
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-9 June 2022, Oslo, Norway

THE IPGDZ+ TECHNIQUE FOR COMPRESSING PRIMAL
SOLUTION TIME-SERIES IN UNSTEADY ADJOINT -

APPLICATIONS & ASSESSMENT

A.-S.I. Margetisa,1,∗, E.M. Papoutsis-Kiachagiasa,2 and K.C. Giannakogloua,3

1 PhD Student, amargetis@mail.ntua.gr

2 Research Scientist, vpapout@mail.ntua.gr

3 Professor, kgianna@mail.ntua.gr and http://velos0.ltt.mech.ntua.gr/research/

a National Technical University of Athens (NTUA), School of Mechanical Engineering,
Parallel CFD & Optimization Unit, 15772 Athens, Greece

Key words: Shape Optimization, Unsteady Adjoint, Data Compression Algorithms, Proper
Generalized Decomposition, Computational Fluid Dynamics

Abstract. Gradient-based optimization for large-scale problems governed by unsteady PDEs,
in which gradients with respect to the design variables are computed using unsteady adjoint, are
characterized by the backward in time integration of the adjoint equations, which require the
instantaneous primal/flow fields to be available at each time-step. The most widely used tech-
nique to reduce storage requirements, at the expense of a controlled number of recomputations,
is binomial check-pointing. Alternatively, one may profit of lossless and lossy compression tech-
niques, such as iPGDZ+, this paper relies upon. iPGDZ+ is a hybrid algorithm which consists
of (a) an incremental variant of the Proper Generalized Decomposition (iPGD), (b) the ZFP
and (c) the Zlib compression algorithms. Two different implementations of iPGDZ+ are de-
scribed: (a) the Compressed Full Storage (CFS) strategy which stores the whole time-history of
the flow solution using iPGDZ+ and (b) the Compressed Coarse-grained Check-Pointing (3CP)
technique which combines iPGDZ+ with check-pointing. Assessment in aerodynamic shape op-
timization problems in terms of storage saving, computational cost and representation accuracy
are included along with comparisons with binomial check-pointing. The methods presented are
implemented within the in-house version of the publicly available adjointOptimisation library of
OpenFOAM, for solving the flow and adjoint equations and conducting the optimization.

1 INTRODUCTION

Time-dependent Computational Fluid Dynamics (CFD) solvers can be found in various appli-
cations to predict unsteady flows and run adjoint-based optimization. In the latter, the adjoint
method computes the gradient of an objective function, usually cast in the form of a time inte-
gral, with respect to (w.r.t.) the design variables parameterizing the shape to be optimized. The
great advantage of discrete or continuous adjoint, is that its cost is practically independent of
the number of design variables. The unsteady adjoint PDEs are integrated backward in time and

1

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

require the instantaneous flow fields at each time-step. The two trivial ways to handle this issue
are (a) full storage of the flow field time-series, provided that the available hardware is sufficient,
and (b) repetitive flow recomputations, starting always from the same initial state. Binomial
check-pointing [1] is the most frequently used middle-ground solution. As instantaneous flow
fields are stored at predetermined time-steps (check-points) along the time-span, to retrieve the
flow solution at time-instants other than check-points, the flow equations are integrated starting
from the nearest previous check-point. Memory limitations, if any, can be overcome by storing
some check-points on a larger, though slower, storage area (e.g. hard disk), instead of retaining
all check-points in memory [2].

A viable alternative is to store the flow solution time-series in compressed form and, thus,
avoid even a single flow recomputation. Lossless or lossy compression can be performed using
relevant algorithms developed in the field of computer science, such as ZFP [3], SZ [4] and
Zlib [5]. It is also possible to lossly compress the flow field time-series using cubic-splines, the
Proper Orthogonal Decomposition (POD), the Gram-Schmidt Orthogonalization or the Proper
Generalized Decomposition (PGD) techniques [6, 7, 8, 9].

