
The 8th European Congress on Computational Methods in Applied Sciences and Engineering 

ECCOMAS Congress 2022 

5 – 9 June 2022, Oslo, Norway 

 

 

 

APPLICATION OF MULTIRESOLUTION ANALYSIS AND DEEP 

LEARNING TO OBTAIN FAILURE PRESSURE OF CORRODED 

PIPELINES 
 

MARQUES FERREIRA A. D. ¹, AFONSO, S. M. B. ² AND WILLMERSDORF, R. B. ³ 

 
1 Mechanical Engn. Department, Federal University of Pernambuco, adriano.mferreira@ufpe.br 

 
2 Civil Engn Department, Federal University of Pernambuco, silvana.bastos@ufpe.br 

 
3 Mechanical Engn Department, Federal University of Pernambuco, ramiro.willmersdorf @ufpe.br  

 

Key Words: Multiresolution Analysis, Deep Learning, Failure pressure, Corroded pipelines 

 

Abstract. The assessment of corroded pipelines is considered a very important task in the oil 

and gas industry. The present work aims to develop an efficient system to accurately predict 

the burst pressure of corroded pipelines with complex corrosion profiles through hybrid models 

using multiresolution analysis, numerical analysis, and metamodels. The corrosion profile is 

obtained from ultrasonic inspections and the data is provided as a river bottom profile. The real 

corrosion shapes are parametrized considering a discrete wavelet transform to reduce the 

amount of data that describes the defect. The coefficients obtained from the wavelet transform 

are used as inputs to feed a deep neural network system for quickly and accurately predict the 

burst pipeline pressure. Eight different steel materials are considered in the NN build process.  

Synthetic models that have similar statistics to real corrosion profiles are created and submitted 

to non-linear FEM analysis, for the different materials. The failure pressures obtained from the 

synthetic defects are used to train a neural network to predict the burst pressure of the pipelines.  

The results obtained with the deep neural networks are very accurate for all cases presented in 

this work. 
 

1 INTRODUCTION 

One of the most important causes of failure and incidents in pipelines is corrosion.  Due to 

the severe consequences and impact in several areas such as social, economic, and environment 

the pipelines have to be continuously monitored. The possibilities for pipelines assessment are 

inspection, standards, and numerical simulations.  

It is well known from literature that calculations based on standards in general simple, fast, 

commonly presents very conservative results. In the other hand, the finite element method has 

been successfully used to predict the failure pressure [1-3] and it is also used here. 

The ultrasonic technology inline inspection (UT-ILI) can provide data such as a river-bottom 

profile (RBP), that is a detailed two-dimensional representation of the remaining wall thickness 

along the pipeline. These projections are formed by the minimum values across the 

circumferential width. With this data we can determine the shape of corrosion formed by 

circumferential peak depths and the total length of the defect. As a consequence, failure pressure 
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can be obtained through simulation with 2D FE analysis [4]. However, the number of thickness 

measurement in a RBP can be very large which is an issue to generate the required models for 

analysis. To overcome that, multiresolution analysis (MR) [5] is used in this work to 

parametrize and to reduce the size of data necessary to represent the geometry of the defect. 

Moreover, to obtain fast results a deep neural network (NN) [6] is built. For that, synthetic 

corrosion profiles with same statistical properties of real corrosion defects are modelled and 

used to compute the failure pressure by 2D FE. The coefficients of decomposition using wavelet 

transform [7,8] and the obtained failure pressures feed the NN and after be trained this will be 

tested for real corrosion profiles.  

Comparisons with experimental, semi-empirical and 3D FE were performed and good 

agreement are obtained with de 2D simulations based on the models from MR analysis. This 

validation study considered API 5L-X80 steel which is the material from the real corroded 

pipelines used to build the RBP models. Next to the validation step, the NN will also be trained 

for all class of API 5L stell materials. The results obtained for all cases considered were very 

satisfactory. 

 

2 FINITE ELEMENT MODEL 

Through a file containing the main remaining thicknesses of the corroded pipeline, all 

defects are assembled to build the RBP model as illustrated in Figure 1. The configuration 

represented in this figure shows that, at each longitudinal distance, a scan of the remaining 

thicknesses is performed in the circumferential direction, using the smallest thickness of the 

pipeline wall to create the River-Bottom profile. In this work, the RBP is created using spline 

curves to avoid stress concentration at each point created in the profile. After obtaining the 

profile, the finite element mesh is generated using 4 elements in the wall thickness in the region 

of the defect and a transition region from 4 to 2 elements in the farthest part of the defect. A 

typical mesh discretization for a RBP can be seen in Figure 2. 

