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Abstract

This article presents a new approach to assess the error in specific quantities of interest in the
framework of linear elastodynamics. In particular, a new type of quantities of interest (referred
as timeline-dependent quantities) is proposed. These quantities are scalar time-dependent out-
puts of the transient solution which are better suited to time-dependent problems than the
standard scalar ones, frozen in time. The proposed methodology furnishes error estimates for
both the standard scalar and the new timeline-dependent quantities of interest. The key in-
gredient is the modal-based approximation of the associated adjoint problems which allows
efficiently computing and storing the adjoint solution.

The approximated adjoint solution is readily post-processed to produce an enhanced solution,
requiring only one spatial post-process for each vibration mode and using the time-harmonic
hypothesis to recover the time dependence. Thus the proposed goal-oriented error estimate
consists in injecting this enhanced adjoint solution into the residual of the direct problem. The
resulting estimate is very well suited for transient dynamic simulations because the enhanced
adjoint solution is computed before starting the forward time integration of the direct problem.
Thus, the cost of the error estimate at each time step is very low.

Keywords: goal-oriented error assessment, elastodynamics, transient dynamics, adjoint
problem, quantity of interest, timeline-dependent quantity of interest, modal analysis

1 Introduction

Assessing the reliability and/or improving efficiency of the finite element based approximations
has motivated the development of a huge variety of error assessment techniques [1, 2, 3, 4,
5]. The pioneering references on this topic focus in steady-state elliptic problems, e.g. linear
elasticity or steady heat transfer. In the context of elliptic problems, the early works consider
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the energy norm as an error measure [6, 7, 8]. Much later, functionals outputs or quantities of
interest are introduced to assess the error [9, 10, 11, 12]. The estimates assessing the error in
quantities of interest are usually referred in the literature as goal-oriented [12]. These techniques
are extended to deal with other linear and non-linear problems, as well as to time-dependent
problems. The following references illustrate the high variety of applications of the goal-oriented
approach: for quasi-steady-state non-linear problems [13, 14, 15, 16], for the advection-diffusion-
reaction equation [17], for the stokes problem [18], for parabolic time dependent problems
[19, 20, 21] and for coupled problems [22, 23, 24, 25, 26].

Different error estimation techniques are proposed also for second order hyperbolic problems
(e.g. wave equation or elastodynamics). In this context, some are providing error indicators
to drive mesh adaptive procedures, either using energy-like measures [27, 28, 29, 30, 31, 32]
or quantities of interest [33, 34, 35, 36, 37]. Other references introduce error estimates as a
quality certification for the numerical approximation, without direct application to adaptivity,
see [38, 39, 40] for energy-like error measures and [41, 42, 43, 44, 45, 46, 29] for goal oriented
estimates.

To the best knowledge of the authors, the few references cited above as goal oriented error
assessment techniques constitute the current state-of-the-art in elastodynamics. This is still an
open research topic, with many challenging issues.

The first challenge is reducing the high computational cost of these estimates. Assessing the
error in a quantity of interest (instead of the standard energy norm) requires approximating an
auxiliary adjoint problem associated with the selected quantity. At the first sight, the numerical
computation of this problem is as expensive as the original one. The cost of computing the
adjoint problem is reduced using ad-hoc techniques (for instance enriching the adjoint inter-
polation with handbook functions [41, 42, 44]), but this reduction is not sufficient to make it
affordable. Alternative computations of the adjoint solution in time-dependent problems are
proposed by [47] using a coarse-scale discretization and [48] using the adjoint solution of an
auxiliary steady-state problem.

Moreover, the need of combining the original and adjoint solutions drastically increases the
memory requirements. This is because the original solution is solved forwards in time and
the adjoint backwards. Thus, in order to combine them, at least one of the two solutions has
to be stored in memory as a whole (i.e. for each mesh-degree of freedom and for each time
step). Another important overhead is introduced by the post-processing techniques (recovery,
equilibration, computation of residuals...) which are required to assess the error. This overhead
can be non negligible because the post-processing operations have to be performed at every
time step. This extra cost is also present in energy-like estimates but, in the goal oriented
context, it can be even higher if the same operations have to be performed for the adjoint
problem as well.