In [6], the authors proposed and assessed the Compressed Full Storage (CFS) strategy in
aerodynamic shape optimization, using lossy compression techniques, such as incremental PGD
(iPGD) and ZFP. The iPGD may compress flow field snapshots incrementally, i.e. each time
a new time-instant is computed, in contrast to standard PGD which requires the whole time-
history to be available prior to its compression. To increase the efficiency of iPGD, the time-
history of the flow problem is partitioned into non-overlapping, consecutive time-windows, which
are individually compressed. An efficient synergistic use of iPGD and ZFP (referred to as
iPGDZ) was also tried and proved to clearly outperform both iPGD and ZFP, achieving higher
memory savings for the same error in the objective function gradient. CFS can further be
enhanced by additionally utilizing the Zlib lossless compression algorithm [5], giving rise to a
three-step compression. First, the iPGD algorithm compresses the flow field snapshots of a
time-window. Then, the outcome of the iPGD for each time-window is lossly compressed using
ZFP and, finally, the resulting ZFP stream is losslessly recompressed using Zlib. This will be
referred to as the iPGDZ+ algorithm, being the heart of the CFS strategy, as presented in this
paper.

Based on the same compression kernel (iPGDZ+), an alternative to CFS is also included
and assessed in this paper. The co-called Compressed Coarse-grained Check-Pointing or 3CP
technique combines compression with coarse-level check-pointing. In particular, 3CP firstly
partitions the time-horizon into time-windows, similarly to CFS. Then, binomial check-pointing
selects the time-windows in which the flow solution should be compressed using iPGDZ+.

CFS, 3CP and binomial check-pointing are assessed in three external aerodynamic shape
optimization cases with unsteady flows; the criteria are: (a) reduction in storage, (b) extra cost
and (c) accuracy of gradients to ensure that the outcome of the optimization remains unaffected.

2 THE IPGDZ+ ALGORITHM AND ITS CONSTITUENTS

The PGD algorithm [10], initially proposed for compressing structured data, has been adapted
to fields f=f (x, t) available on (2D or 3D) unstructured grids, where x is the (integer) cell-ID
and t the time (time-steps’ counter). This field is approximated by the sum of M products

2

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

of spatial X(x) and temporal T (t) modes, where the value of M is user-defined, as follows:
f (x, t)'

∑M
µ=1X

µ (x)Tµ (t). Modes are computed iteratively by solving systems of algebraic
equations. In its incremental variant (iPGD), the instantaneous flow fields are compressed at
the end of each time-step by updating the previously computed modes; thereafter, previous
instantaneous flow fields are no longer needed. For instance, once the solution field at the new
(L+1) time-step becomes available, a new element TmL+1, m ∈ [1,M], is computed and added
to all temporal modes, while updating modes Tmk , k ∈ [1, L] and Xm

i , i ∈ [1, I] too. At each
time-step, (Xm, Tm), m∈ [1,M] are computed iteratively, by minimizing the error [6]

Em=
1

2

I∑
i=1

 m∑
µ=1

Xµ
i T

µ
L+1 − fi,L+1

2

+
w

2

I∑
i=1

L∑
k=1

 m∑
µ=1

Xµ
i T

µ
k − f

iPGD
i,k

2

(1)

f iPGDi,k is reconstructed by computing the sum of products
∑M

µ=1 X̃
µ
i T̃

µ
k , i ∈ [1, I] , k ∈ [1, L].

Note that the f fields at previous time-instants should be reconstructed on the fly. w is a user-
defined weight factor; in all set-ups of this paper, w = 1. The first term on the r.h.s. of eq. 1
corresponds to the approximation error at the current (L+1) time-step, whereas the second term
to the cumulative error of the L previous time-instants. Unknown modes

(
Xm
i , T

m
k and TmL+1

)
are computed by satisfying ∂Em/∂X

m
i =∂Em/∂T

m
k =∂Em/∂T

m
L+1=0, [6].

To retain the compression accuracy as the total number of time-steps increases, more modes
(i.e. a higher value of M) are needed and this increases the extra cost per time-step. To deal
with this issue, in [6], the time-domain is partitioned into consequtive, non-overlapping time-
windows, with a user-defined number K of time-steps each (excluding, possibly, the last one).
Each time-window may have a different set of modes, as this is compressed independently from
the others.

Next to iPGD, the ZFP and Zlib algorithms are deployed. At the end of each time-window,
the spatial and temporal modes for this window are lossly compressed and kept in memory by
successively using ZFP [3] and Zlib [5]. Only the modes of the last time-window are stored in full
precision, since there is no benefit from their compression. For the lossy compression by ZFP,
each mode of random size N is transformed into a 2D array of size 4m, where m=dN/4e and,
then, compressed using the fixed-precision mode of ZFP with the same user-defined number
(P) of bits. The resulting data stream is losslessly compressed using the fastest level of the
Zlib library [5], which favors compression/decompression speed w.r.t. data reduction. The main
steps of the iPGDZ+ algorithm are sketched in fig. 1.