The Axisymmetric FE formulation [9] allows the use of 2D generated model to carried out 

the RBP analysis. For that, a cylindrical coordinate system is used, the loads and boundary 

conditions (BCs) are applied and the analysis file is created. This file contains the main 

information of the FE model such as the nodal coordinates, connectivities of the elements, 

element type, material properties, boundary and load conditions. The material properties are 

represented here by a multilinear stress-strain relation [4]. 

Nodal displacement restrictions are imposed in the z direction (longitudinal) of the pipe ends 

and load conditions refers to the internal pressure, which are applied directly on the inner edges 

of the pipeline. Both conditions are indicated in Figure 3. 
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Figure 1: Representation of obtaining the RBP 

 

 

Figure 2: FE mesh and transition region 

 
 

 

Figure 3: BCs and loads conditions 

 

To predict the burst pressure in pipes with a complex corrosion profile, a large amount of 

data is needed to provide all the information that the neural network needs to learn and generate 

an adequate predictive capacity. In this work, synthetic models are generated to be training data 

sets and validation data sets for the neural network. In total, around 9;612 synthetic cases are 

generated associated with a specific material property. As eight materials are considered this 
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represents 76,896 cases to be run. The failure pressures of these cases are used as input 

parameters to the deep neural network. The models are randomly generated by statistical fitting 

of each corrosion profile [10]. 

 

3 FAILURE CRITERIA 

The failure pressure of corroded pipelines subjected to internal pressure can be estimated by 

non-linear simulations using the FEM and an appropriate criterion of failure previously 

validated. In this work, both geometrical and physical nonlinearities are considered in the 

numerical simulations. The physical non-linearity is characterized by an elastoplastic 

constitutive law with isotropic hardening in large deformations. The non-linear analyses will 

be performed by Code Aster software [11].  

Here, the failure pressure for the pipeline is defined as the pressure when the von Mises 

equivalent stress at any point in the corrosion area reaches the true ultimate stress of the material 

[2,3]. 

 

4 WAVELET DECOMPOSITION 

As mention, wavelet transforms [7, 8] are used here to parametrize the remaining thickness 

of corroded pipelines and the wavelet coefficients are used as input data to a NN code for fast 

prediction of pipeline’s burst pressure. This is necessary to reduce the amount of geometry data 

for each defect, which can be in the order of tens of thousands of points. 

To find the best decomposition to apply to the analysis of corroded pipelines, several wavelet 

families (biorthogonal, Coiflet, Daubechies, Meyer, Haar and reverse biorthogonal) were 

tested, varying for each one the number of vanishing moments and the number of taps (or length 

of the wavelet). The shape of the wavelet functions and scaling functions tested can be seen in 

[10].  From the studies conducted here, the best wavelet was the reverse biorthogonal, with 3 

vanishing moments. Twelve real river bottom profiles obtained using ILI inspection are used to 

generate the synthetic models. Figure 4 shows one of them. 
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Figure 4: Example of a real river bottom profile. 

 

To illustrate the process, in Figure 5 the decomposition applied to case 4, using reverse 

biorthogonal wavelet family with 3 vanishing moments in all levels is shown. The left column 

shows the approximation coefficients and the right column shows the detail coefficients. 
 

 
Figure 5: Reverse Biorthogonal decomposition with 3 vanishing moments 
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The coefficients can be used as a low pass filter and as a high pass filter. To reduce data, the 

detail coefficients (high pass filter) are set to zero. Figure 6 shows the original and filtered data 

after signal reconstruction using Reverse Biorthogonal decomposition until Level 5. 

 

 
Figure 6: Original and filtered case using Reverse Biorthogonal 

 

5 ARTIFICIAL INTELIGENCE  

A deep neural network (DNN) is considered here. This is an artificial neural network with 

many layers between the input and output layer [6]. Different options to solve the optimization 

problem, can be used. The backpropagation algorithm [12] efficiently computes the gradient of 

the loss function concerning to the weights and biases of the artificial neurons. Deep Neural 

Networks can predict solutions with high accuracy in many research fields and it is used here 

for pipeline safety assessment. A free and open-source library, TensorFlow [13], is used in the 

present work. 

As already mentioned, input parameters are the approximation coefficients, obtained after 

wavelet decomposition. Other input data are: the dimensionless parameter (dp) shown in Eq. 

(1), ultimate stress, yield stress and ultimate strain and the failure pressure obtained from the 

non-linear analysis by MEF. 
 

                                                                  𝑑𝑝 =
𝐿

√𝐷𝑒×𝑡
                                                                             (1) 

 

In above equation, De is the outside diameter of the pipeline, t is the nominal thickness and L 

is the length of corrosion defect. The dimensionless parameter (dp) is used by codes and 

standards to indicate how long is the corrosion defect. In the input layer of the neural network, 

the number of neurons was set as 
 

max(ncoeffs) + nmat + 1         (2) 
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where ncoeffs results from the MR decomposition (for the selected wavelet = 18), nmats is 

equal to three (material parameters: ultimate stress, yield stress and ultimate strain). In the 

present application the summation of Eq. (2), equals to 22. 