Another important issue associated with goal-oriented estimates for elastodynamics (and also
for other time-dependent problems) is the definition of the quantity of interest itself. Typically,
the quantity is expressed in terms of a (linear) functional, which transforms the solution of the
problem into a single representative scalar value. Standard quantities in steady-state problems
are averages of the unknown variables in subregions of interest in the computational domain.
In time dependent problems the definition of the quantity of interest must involve not only a
spatial sub-domain but also a time interval of interest. The choice of this time frame is not
always obvious for the end-user. This is because a single scalar value does not provide enough
pieces of information about the whole time-space solution. This suggests introducing a new
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type of quantities of interest precluding the need of providing the time frame. The output of
such a quantity of interest is not anymore a scalar quantity but a time-dependent function. The
major novelty of this article is the introduction of this new type of quantities. They are referred
as timeline-dependent quantities of interest in contrast with the standard scalar quantities.

The key ingredient of the proposed methodology is a modal based approximation for the adjoint
solution. This is a new approach, with respect to previous goal oriented estimates for elasto-
dynamics [45], which use direct time integration schemes (e.g. Newmark-like methods) to solve
the adjoint problem. The modal based strategy is particularly well suited for some particular
quantities of interest and allows effectively computing and storing the adjoint problem. More-
over, the use of post-processing techniques in the space domain (flux recovery or equilibration)
can be readily applied to the (spatial) description of the modes. Note that this is performed
just once for every relevant mode, with no need of carrying out the post-processing at each time
step. Dealing with timeline-dependent quantities is much simpler with this approach, because
it simplifies the time-translation operation.

The modal-based approach is valid for linear problems and linear quantities of interest. Al-
though a wide range of applications is devised, the modal assessment of the timeline-dependent
quantities is valid for some particular cases inducing a time-translation invariance. Moreover,
in oder to be competitive with direct time integration methods, a modal approach requires that
the quantity of interest is described with a reduced number of vibration modes. These factors
could be seen as a limitation of the proposed technique. However, the examples presented here
demonstrate that the approach is useful in many practical applications.

The error estimates proposed here are obtained injecting an enhanced adjoint approximation
into the weak residual of the original problem. As previously noted, the treatment of the
adjoint solution is very efficient, thanks to the modal-based approach. The recovery procedure
employed for both eigenvectors and eigenfrequencies is similar to the one proposed by Wiberg
et al. [49].

The remainder of the paper is structured as follows. Section 2 introduces the equations of elas-
todynamics, the numerical strategies to solve them and the types of quantities of interest we
aim at assessing, in particular the so-called timeline-dependent quantities. Section 3 presents
the modal-based error estimate for the standard scalar quantities of interest. Section 4 extends
the rationale of previous section to the timeline-dependent quantities. Section 5 contains nu-
merical examples demonstrating the suitability of the proposed estimates. Finally, we draw
some concluding remarks.

2 Problem statement

2.1 Governing equations

Consider a visco-elastic body occupying an open bounded domain Ω ⊂ Rd, d ≤ 3, with
boundary ∂Ω. The boundary is divided in two disjoint parts, ΓN and ΓD such that ∂Ω =
ΓN∪ΓD and the time interval under consideration is I := [0, T ]. Under the assumption of small
perturbations, the evolution of displacements u(x, t) and stresses σ(x, t), x ∈ Ω and t ∈ I, is
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described by the visco-elastodynamic equations,

ρ(ü + a1u̇)−∇ · σ = f in Ω× I, (1a)

u = 0 on ΓD × I, (1b)

σ · n = g on ΓN × I, (1c)

u = u0 at Ω× {0}, (1d)

u̇ = v0 at Ω× {0}. (1e)

where an upper dot indicates partial derivation with respect to time, that is ˙(•) := d
dt(•), and n

denotes the outward unit normal to ∂Ω. The problem data are the mass density ρ = ρ(x) > 0,
the first Rayleigh coefficient a1 ≥ 0, the body force f = f(x, t) and the traction g = g(x, t)
acting on the Neumann boundary ΓN×I. The initial conditions for displacements and velocities
are u0 = u0(x) and v0 = v0(x) respectively. For the sake of simplicity and without any loss of
generality, Dirichlet conditions (1b) are taken as homogeneous.

The set of equations (1) is closed with the constitutive law,

σ = C : ε(u + a2u̇), (2)

where the parameter a2 ≥ 0 is the second Rayleigh coefficient, ε(w) := 1
2(∇w + ∇Tw) is the

the kinematic relation (corresponding to small perturbations) and C is the standard 4th-order
elastic Hooke tensor fulfilling

Cijkl = Cklij (major symmetry),

Cijkl = Cjikl
Cijkl = Cijlk

}
(minor symmetries).