To get the most out of the available memory, the computational domain can be divided into
(user-defined) sub-domains, in each of which flow fields are compressed using a different number
M of modes. The rest of the compression parameters, namely K and P , are common in all sub-
domains. This treatment allows greater memory savings, while retaining the accuracy of the
computed sensitivity derivatives (SDs). Higher M values should be used in areas where strong
time-varying local flow structures are expected, such as in the wake of a bluff body, whereas
lower M values can be used elsewhere to avoid unnecessary storage. This feature is assessed in
Section 4.

3

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

False

Update 𝑿, 𝑻
modes

Compute flow
solution at
𝒊 + 𝟏

𝒊 < 𝑲

𝒊 = 𝟎

Iterative solution
of a linear system

True

𝒊
=
𝒊
+
𝟏

iPGD

Compress 𝑿, 𝑻
with ZFP

Compress ZFP
streams with

Zlib

Next

window

iPGDZ+

…

Unsteady Flow Solver

window 0

time-steps

…
window 1 window n

Figure 1: Flowchart of the iPGDZ+ algorithm. Red circles denote instantaneous flow fields;
i is the “local” (i.e. within this time-window) time-step counter. Each time-window has K
time-steps.

3 TWO DIFFERENT IMPLEMENTATIONS OF IPGDZ+: CFS & 3CP

The implementations of iPGDZ+ in CFS and 3CP differ, fig. 2. In the former, iPGDZ+ is
used to compress and store the whole flow solution in memory. In the latter, the flow solution
is compressed by iPGDZ+ only at a subset of the time-windows, to be referred to as “check-
windows”. The number Sw of the check-windows is defined by the user, depending on the
available memory. Check-windows along the time-span are selected using the binomial check-
pointing algorithm [1] applied to coarse grains (time-windows), rather than single time-steps,
subject to the constraint of storing the last time-window. To retrieve the flow solution at time-
instants not belonging to a check-window, the flow solver starts integrating forward from the
last time-step of the nearest previous check-window. The 3CP technique is sketched in fig. 3.

iPGD

ZFP

Lossy

Zlib

Lossless

iPGDZ+

iPGDZ+

Full Storage

Check-Pointing

CFS

3CP

Figure 2: Left: The three
constituent techniques of
iPGDZ+. Right: CFS and
3CP techniques sharing the
same core (iPGDZ+).

In Section 4, iPGDZ+ (used within CFS or 3CP) is denoted by iPGDZ+(Sw,M ,K,P) to
specify the used parametric values. If not stated otherwise, the whole computational domain is
compressed using the same (different for each set-up) number M of modes.

4

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

window 0

𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+ 𝒊𝑷𝑮𝑫𝒁+

Unsteady Primal Solver

window 1 window 2 window 3 window 4 window 5 window 6 window 7 window 8 window 9

Figure 3: The 3CP algorithm. In this example, the time-domain with 40 time-steps in total
is partitioned into 10 time-windows. Flow solution at Sw = 4 check-windows (in red) is com-
pressed using iPGDZ+ and stored; blue circles correspond to time-instants of the flow that are
recomputed during the adjoint solution.

4 APPLICATIONS

Benefits from the use of CFS and 3CP in unsteady adjoint are demonstrated in three external
aerodynamics cases. Cases description, including grids and parameterization, are given below
(see also Table 1). Case 1 is dealing with the shape optimization of a motorbike’s fairing,
whereas Case 2 with the DrivAer car model [11]. Here, the fast-back DrivAer configuration
with smooth underbody, mirrors and wheels is used as starting shape. Half of the car is modeled;
a rotating wall boundary condition is imposed on the tires and wheel rims. Case 3 performs
the same for the ID.3 passenger car; its geometry was 3D-scanned by A2MAC1 [12] and the grid
was generated by AirShaper [13]. Starting and optimized shapes in all cases are shown in fig. 4.

