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Abstract. Acceleration sensors for Condition Monitoring in Wind Turbines (WT) are usually 
placed on non-rotating elements such as the nacelle or the tower. Sensorizing blades, though 
desirable, is much less frequent since it poses serious practical limitations in terms of powering, 
communication, installation, and maintenance considering the existing infrastructure. 
As an alternative to circumvent such limitations we propose the use of an Inertial Measurement 
Unit (IMU) placed on the rotating hub. This positioning offers two advantages. Firstly, it allows 
to accurately estimate azimuth in real-time using only one IMU. Secondly, it enhances our 
sensitivity to the dynamics of the blades and the hub, all while capturing the dynamics of the 
tower and nacelle. 
Azimuth is calculated by combining the signals measured by the IMU with a Kalman Filter 
(KF). This estimation enables three significant capabilities. First, it allows to transform the 
measured acceleration to a fixed reference frame, as if it were measured in the nacelle or tower. 
This effectively eliminates the impact of rotation on acceleration signals and demonstrates our 
improved sensitivity to the blades and rotor, all while continuing to detect nacelle/tower 
dynamics. Secondly, having the estimated azimuth empowers to detect faults or events 
associated with rotation. Thirdly, it enables to isolate the analysis of the behaviour of 
harmonics such as 1P, 3P, 6P, and so on. 
Validation of this methodology is demonstrated using synthetic signals from OpenFAST, a 
digital WT modelling and simulation platform. 
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1. INTRODUCTION 

Over time, the wind sector has undergone significant transformations, moving from stringent 
regulatory requirements on turbine design, validation, and manufacturing to a collaborative 
environment embracing all key stakeholders, including manufacturers, operators, and 
maintainers. Central to this collaborative effort is the aspiration to meet the standards outlined 
in the 61400-28 guidelines, a critical framework that guides the safe and economically viable 
extension of the operational lifespan of existing turbines. 

To fine-tune the estimations regarding the structural health and the remaining useful life 
(RUL), of wind turbines, a probabilistic approach grounded in real-time measurement and 
analysis of each turbine's operational data is pivotal. By closely monitoring trends in key 
indicators, it is possible to tailor the estimation approach more adeptly to actual needs, 
enhancing both precision and reliability. This methodology accounts for the variability in the 
dynamic model parameters that structurally represent each turbine and its control system and 
accommodates the inherent randomness of wind conditions. 

In this evolving landscape, Condition Monitoring Systems (CMS) have undergone 
substantial advancements, evolving from being tools for fault detection and diagnosis in 
bearings, gears, and other rotary systems to sophisticated systems leveraging the latest in 
electronic sensing design, data processing, and analytical algorithms [1]. Modern CMS, 
equipped with advanced alert methods, work in synergy with innovative approaches like the 
one proposed in this paper, representing a paradigm shift towards a proactive and data-driven 
approach to monitoring, and thus ensuring safer and more efficient turbine operations [2]. In 
this context, there is a pressing need for the development of tailored sensor technologies and 
analytical techniques. These custom solutions should be versatile enough to be applied across 
various turbine typologies, ensuring robustness and autonomy in both installation and 
operation. Simplicity in terms of installation is vital, reducing potential barriers to adoption. 
Additionally, cost-efficiency remains a critical factor, as it directly impacts the feasibility and 
scalability of these monitoring systems. 

In WT operations, the incident wind characteristics and the hub's azimuthal position are 
critical variables that dictate control strategies. These strategies are designed to act upon the 
pitch angle of each blade, a crucial aspect that governs the efficiency of wind energy capture 
by regulating the power absorbed from the wind through control loops focused on torque or 
rotational speed. The dynamic response of the structure, characterized by sustained 
deformations, supported loads, and accumulated damage, is a direct outcome of the intricate 
interplay between operational conditions, control systems, and the turbine's design and 
manufacturing parameters. 