The major symmetry of the stress tensor is used later to derive the constitutive relation of the
adjoint problem.

The definition of the weak form of the problem requires introducing the following functional
spaces: the standard Sobolev space associated with static displacement fields

V0 :=
{

w ∈ [H1(Ω)]d : w = 0 on ΓD

}
,

and the Bochner space L2(0, T ;V0) associated with V0 of square-integrable functions from I
into V0

L2(0, T ;V0) :=

{
v : I → V0,v(t) is V0-measurable and

∫ T

0
||v(t)||2V0

dt < +∞
}
.

The solution of the problem, u(x, t), belongs to the space W defined as

W :=
{

w ∈ L2(0, T ;V0) with ẇ ∈ L2(0, T ; [L2(Ω)]d) and ẅ ∈ L2(0, T ;V ′0)
}

and V ′0 denotes the dual space of V0. Note that in particular this implies that u ∈
C([0, T ]; [L2(Ω)]d) and u̇ ∈ C([0, T ];V ′0), see [50]. That is, functions in W are continuous func-
tions both in space and time, with continuous time derivative.
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Remark 1. Function u is a transformation from Ω× I and Rd, i.e.

u : Ω× I −→ Rd

(x, t) 7−→ u(x, t).

It can also be seen as a transformation from I and V0, i.e.

u : I −→ V0

t 7−→ u(t).

In the remainder of the paper, both notations are used, for u and other functions, to denote
the same mathematical objects depending on the context.

Thus, the weak form (integrated in space) of problem (1) reads: find u ∈W veryfing the initial
conditions u(0) = u0 and u̇(0) = v0 and such that for all t ∈ I

(ρ(ü(t) + a1u̇(t)),w) + a(u(t) + a2u̇(t),w) = l(t; w) ∀w ∈ V0, (3)

where the standard linear and bilinear forms have been introduced

a(v,w) :=

∫
Ω
ε(v) : C : ε(w) dΩ , l(t; w) := (f(t),w) + (g(t),w)ΓN

,

along with the scalar products

(v,w) :=

∫
Ω

v ·w dΩ and (v,w)ΓN
:=

∫
ΓN

v ·w dΓ.

The error estimation strategy presented below, requires a space-time variational framework.
The single field formulation introduced by Hughes and Hulbert [51, 52] is considered. Thus,
the space-time integrated weak form of (3) reads: find u ∈W such that

B(u,w) = L(w) ∀w ∈W , (4)

where

B(v,w) :=

∫
I
(ρ(v̈ + a1v̇), ẇ) dt+

∫
I
a(v + a2v̇, ẇ) dt+ (ρv̇(0+), ẇ(0+)) + a(v(0+),w(0+))

and

L(w) :=

∫
I
l(t; ẇ(t)) dt+ (ρv0, ẇ(0+)) + a(u0,w(0+)).

2.2 Numerical approximation

In the following developments, û ∈ W is assumed to be an approximation of the solution
of the boundary value problem (1). Note that û must have C0-continuity in space and C1-
continuity in time. Most typically, the approximation computed with a standard methodology,
say uH,∆t, does not fulfill these continuity requirements and has to be post-processed to obtain
a suitable û. Here, uH,∆t is computed using the Newmark method [53], which is widely adopted
in practical applications and commercial codes.
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A mesh of characteristic element size H discretizing the spatial domain is introduced together
with its associated finite element space VH

0 ⊂ V0. The degree of the complete polynomial
basis in VH

0 is denoted by p. This allows introducing the spatially-discrete and time-continuous
version of equation (3) (semidiscrete problem), namely: find uH(t) ∈ VH

0 such that for all t ∈ I

(ρ(üH(t) + a1u̇
H(t)),w) + a(uH(t) + a2u̇

H(t),w) = l(t; w) ∀w ∈ VH
0 , (5)

with initial conditions uH(0) = ΠH(u0) and u̇H(0) = ΠH(v0), being ΠH the interpolation
operator mapping functions from the continuous space V0 into the discrete space VH

0 .

The Newmark method is a numerical time-marching scheme providing an approximation of
the standard system of second order ODEs (5) arising in structural dynamics. A time-grid
discretizing the time interval I is introduced, T := {t0, t1, . . . , tN}, where 0 = t0 < t1 < . . . <
tN = T . Time steps are denoted by ∆tn := tn − tn−1, for n = 1, . . . , N and the characteristic
time step for the time grid is

∆t := max
1≤n≤N

(∆tn).