Volumetric B-splines lattices are used to morph both the part(s) of the shapes that are allowed
to change and the surrounding CFD grid. The Cartesian coordinates of the control points of
those lattices are the design variables. Particularly, in Case 2, all control points (CPs) placed
on the symmetry plane were not allowed to move in the transversal direction. Also, in this case,
bounding box constraints were imposed for the design variables; each CP is confined to move
inside a rectangular parallelepiped, the edges of which pass through the midpoints of the edges
connecting this and its adjacent CPs.

Common objective function in all cases is the time-averaged drag coefficient JCD
=

1
Tof

∫ t∗+Tof
t∗ w

(
t−t∗
Tof

)
CD(t) dt, where CD(t)=

∫
SW

[p(t)ni−τij(t)nj]ridS

1
2
ArefU

2
ref

is the instantaneous drag co-

efficient, r is the unit vector parallel to the fixed far-field velocity, n is the unit vector normal to

the vehicle boundary facing towards the solid, τij =(ν+νt)
(
∂vi
∂xj

+
∂vj
∂xi

)
is the stress tensor, vi are

the velocity components, p is the pressure divided by the fluid density, ν is the bulk and νt the
eddy viscocity, Aref and Uref are the frontal area and far-field velocity magnitude, respectively,
and w (χ) = 2

3 [1− cos(2πχ)]2 , χ ∈ (0, 1) is the Hann-Square-windowing function [14] used to
regularize time-averaging. To exclude transient phenomena from the definition of the objective
function, at each optimization cycle, JCD

is integrated over [t∗, t∗+Tof], where t∗ is the warm-up
time and Tof is the size of the integration window. The values of t∗, Tof and ∆t for each case
are summarized in Table 1.

The flow is governed by the Unsteady Reynolds-Averaged Navier Stokes (URANS) equations,
including the Spalart-Allmaras [15] turbulence model and the Hamilton-Jacobi PDE computing
distances ∆ from the walls. The computation of gradient δJCD

/δb of JCD
w.r.t. the design

variables b requires the numerical solution of the unsteady adjoint equations. The adjoint

5

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

system includes the adjoint to the mean-flow equations, the adjoint to the Spalart-Allmaras
turbulence model PDE, the adjoint to the Hamilton-Jacobi equation and, also, the differentiated
Spalding’s law of the wall. Flow and adjoint equations can be found in [16] and [6]. Both
the flow and the adjoint PDEs are discretized and numerically solved on unstructured grids
for t ∈ [0, t∗+Tof], using the cell-centered, collocated, finite-volume infrastructure provided by
OpenFOAM, employing the PIMPLE algorithm.

All runs are performed on Intel Xeon CPU E5-2630 v3 cores at 2.40GHz, the number of
which is defined separately for each case. At each time-step, the instantaneous fields of p, vi,
the Spalart-Allmaras turbulence model variable ν̃, computed at cell-centers, and volume fluxes
φ at cell-faces, are stored for use by the adjoint solver and for restarting the flow solver from
the last check-point during the adjoint solution. Due to the excessive memory requirements of
full storage for real-world 3D applications, the CPU cost of the proposed technique is compared
to the cost of “standard” binomial check-pointing [1]; the latter is denoted as stdCP(Sp), where
Sp is the number of check-points.

Quantitive comparisons are based on the following metrics:

CR=
uncompressed size of primal time-series

compressed size of all check-windows
, θ=cos−1

δJ
δb ·

δJ
′

δb∥∥ δJ
δb

∥∥
2

∥∥∥ δJ ′δb ∥∥∥2 , ε=

∥∥∥ δJδb− δJ
′

δb

∥∥∥
2∥∥ δJ

δb

∥∥
2

(2)

where CR is the compression ratio and θ and ε are the angle and normalized difference between

reference SDs computed using stdCP (δJ/δb) and SDs computed using iPGDZ+
(
δJ
′
/δb

)
,

respectively. For both θ and ε, the ideal value is zero. CR measures savings in memory require-
ments when either of the two proposed techniques is used. For stdCP, CR is the ratio of the
total number of time-steps and the number of check-points retained in memory.

Irrespective of the compression technique used, the performed optimizations reduce JCD

by 6 to 7% in all cases, fig. 5. It is important though to show, first of all, that the use of
lossy compression does not harm the accuracy of the computed SDs or the convergence of the
optimization loop. Indeed, SDs are practically unaffected by lossy compression of primal data,
for both CFS and 3CP, with ε<0.6% and θ<0.3◦ in all cases, table 2. The same holds for the
evolution of JCD

in the course of the optimization, left column in fig. 5. In the right column in
the same figure, the instantaneous drag coefficient CD(t) at the starting shape of each case is
plotted, and this confirms the unsteady nature of the flow around the examined bodies.