Aligned with sector demands, we propose the use of an IMU placed on the Hub. This strategy 
aims to enhance sensitivity to hub and blade dynamics while autonomously estimating the 
necessary information. This is reached without connection to other sensors or devices of the 
WT, allowing for the separate analysis of the dynamic response of the structure caused by the 
rotor's rotation effects on one hand, and on the other, the dynamic response of the structure 
itself at resonance frequencies due to, among other factors, the stochastic excitation of the wind. 
The IMU incorporates both an accelerometer and a gyroscope, each based on MEMS 
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technology, which is known for its cost-efficiency. By positioning these sensors on the rotor, 
we achieve optimal readings with a favorable signal-to-noise ratio, ensuring measurement 
accuracy. The gyroscope enables precise estimation of the IMU's orientation during its 
installation. Moreover, the interplay of gravitational acceleration with the hub's rotational 
movement allows the signal from the accelerometer to determine the rotor's azimuthal position. 
This facilitates accurate estimation of the turbine's fore-aft oscillation, providing a 
comprehensive insight into the WT dynamic behavior. 

To achieve this, mathematical models representing the fundamental acceleration and angular 
velocity components of circular motion are incorporated within a Kalman Filter structure. These 
mathematical models focus on modeling the waveforms from a mathematical perspective rather 
than relying on dynamic models of the structure [3]. This approach allows for the generalization 
of the solution to different WT configurations, ensuring broader applicability and versatility. 
The acceleration data provided by the IMU, combined with the estimation of installation and 
operational variables, can be projected onto a reference fixed to the ground, effectively 
eliminating the influence of gravitational acceleration on the frequencies associated with the 
rotational movement. This data, when analyzed in the frequency domain, can monitor the 
response related to structural dynamics and its natural frequencies. Additionally, when analyzed 
in the angular domain in combination with the azimuth, it can be used to diagnose dynamic 
effects, such as aerodynamic imbalances, associated with the turbine's rotation [4]. 

2. THE METHODOLOGY 

The IMU sensor shall be installed in the hub. A defined known radius R is considered, and 
a generic orientation described by 𝛽 , 𝛽  and 𝛽 . Besides, two relevant degrees of freedom of 
the WT are modelled, the hub azimuthal position, described by the angle 𝜃 and the hub tilting 
corresponding with 𝛽 . The geometric parameterization used to represent the IMU is shown in 
Fig 1: 

 

Fig 1. IMU Orientation diagram and reference frames description. 
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A Kalman Filter structure, which is a recursive filter that estimates the state of a system from 
a series of noisy or incomplete measurements is going to be used. The KF operates on systems 
based on two main sources of information, a model used to predict the state in the following 
step based on the current state estimation, and a measurement related with the state used to 
update the prediction. Mathematically, the state-transition and measurement equations take the 
following form: 

𝑥 = 𝑓(𝑥 , 𝑢 ) + 𝑤  ( 1 ) 

𝑧 = ℎ(𝑥 ) + 𝑣  ( 2 ) 

Here the vectors 𝑥  and 𝑥  respectively represent the state of the system at times n and 
n+1, 𝑧  represents the vector of sensor measurements, and 𝑢  the vector of inputs to the system. 
The function 𝐟(⋅) represents the set of functions describing the state-transition model and 𝐡(⋅) 
the equations relating the sensor output to the state. Finally, 𝑤  and 𝑣  represent respectively 
the Gaussian noise vectors, representing the uncertainty on the state-transition and 
measurement models not coming from uncertainty in the state or input vectors, with zero mean 
and covariances 𝑸 and 𝑹, respectively.  

The strategy for setting up the Kalman Filter will be to define state variables that allow the 
construction of functions with linear relationships between variables, and at the same time, 
express mathematically the waveforms recorded by the accelerometer and the gyroscope, 
whose signals will be used as measurement equations. 