The Newmark solution consists in displacements, velocities and accelerations at each time tn,
uH,∆tn ≈ uH(tn), vH,∆tn ≈ u̇H(tn) and aH,∆tn ≈ üH(tn), for n = 1, . . . , N , such that equation (5)
is fulfilled at each time tn ∈ T , that is

(ρ(aH,∆tn + a1v
H,∆t
n ),w) + a(uH,∆tn + a2v

H,∆t
n ,w) = l(tn; w) ∀w ∈ VH

0 . (6)

Assuming that uH,∆tn−1 ,v
H,∆t
n−1 ,a

H,∆t
n−1 are known and that the following discrete integral expres-

sions hold

uH,∆tn = uH,∆tn−1 + ∆tnv
H,∆t
n−1 +

1

2
∆t2n

[
(1− 2β)aH,∆tn−1 + 2βaH,∆tn

]
,

vH,∆tn = vH,∆tn−1 + ∆tn

[
(1− γ)aH,∆tn−1 + γaH,∆tn

]
,

the only remaining unknown in equation (6) is aH,∆tn , which is obtained solving a linear system
of algebraic equations. Similarly, at time t0, the displacements and velocities are determined
by the initial conditions u0 and v0 and the acceleration aH,∆t0 is computed by considering that

(ρ(aH,∆t0 + a1v0),w) + a(u0 + a2v0,w) = l0(w) ∀w ∈ VH
0 .

The scalars β and γ are the parameters of the Newmark method taking values in [0, 1]. For
γ = 1/2 the method is second order accurate and there is no numerical damping, whereas for
γ > 1/2 numerical damping is introduced. Moreover, the method is conditionally stable for
β ≥ γ/2 ≥ 1/4. See [53] for specific details.

Note that the Newmark method does not directly provide a numerical approximation û ∈W ,
since the approximation is not even defined in the whole time interval I (it is only given at
times tn of the time grid). The first step in orther to recover the numerical approximation is
to extend the Newmark approximation into the whole time domain using a simple piecewise
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linear interpolation:

uH,∆t(x, t) :=

N∑
n=0

uH,∆tn (x)θn(t), (7a)

vH,∆t(x, t) :=

N∑
n=0

vH,∆tn (x)θn(t), (7b)

aH,∆t(x, t) :=

N∑
n=0

aH,∆tn (x)θn(t), (7c)

where the functions θn(t), for n = 0, . . . , N , are the one-dimensional piecewise linear shape
functions related with the time partition T . Note that, however, one cannot take û = uH,∆t(x, t)
since this approximation does not meet the regularity requirements of the functional space W ;
uH,∆t(x, t) /∈W because its time derivative is not continuous.

Following [2], an admissible approximation û ∈ W is easily recovered from the Newmark
solution using the information provided by the numerical accelerations, namely

v̂(x, t) :=

∫ t

0
aH,∆t(x, τ) dτ + ΠH (v0(x)) , (8a)

û(x, t) :=

∫ t

0
v̂(x, τ) dτ + ΠH (u0(x)) . (8b)

Note that by construction the approximation û exactly verifies the initial conditions up to the
resolution of the spatial finite element mesh (i.e. û(0) = ΠH(u0) and ˙̂u(0) = ΠH(v0)) and
that the admissible acceleration coincides with the Newmark solution, ¨̂u = aH,∆t. Note that
the displacements uH,∆t and û do not coincide but that they both tend to the exact (in time)
solution of the semi-discrete problem (5) as ∆t tends to zero.

2.3 Scalar and timeline-dependent quantities of interest

A posteriori goal-oriented error estimation techniques aim at assessing the quality of the approx-
imations of scalar outputs of the solution. These techniques are of outmost practical interest
because engineering decisions are usually based on representative scalar values of the whole
time-space solution u. The scalar output of interest is sT := LO(u) and its corresponding
approximation is ŝT := LO(û), where LO(·) is a bounded linear functional

LO : W −→ R
w 7−→ LO(w),

extracting a single representative scalar value of the whole time-space solution u. For instance,
the quantity of interest can be described as

sT = LO(u) :=

∫ T

0
(fO(t), u̇(t)) dt+

∫ T

0
(gO(t), u̇(t))ΓN

dt+ (ρvO, u̇(T )) + a(uO,u(T )), (9)

where fO, gO, vO and uO are the data characterizing the quantity of interest. The functions
fO and gO extract global or localized averages of velocities in Ω and ΓN, respectively, over the
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whole time simulation [0, T ] whereas vO and uO assess averages of velocities and strains or
displacements respectively at the final simulation time T .