After having shown that the compression/decompression process does not affect the opti-
mization procedure, an interesting comparison in terms of memory requirements and CPU cost
follows. In all cases, stdCP is used as the reference run; the number of the check-points is
selected based on the available system memory on a case-by-case basis. Should the target be
to avoid any recomputation, stdCP can be replaced by CFS which reduces the CPU cost per
optimization cycle by ∼ 30%. Storage requirements are reduced by 2 to 3 orders of magnitude
compared to full storage without compression (CR= 450 ÷ 1200), or 15 ÷ 35 times compared
to stdCP. If a higher reduction in memory is required, 3CP can be used instead. In Cases 1
and 2, 3CP achieves an impressive reduction in memory (CR> 2000 or ∼ 60 times less mem-
ory demands than stdCP), which comes at a slightly higher cost compared to CFS. Even so,
3CP has a ∼6% lower cost than stdCP. 3CP can be tuned to reach the right balance between

6

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

reduction in memory and CPU cost. This means, that the cost of 3CP can further be reduced
by increasing the memory footprint accordingly, fig. 6. In any case, both CFS and 3CP have a
clear advantage vis-à-vis to stdCP both in terms of CPU cost and memory requirements.

The same memory savings with CFS can be obtained by using stdCP, but at a significantly
higher cost, since the flow recomputations that are performed have the same cost as 1.4, 2.8, 14
complete flow solutions, respectively for each case. On the other hand, by properly selecting
the check-points’ number, stdCP may also match the memory requirements of 3CP, but at
a noticeably higher cost (flow recomputations are as expensive as 3.0 to 7.3 complete flow
evaluations).

In Case 2, to optimally use the available memory, the computational domain is divided into
three non-overlapping regions, fig. 4e, in which flow fields are compressed using M=4, 3 and 2,
respectively. This way, regions where local time-varying flow-structures are expected to form,
i.e. the wake and the region close to the underbody, are compressed with a higher accuracy than
the rest of the domain. Using this set of M values, indexed by C in table 2, memory savings
noticeably increase for both CFS and 3CP (CR=700 and 2500, respectively) for the same error
in SDs and CPU cost.

Case
Re

(×106)
Cells
(×106)

t∗

(sec)
Tof

(sec)

∆t
(×10−4

sec)

Control
Lattice

Active
CPs

Opt.
Method

CPU
Cores

Memory
(GB)

1 2.7 1.1 1.5 5.5 2.5 7×7×7 4×3×4
Conjugate
Gradient

32 65

2 10 5.3 0.9 1.5 0.6 7×6×10 4×5×8 SQP 132 300

3 8.5 16.6 0.6 2.4 3 7×7×7 4×5×4
Conjugate
Gradient

132 300

Table 1: Main settings for the solver and the optimization for each case.

7

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

(a) Case 1 (b) Case 1

(c) Case 2
(d) Case 2 (e) Case 2

(f) Case 3 (g) Case 3

Figure 4: (a, c, f): Volumetric B-Splines lattice on the starting geometry of each case. CPs
with at least one active degree of freedom are colored in red; non-active CPs are in blue. (e):
Three non-overlapping regions, the union of which gives the whole computational domain, using
different number M of modes for iPGDZ+. Regions 1, 2 and 3 contain 2.41, 0.11 and 2.78 million
cells, respectively. (b, d, g): Optimized shapes. The signed cumulative normal displacement
fields plotted on the optimized shapes indicate directions in which surface points were displaced,
either inwards (red) or outwards (blue).