Later, the structure of KF will be implemented iteratively, under real time operation context, 
using just the current measurement values and the previous state estimation. Thus Being  𝑥 ,  
and 𝑃 ,  the expected state and covariance matrix estimate at time n given observations up to 
and including time n, the KF generate the state estimate at time n+1: 

𝑥 ~𝑁 𝑥 , , 𝑃 ,    ( 3 ) 

𝑥 ~𝑁 𝑥 , , 𝑃 ,    ( 4 ) 

where, 𝑥 ,  refers to the estimated expected value of 𝑥 at sample n+1 given the observations 
up to sample n. In every iteration the two stages characteristics of the KF are implemented. The 
first stage of the KF is the so called, prediction stage, where, based on the state-transition 
equation, the estimated state 𝑥 ,  and covariance 𝑃 ,  are determined from the previous 
step estimation, 𝑥 ,  and 𝑃 , : 

𝑥 , = 𝑓(𝑥 , , 𝑢) = 𝐹 𝑥 , + 𝐺 𝑢  ( 5 ) 

𝑃 , = 𝐹 𝑃 , 𝐹 + 𝑄 ( 6 ) 

The second stage, the so-called correction stage, includes the measurement equation. The 
estimated values of the state vector 𝑥 ,  and the covariance matrix 𝑃 ,  at the 
following instant are updated with the sensor measurements: 
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𝑥 , = 𝑥 , + 𝐾 (𝑧 − 𝐻𝑥 , ) ( 7 ) 

𝑃 , = 𝑃 , − 𝐾 𝑆 𝐾  ( 8 ) 

Where 𝑆 , and 𝐾  are the innovation covariance and the Kalman gain respectively [5]. 
With the estimated state variables, equivalences between the kinematic equations of circular 

motion and the mathematical equations set in the KF structure are utilized, aiming to estimate 
both the installation parameters and the defined degrees of freedom in each iteration.  

Lastly, this geometric information is used to project the accelerometer reading onto a 
reference base fixed to the ground. These accelerations, having removed the effect of 
gravitational acceleration ({0,0, 𝑔} ), are processed using Fast Fourier Transforms and 
also interpolated and averaged at discrete azimuthal positions to reach the value and evolution 
of the structure's dynamic response in both, the frequency, and angular domains. 

3. THE ALGORITHM 

3.1 Step 1: IMU installation parameters estimation. 

Considering the orientation diagram given in Fig 1, the IMU gyroscope rotating with 
the hub will sense the movement according with the following expressions: 

{𝜔} =

𝜔
𝜔
𝜔

=

−�̇�𝑐𝑜𝑠(𝛽 )𝑐𝑜𝑠(𝛽 )

−�̇�𝑐𝑜𝑠(𝛽 )𝑠𝑖𝑛(𝛽 )

𝑠𝑖𝑛(𝛽 )�̇�

 ( 9 ) 

The angular velocity given by the gyroscope can be modelled as a Random Walk variable. 
This hypothesis, which is consistent with the WT operation, applies to the three components in 
the IMU reference frame, and allows the KF state transition equation (5) to be expressed as: 

𝜔 , = 𝑓(𝜔 , , 𝑢) = 𝜔 , =

𝜔   ,

𝜔  ,

𝜔  ,

 ( 10 ) 

Based on this estimation and the kinematic model, equation (9), the installation angles can 
be estimated: 

𝛽 , = atan( , ,

, ,
)  ( 11 ) 

𝛽 , = −atan( , ,

, , ∗ ,
)  ( 12 ) 

Moreover, the instantaneous phase based on the filtered angular velocity, 𝜃  , is calculated: 

𝜃 , = 𝜔 , ∆𝑡 + 𝜃 ,  ( 13 ) 
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3.2 Step 2: WT azimuth and Tilt estimation. 

The measured acceleration and angular velocity are projected in the IMU_Aux1 reference 
frame using the rotation matrixes defined by β  , β   

𝜔
𝜔
𝜔

 

=
𝑐𝑜𝑠𝛽  0 𝑠𝑖𝑛𝛽  

0 1 0
−𝑠𝑖𝑛𝛽  0 𝑐𝑜𝑠𝛽  

𝑐𝑜𝑠𝛽  −𝑠𝑖𝑛𝛽  0

𝑠𝑖𝑛𝛽  𝑐𝑜𝑠𝛽  0
0 0 1

𝜔
𝜔
𝜔

 ( 14 ) 

Acc
Acc

Acc
 

=
cosβ  0 sinβ  

0 1 0
−sinβ  0 cosβ  

cosβ  −sinβ  0

sinβ  cosβ  0
0 0 1

Acc
Acc

Acc
 

( 15 ) 

