02, and f, = 0-05 with k = 0-00, are in agreement with the
experimental results reported in Reference 19. However, for f, = 0-05 and k = 0-02 a reduction of
the maximum punch load of 35 per cent is obtained.

(b} Inclusion of void porosity induces localized failure with a rapid loss of r1°1d1ty which causes
an almost vertical descent of the load—displacerent curve.

" This localization effect can be seen in Figures 8§ and 9 where the distributions of thickness
and radial strains and of the void porosity along the sheet for different punch travels (every
0-1in) are plotted. It is worth noting that numerical results for the strain distributions for
f, =001 and k=00 (Figure 8(2)) coincide with those for f, =00 and k=00 and agree with
those reported in Reference 19. Also note that for this case the porosity does not grow over a
value of 0-06 and very high values of the thickhess strain are obtained (=~ 100 per cent for a

Figure 6. Hemispherical punch stretching. Geometry of punch and blank
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punch travel of 1-0 in). Results are quite different for f, =001 and k= 0-02 (Figure 8(b}).
 The effect of the nucleation parameter is to increase the growth of porosity which
causes strain localization for a punch travel between 0-90 and 1-0 in and a value of the thickness
strain of 60 per cent. Figure 8(b) shows clearly the localized failure zone, which corresponds
roughly to that of maximum strain. Also note that localization starts for values of f=~0-17,
which agrees well with experimental evidence.'® This effect is again reproduced for values of
the initial porosity of 0-05. Thus, for f, =0-05 and k = 00 (Figure %(a)} we see that the increase
of porosity causes a considerable reduction in the thickness strain, ie. for a punch travel of
1:0in. the maximum thickness strain reaches 80 per cent, whereas it reached almost 100 per cent
for the case f, = 0-01, k=00 (see Figure 8(a)). On the other hand, the radial strain is almost
the same in those two cases. Figure 9(a) shows that strain localization occurs abruptly for a
punch travel just greater than 1-0in.. Note that the maximum porosity at that stage has almost
reached the critical value of 20 per cent, which activates the onset of void coalescence. Finally,
numerical results obtained for the high values of f, = 0-05 and k = 0-02 (Figure 9(b)) clearly show
the rapid increase in porosity to its critical value. This causes early strain localization for a
punch travel of ~0-8in. and a reduction of the maximum thickness strain of =~ 40 per cent. -
The second example corresponds to the same problem with a friction coefficient of 0-25.
Numerical results obtained for the punch load—displacement curves for this case (see Figure 7(b)}
again show a progressive reduction of the maximum load as the initial poresity and the nucleation
parameter increase. However, the differences in the values of the maximum punch load for all
cases are not so significant as in the previous example owing to the high strain localization
induced by friction which causes in all cases failure at punch travels of >~ (-8 in.. This effect can
be seen in Figures 10 and 11, Note that for f, = 0-1 ard &k = 0-0 (Figure 10{a)) strain and porosity
growth localize at a zone of r ~0-78 in. where the maximum thickness strain is reached for
a punch travel =~ 0-80in.. Thus, localization is clearly detected by the rapid growth of porosity
in a narrow band, as shown in Figure 10(a). This effect is reproduced in the same form for higher
values of the initial porosity and the nucleation parameter, as can be seen in Figure 11{a) and 11(b}.

CONCLUSIONS -

The equations which describe plastic and viscoplastic flow of metals including the effects of
- nucleation, growth and coalescence of voids, are analogous to those of classical non-linear
elasticity. This allows standard finite element formulations developed for elastic shell problems
to be used for the analysis of complex sheet metal forming processes including the effects of voids.

The examples analysed show that by adjusting parameters such as the value and distribution
of the initial void volume fraction and of the fraction of particles converted to voids per
unit increase of stress, the model should be able to predict development of voids and localized
material failure.
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