8

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01

 1 2 3 4 5 6 7 8 9 10

J C
D
 /

J C
D

,in
it

Optimization Cycle

iPGDZ+(19,3,150,16)
iPGDZ+(94,3,300,16)

stdCP(882)

(a) Case 1

 0.412

 0.414

 0.416

 0.418

 0.42

 0.422

1.5 2 3 4 5 6 7

J C
D

Time (sec)

instantaneous value
mean value

(b) Case 1

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13

J C
D
 /

J C
D

,in
it

Optimization Cycle

iPGDZ+(109,C,370,14)
stdCP(943)

(c) Case 2

 0.22

 0.225

 0.23

 0.235

 0.24

0.9 1 1.2 1.4 1.6 1.8 2 2.2 2.4

J C
D

Time (sec)

instantaneous value
mean value

(d) Case 2

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5

J C
D
 /

J C
D

,in
it

Optimization Cycle

iPGDZ+(10,3,1000,14)
stdCP(280)

(e) Case 3

 0.354

 0.356

 0.358

 0.36

 0.362

 0.364

 0.366

 0.368

0.6 1 1.5 2 2.5 3

J C
D

Time (sec)

instantaneous value
mean value

(f) Case 3

Figure 5: (a, c, e): Evolution of JCD
in the course of the optimization for all cases. In Cases

1 and 3, JCD
reduced by 6.7%, whereas in Case 2 by 6.0%. Recall that the abbreviation

iPGDZ+(Sw,M ,K,P) determines the number Sw of the check-windows, the number M of modes,
the number K of time-steps per time-window and the number P of bits used in ZFP. In Case
2, C denotes the use of different values of M (M=4, 3, 2) in each sub-domain of fig. 4e. (b, d,
f): Evolution of the instantaneous and mean JCD

over Tof on the starting geometries.

9

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

Case Storage Strategy
Cost/cycle

CR
Mem.
(GB)

SDs

CPUh % θ(◦) ε

1

stdCP(882) 1.63K 100% 31.7 64.1 − −
CFS iPGDZ+(94,3,300,16) 1.19K 73.2% 451.5 4.50 0.30 0.57%

3CP iPGDZ+(19,3,150,16) 1.52K 93.5% 1944 1.05 0.27 0.53%

2

stdCP(943) 5.89K 100% 42.4 298.0 − −

CFS
iPGDZ+(160,3,250,14) 4.25K 72.2% 472.9 26.7 0.10 0.18%

iPGDZ+(109,C,370,14) 4.25K 72.1% 702.0 18.0 0.08 0.15%

3CP
iPGDZ+(30,3,90,14) 5.60K 95.3% 2237 5.7 0.27 0.48%

iPGDZ+(27,C,110,14) 5.59K 95.1% 2508 5.0 0.26 0.49%

3
stdCP(280) 7.77K 100% 35.7 297.3 − −

CFS iPGDZ+(10,3,1000,15) 5.37K 69.1% 1221 8.7 0.19 0.34%

Table 2: CPU cost, compression and SDs’ accuracy metrics, at the first optimization cycle. The
first line of each case corresponds to check-pointing; then, runs using CFS and 3CP follow.
Recall that the abbreviation iPGDZ+(Sw,M ,K,P) determines the number Sw of the check-
windows, the number M of modes, the number K of time-steps per time-window and the number
P of bits used in ZFP. In Case 2, C denotes the use of different values of M (M=4, 3, 2) in
each sub-domain of fig. 4e.

Figure 6: Memory requirements and CPU cost per optimization cycle. Left: Case 1. Com-
parison of CFS using iPGDZ+(94,3,300,16), 3CP using iPGDZ+(19,3,150,16) and stdCP using
882 check-points. Right: Case 2. Comparison of CFS using iPGDZ+(109,C,370,14), 3CP using
iPGDZ+(27,C,110,14) and stdCP using 943 check-points.

5 CONCLUSIONS

Two techniques that can greatly reduce the storage requirements and the CPU cost of the
backward in time integrated unsteady adjoint equations, in gradient-based optimization, are
compared to the widely used binomial check-pointing technique (stdCP). These are the Com-
pressed Full Storage (CFS) and the Compressed Coarse-grained Check-Pointing (3CP) strate-

10

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

gies, which share the same core, i.e. the iPGDZ+ lossy compression technique. The iPGDZ+

technique synergistically applies lossy and lossless compression by means of: (a) the incremental
Proper Generalized Decomposition (iPGD), (b) the ZFP and (c) the Zlib algorithms. Between
the two proposed techniques, CFS achieves a higher reduction in the CPU cost per optimization
cycle, whereas 3CP a higher reduction in memory footprint and vice versa. In the three auto-
motive applications, CFS reduced the CPU cost per optimization cycle by 30% and memory
requirements by a factor of 15 to 35 compared to stdCP. On the other hand, 3CP achieved an
impressive 60 times reduction in memory compared to stdCP, which came also at a 6% lower
CPU cost. This remarkable reduction in storage was achieved without practically affecting
neither the computed sensitivity derivatives nor the outcome of the optimization. Note that
though iPGDZ+ is independent from the underlying primal equations and can be used either
with continuous or discrete adjoint, the paper focuses solely on shape optimization methods in
unsteady fluid mechanics, using continuous adjoint.