The acceleration components intrinsic to the circular motion of the rotor at the IMU given 
orientation and installation point, projected in the IMU_Aux1 reference frame can be formulated 
as:  

𝐴𝑐𝑐 = 𝑅𝛽̈ cos 𝜃 − 𝑔𝑠𝑖𝑛𝛽 − 2𝑅�̇� �̇�𝑠𝑖𝑛𝜃 ( 16 ) 

𝐴𝑐𝑐 = −𝑅�̇� sin 𝛽 cos 𝜃 − 𝑅 �̇� cos 𝛽 sin 𝜃 cos 𝜃 − 𝑅�̇� sin 𝛽

+ 𝑔 cos 𝛽 sin 𝛽 cos 𝜃 − 𝑅�̈�𝑐𝑜𝑠𝛽 + 𝑔 cos 𝛽 cos 𝛽 sin 𝜃 

( 17 ) 

𝐴𝑐𝑐 = −𝑅�̇� cos 𝛽 cos 𝜃 + 𝑅 �̇� sin 𝛽 sin 𝜃 cos 𝜃 − 𝑅�̇� cos 𝛽

+ 𝑔 cos 𝛽 cos 𝛽 cos 𝜃 − 𝑅�̈�𝑠𝑖𝑛𝛽 + 𝑔 cos 𝛽 sin 𝛽 sin 𝜃 

( 18 ) 

The tangential component of the acceleration, 𝐴𝑐𝑐  is modelled as a sinusoidal waveform:  

𝐴𝑐𝑐 = 𝑧(𝑡) = 𝛼(𝑡) sin 𝜃 (𝑡) +  𝛽(𝑡) cos 𝜃 (𝑡) + 𝑣(𝑡) ( 19 ) 

in which 𝛼(𝑡) and 𝛽(𝑡), the state variables, can be estimated using a KF modelling them as 
autoregressive AR(1). Later, as described in [6] the instantaneous phase given by the gyroscope 
is corrected with the acceleration phase estimation building an estimator for the actual azimuth, 
𝜃(𝑡) as:  

𝜃(𝑡) = 𝜃 (𝑡) − 𝑎𝑡𝑎𝑛
𝛼(𝑡)

𝛽(𝑡)
 

( 20 ) 

The normal and axial components of the acceleration, 𝐴𝑐𝑐 , 𝐴𝑐𝑐  are also modelled as 
sinusoidal waveforms: 

𝐴𝑐𝑐 = 𝑧 (𝑡) = 𝛼 (𝑡) sin  𝜃(𝑡) + 𝛽 (𝑡) cos  𝜃(𝑡) + 𝐷𝐶 + 𝑣(𝑡) ( 21 ) 

𝐴𝑐𝑐 = 𝑧 (𝑡) = 𝛼 (𝑡) sin  𝜃(𝑡) +  𝛽 (𝑡) cos  𝜃(𝑡) + 𝐷𝐶 + 𝑣(𝑡) ( 22 ) 

where 𝛼 (𝑡), 𝛼 (𝑡), 𝛽 (𝑡), 𝛽 (𝑡), 𝐷𝐶  and 𝐷𝐶  can again be estimated using a KF in which 
they are considered the state variables, with an autoregressive behavior in terms of state 
transition.  

Equations ( 18 ) and ( 16 ) are used in every iteration to estimate the angles β  , β  : 
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𝛽  = atan(
𝛼  ,  

𝛽  ,

) 
( 23 ) 

𝛽  = asin(
𝐷𝐶𝐴

𝑔
) 

( 24 ) 

And finally, it can be constructed the corresponding rotation matrices used to get the 
acceleration in the ground reference: 