After a series of tests, the number of hidden layers was set to five, and the number of neurons 

in the hidden layers was set equal to the number of input neurons.  

The output layer has one neuron. Therefore, the neural network was composed by one input 

layer, five hidden layers, and one output layer. The activation function was the Sigmoid [6] and 

the optimization algorithm used is the Adaptive Subgradient Methods (Adagrad) [14].  

 

6.RESULTS  

6.1 RBP models validation 

Deterministic solutions were extensively validated in [4]. There, a convergence study to 

select the best element and mesh density for the RBP models was firstly carried out. A mesh 

convergence study was performed for bilinear quadrilateral and quadratic quadrilateral 

elements, using different number of elements along the defect thickness. From this study it was 

observed that the specimens analyzed remained with almost constant failure pressure for the 

different mesh density variation and type of element tested. Due to this reason, the bilinear 

element with 4 elements along the thickness was chosen to perform the FE analyses, due to the 

shortest analysis time and memory consumption which were significantly smaller than those 

required to the other configurations. 

Next, the chosen FE configuration for the RBP model was used for failure prediction 

comparison of four specimens provided in literature [15]. The results were compared with 3D 

FE simulation, experimental analysis and semi-empirical methods. For the specimens analyzed, 

the quality of the proposed methodology was attested by an average deviation of about 3% from 

experimental results. Also, it is less conservative than the results based on the methodologies 

described in the standards. 

6.2 MR models validation 

In [10] one hundred and six wavelet decomposition were performed for each of the twelve 

river bottom cases, providing 1,272 models for a specific API X80 material. Axisymmetric 

finite element models were generated and submitted to non-linear FEM analysis. The failure 

pressure computed with finite element models generated from the geometry reconstructed with 

each wavelet family was compared to the failure pressure computed with finite element models 

built from the original defect geometry for all the twelve models.  

Relative difference between the failure pressures computed with the wavelet filtered 

geometry and the original geometries were calculated. It was observed that data reduction has 

been successfully achieved, without significant loss of accuracy. 

6.3 NN case studies 

To train the DNN several parameters need to be set. Only the synthetic data is used to train 

and validate the network. The proportion was set to 70% and 30% respectively. The size of 
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batches to return is set to 100 and the number of epochs to iterate over data is set to 3;000.  

The failure pressures (𝑌𝑖) are predicted at the test set. Comparisons are done with the given 

failure pressure (𝑌𝑖) at the test set and the Mean Absolute Percentage Error (MAPE), is 

calculated as in Eq. (3). MAPE calculated between them was 2.72%, that is a very accurate 

value. Next, the trained DNN is used to predict the failure pressure of real river-bottom profile 

defects. With the results of burst pressure by MEF and the predicted results obtained from the 

neural network, MAPE equals to 2.85%. The R2 score [16] was 0.99. These computations 

involved all investigated materials (8). 
 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑌𝑖−𝑌𝑖

𝑌𝑖
|𝑛

𝑖=1                                                       (3) 
 

Figure 7 shows the performance of the obtained NN for the eight different investigated 

materials and the twelve river bottom profiles. The FE solution is the straight red line. The 

predicted NN calculations over 96 (12 profiles x 8 materials) cases are indicated in dots. As can 

been seen a very good comparison is obtained. It is worth to mention that a single estimation 

by the built NN took around 1e-6 seconds. Which means 99.9% in computational savings 

compared to a FE based solution (RBP and 3D FE models). 

 

Figure 7: Comparison between failure pressure calculated using MEF and DNN prediction. 

 

7 CONCLUSIONS 

In this work, the failure pressure of corroded pipelines has been predicted by a hybrid model 

using multiresolution analysis, numerical analysis and metamodels. Synthetic corrosion profiles 

preserving the statistical properties of 12 real corrosion defects were created and used to 

estimate the failure pressure in each one of them by Finite Element Analysis (FEA). A total of 

76.896 (801synthetic x 12 RBP x 8 materials) cases have been simulated. The work also 

addresses the parametrization of real corrosion shapes and the use of its coefficients as input to 

a neural network system that can predict the burst pressure accurately and quickly. The MR 
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coefficients together with the material properties and failure pressure are the input values used 

to construct the NN model. 

The main conclusions of this study are:  

 The MR decomposition was fundamental to generate a large number of models 

necessary to create an accurate Deep Neural Network. 

 The coefficients of the MR together with the material properties and assessment of the 

pipelines fed and efficiently trained the NN. 

 The created NN was able to accurately predict the failure pressure with insignificant 

computational time. 
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