AKNOWLEDGEMENTS

Development of the core compression techniques was made in the context of a research project
funded by the Bayerische Motoren Werke (BMW). The iPGDZ+ technique and CFS were de-
veloped in the framework of the European High-Performance Computing Joint Undertaking
(JU) (Exploitation of Exascale Systems for Open-Source Computational Fluid Dynamics by
Mainstream Industry) under Grant Agreement No. 956416. The development of the 3CP tech-
nique was made through a PhD scholarship to the first author offered by the Special Account
for Research Funding (ELKE) of NTUA. Computational time was granted by the National In-
frastructures for Research and Technology S.A. (GRNET S.A.) in the National HPC facility -
ARIS - under project ID 10031. The authors would like to acknowledge the provision of the
scanned geometry and computational mesh of the ID.3 car model by A2MAC1 and AirShaper,
respectively.

REFERENCES

[1] A. Griewank and A. Walther. Algorithm 799: Revolve: An implementation of checkpointing
for the reverse or adjoint mode of computational differentiation. ACM Transactions on
Mathematical Software, 26(1):19–45, 2000.

[2] P. Stumm and A. Walther. Multistage approaches for optimal offline checkpointing. SIAM
Journal on Scientific Computing, 31(3):1946–1967, 2009.

[3] P. Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions on Vi-
sualization and Computer Graphics, 20(12):2674–2683, 2014.

[4] S. Di and F. Cappello. Fast Error-Bounded Lossy HPC Data Compression with SZ. pages
730–739. IEEE International Parallel and Distributed Processing Symposium (IPDPS),
2016.

[5] J. Gailly and M. Adler. Zlib Compression Library. http://zlib.net/.

11

A.-S.I. Margetis, E.M. Papoutsis-Kiachagias and K.C. Giannakoglou

[6] A.-S. Margetis, E. Papoutsis-Kiachagias, and K. Giannakoglou. Lossy compression tech-
niques supporting unsteady adjoint on 2D/3D unstructured grids. Computer Methods in
Applied Mechanics and Engineering, 387:114152, 2021.

[7] S. Walton, O. Hassan, and K. Morgan. Reduced order modelling for unsteady fluid flow
using proper orthogonal decomposition and radial basis functions. Applied Mathematical
Modelling, 37(20):8930–8945, 2013.

[8] E. Cyr, J. Shadid, and T. Wildey. Towards efficient backward-in-time adjoint computa-
tions using data compression techniques. Computer Methods in Applied Mechanics and
Engineering, 288(C), 2014.

[9] L. Yang and S. Nadarajah. Data Compression Algorithms for Adjoint Based Sensitivity
Studies of Unsteady Flows. Fluids Engineering Division Summer Meeting, 2018.

[10] F. Chinesta, R. Keunings, and A. Leygue. The Proper Generalized Decomposition for
Advanced Numerical Simulations: A Primer. Springer, 2014.

[11] A. Heft, T. Indinger, and N. Adams. Experimental and Numerical Investigation of the Dri-
vAer Model. ASME, Symposium on Issues and Perspectives in Automotive Flows, Volume
1: Symposia, Parts A and B:41–51, 2012.

[12] A2MAC1 Automotive Benchmarking. https://portal.a2mac1.com/.

[13] AirShaper. https://airshaper.com/.

[14] J. Krakos, Q. Wang, S. Hall, and D. Darmofal. Sensitivity analysis of limit cycle oscillations.
Journal of Computational Physics, 231(8):3228–3245, 2012.

[15] P. Spalart and S. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows.
AIAA, 439, 01 1992.

[16] E. Papoutsis-Kiachagias and K. Giannakoglou. Continuous Adjoint Methods for Turbulent
Flows, Applied to Shape and Topology Optimization: Industrial Applications. Archives in
Computational Methods in Engineering, 23:255–299, 2016.

12