{𝐴𝑐𝑐} =

𝐴𝑐𝑐𝑥𝐺𝑟𝑜𝑢𝑛𝑑

𝐴𝑐𝑐𝑦𝐺𝑟𝑜𝑢𝑛𝑑

𝐴𝑐𝑐𝑧𝐺𝑟𝑜𝑢𝑛𝑑 𝐺𝑟𝑜𝑢𝑛𝑑

=

𝑐𝑜𝑠𝛽
3 

0 𝑠𝑖𝑛𝛽
3 

0 1 0

−𝑠𝑖𝑛𝛽
3

0 𝑐𝑜𝑠𝛽
3

1 0 0

0 𝑐𝑜𝑠 (𝛽
4 

+  𝜃)  −sin (𝛽
4 

+  𝜃)

0 sin (𝛽
4 

+  𝜃) 𝑐𝑜𝑠 (𝛽
4 

+  𝜃)

𝐴𝑐𝑐𝑥𝐼𝑚𝑢

𝐴𝑐𝑐𝑦𝐼𝑚𝑢

𝐴𝑐𝑐𝑧𝐼𝑚𝑢 𝐼𝑀𝑈_𝐴𝑢𝑥1

 

( 25 ) 

3.3 Step 3: Accelerometer frequency and angular domain decomposition 

Finally, the acceleration measured in the hub, expressed in the ground reference, 
{𝐴𝑐𝑐} , can be subjected to detailed analysis. Each component is processed using Fast 
Fourier Transforms (FFT), a mathematical algorithm that converts time-domain data into the 
frequency domain. This transformation offers a clear perspective on the frequency components 
within each component. Importantly, the FFT can be paired with harmonic elimination 
techniques, as detailed in [7], to remove components associated with rotational harmonics. This 
meticulous approach ensures that the resulting spectrum primarily represents the response 
aligned with the modal frequencies of the WT. 

For a more comprehensive understanding of the structure's dynamic behavior, the data 
should also undergo interpolation or bin averaging, guided by the reference provided by 𝜃 and 
using real-time compatible techniques such as Catmull Rom splines [8]. When averaged at 
specific azimuthal positions, the results capture the fundamental essence of the dynamic 
response at these operating points.  

By examining this processed data, we can adeptly measure both the intensity and progression 
of the structure's response across two crucial domains: frequency and angular. 

4. VALIDATION PROCESS. DESCRIPTION AND RESULTS. 

To validate the algorithm presented in the previous sections, the OpenFAST simulation tool 
has been used. This virtual framework enables the generation of synthetic signals that mimic 
acceleration and gyroscope measurements at specific locations on the wind turbine. OpenFAST 
is an open-source software designed for conducting integrated nonlinear simulations of WT in 
the time domain, encompassing aero, hydro, servo, and structural aspects. This software was 
developed by the National Renewable Energy Laboratory (NREL) and holds certification for 
the design of both onshore and offshore wind turbines. In this study, a 5 MW NREL onshore 
reference wind turbine, featuring a 3-bladed, 126 m diameter wind rotor mounted on an 87.6 m 
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tall tower, serves as the benchmark and has found widespread application in numerous research 
investigations [9]. 

For the validation of the previously described methodology and algorithm, OpenFAST 
enables to model and locate an IMU at different locations on the rotor and at different radial 
distances from the axis of rotation. Different IMU installation angles have been modelled. Other 
configurable parameters include wind type, wind speed, and hub tilt angle. These scenarios 
have been used to validate the algorithm in an environment very close to what the IMU will 
encounter in practice. 

Finally, leveraging OpenFAST's ability to simulate acceleration measurements in different 
parts of the wind turbine, we compared the results from the hub location using our proposed 
real-time algorithm and the standalone IMU to those from traditional CMS. Traditional CMS 
systems, which measure accelerations at nacelle locations, often require higher true resolution 
sensors and additional measurements or connections to the turbine's operating system to 
contextualize the data. 

The algorithm has been tested against various OpenFAST configurations, however, due to 
space constraints, only the results obtained in a specific case are going to be presented. In this 
scenario, a deterministic wind speed of 12 m/s was used, as shown if Fig 2, and the IMU was 
placed at a radius of R=0.5m from the axis of rotation. The IMU was placed assuming the 
following initial values 𝛽 = 5º,  𝛽 = −4º , 𝛽 = 5º and  𝛽 = 0º. 

 

Fig 2. OpenFAST simulated load case. 

Next, the estimation errors for various parameters and geometric variables are presented in 
comparison to the virtual results from OpenFAST for the described operational case. 

4.1 IMU Installation angles 𝜷𝟏,𝜷𝟐  

As described in the algorithm section, the first step is to estimate the installation angles that 
occur when the IMU is placed on the rotor 𝛽 ,𝛽 , which for the OpenFAST simulation have 
been set to 5º and -4º respectively. The estimation performed is illustrated in Fig 3. 
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Fig 3. Histogram of estimation error value of IMU misalignment angles in its placement, 𝛽  , 𝛽   

As depicted in the histograms, the estimation bias and standard deviation relative to the 
initial installation parameters are negligible. 

4.2 Azimuthal Coordinate 𝜽, 𝜷
𝟒
  and Hub Tilt 𝜷𝟑  

Estimation evaluations corresponding with the azimuth, 𝜃, 𝛽4  and hub tilt, 𝛽  , with respect 
to an initial value 𝛽 = 5º, 𝛽 = 0º  and unknown azimuthal position are analyzed in Fig 4. 

 
Fig 4. Histogram of the difference between the estimated 𝜃 + 𝛽

4 
, 𝛽   and OpenFAST simulation 

Again, as shown in the histograms, relatively small errors in terms estimation bias and 
standard deviation are given for the case of the turbine considered operation degree of freedom.  

4.3 Acceleration Decomposition  

As it has been explained, once the geometric parameters have been estimated, the rotation 
matrices are constructed from these parameters. These matrices are used to project the 
acceleration given by the IMU placed on the reference base fixed to the ground. Finally, the 
projected acceleration is then compared with the acceleration generated by OpenFAST for a 
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point on the nacelle. Both accelerations are expressed in the same reference frame. This can be 
seen in Fig 5. 

 
Fig 5. Comparison in time domain of the acceleration given by OpenFAST in X direction for a nacelle location 
in a ground fixed reference with the acceleration given in the same direction for a Hub location processed with 

the described algorithm.  

The same comparison is made in the frequency domain in Fig 6 

 
Fig 6. Comparison in frequency domain of the acceleration given by OpenFAST in X direction for a nacelle 

location in a ground fixed reference with the acceleration given in the same direction for a Hub location 
processed with the described algorithm.  

It is evident from the two graph the closeness between the accelerations obtained in the 
nacelle with those resulting from the applications of the algorithm in both time and frequency 
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domains. Only behavior beyond, say, 2 Hz diverges, which is less relevant to assess tower 
dynamics, but it can reveal sensitivity to other components (hub and blades). 

Finally, the acceleration given at the Hub location {𝐴𝑐𝑐} is examined in conjunction 
with the estimated azimuth, 𝜃. The 600-second time series for each {𝐴𝑐𝑐}  components 
are categorized into bins of 5º corresponding to the azimuth. Both the mean value and standard 
deviation for each bin are computed. Fig 7 illustrates the mean values (of each rotation along 
600s) of 𝐴𝑐𝑐  overlaid with 1-sigma intervals.  

 
Fig 7. 𝐴𝑐𝑐 .vs 𝜃. 

Notably, the contributions of the three blades to the dynamic response are distinctly isolated. 
This enables trend analysis, which can be employed to pinpoint rotational defects such as mass 
imbalances or aerodynamic irregularities. 

5. CONCLUSIONS 

In this paper we have proposed an IMU placed on the main shaft of a WT, as an alternative 
to conventional nacelle or tower fixed sensors to assess its structural health. A combination of 
algorithms is proposed to calculate the precise rotor azimuth and estimate the actual orientation 
of the IMU and thus recalculate its measured accelerations to a ground reference. 

The study carried out successfully validated an innovative algorithm in a simulated 
environment closely mirroring real-world conditions, using OpenFAST. Notably, the 
algorithm's results aligned well with accelerations measured at the turbine's nacelle, solidifying 
its credibility. Also, the combinations of the accelerations with the precise knowledge of the 
rotor azimuth, has been shown as a potential powerful tool to identify the source of possible 
failures. 
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