Goal-oriented error estimation techniques are crucial in assessing the quality of numerical sim-
ulations because they provide meaningful information to both drive adaptive mesh refinements
or to certify the accuracy of the computations, not only in global measures but also in rep-
resentative quantities of interest. The extension of standard techniques, developed for static
problems, to transient dynamic simulations allows certifying the accuracy of the computations
with respect to a single scalar output of the whole space-time solution, but does not provide
information of the evolution of the solution during the simulation process. One of the aims of
this work is to extend the paradigm of classical goal-oriented error estimation by introducing
the new concept of timeline-dependent quantities of interest.

Timeline-dependent quantities of interest are defined to be time-dependent functions providing
information of the problem variables for all time t ∈ [0, T ]. That is, the quantity of interest is
no longer a scalar value but a function of time s(t). In contrast with scalar quantities of interest
which can only be computed having at hand the complete simulation, the timeline-dependent
quantity can be produced along the time marching scheme.

To be specific, timeline-dependent quantities of interest are defined as an extension of (9) as

s(t) :=

∫ t

0
(fO(τ), u̇(τ)) dτ +

∫ t

0
(gO(τ), u̇(τ))ΓN

dτ + (ρvO, u̇(t)) + a(uO,u(t)), (10)

where the scalar quantity of interest is recovered for the particular case sT = s(T ). Note that,
timeline-dependent quantities of interest can be represented via a bounded mapping

LOTL : W −→ L2(I)

w 7−→ LOTL(w),

where

LOTL(w)(t) :=

∫ t

0
(fO(τ), ẇ(τ)) dτ +

∫ t

0
(gO(τ), ẇ(τ))ΓN

dτ + (ρvO, ẇ(t)) + a(uO,w(t)). (11)

Thus, the function LOTL(·), instead of extracting a scalar value of the whole time-space solution,
extracts a function of time, and in particular when applied to the exact solution of the problem
u, LOTL(u)(t) = s(t) provides a time-dependent function s ∈ L2(I), see figure 1. For the sake of
simplicity, the following notation is adopted LOTL(w; t) := LOTL(w)(t).

Remark 2. Note that for a given t ∈ I, the timeline-dependent quantity of interest s(t) defined
in (10) extracts a scalar value of the time-space solution using information in the time interval
[0, t], namely, s(t) = LOTL(u[0,t])(t) and thus can be computed along the time marching scheme.
Moreover, the estimates for the quantity of interest s(t) at a given time provide local (in time)
error indicators that can be used to adaptively refine the finite element mesh along time.

The aim of timeline-dependent goal-oriented error estimation strategies is assessing the quality
of ŝ(t) = LOTL(û; t), that is the difference between the exact quantity of interest s(t) = LOTL(u; t)
and the approximation obtained with the numerical simulation ŝ(t). Note that this has to be
estimated for all t ∈ I.

Thus, the goal is to assess and control the error in the quantity of interest which is now a
function of time

se(t) := s(t)− ŝ(t).
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Figure 1: Illustration of scalar and timeline-dependent quantities of interest. The functional
LO maps the time-space solution u into a scalar value sT ∈ R. The operator LOTL transforms
u into a time-dependent function s(t).

Recall that the assessment of the error in a scalar quantity, for instance the value of s at t = T ,
seT := sT − ŝT = s(T ) − ŝ(T ) = se(T ), requires introducing an adjoint problem. Thus, seT
is estimated in terms of energy products of the errors in the direct (or primal) and adjoint
problems, that have to be integrated both in space and time.

The adjoint problem has the same structure of the direct one, but reverted in time. Conse-
quently, the adjoint solution has to be computed backwards in time and stored beforehand, in
order to use it to estimate the error during the forward time-integration of the direct problem.
An alternative approach is to solve and store both the direct and the dual problem indepen-
dently and to compute the error estimate afterwards. However, the latter option does not allow
adapting the spatial mesh along the time stepping procedure.

Moreover, the standard numerical integration of the adjoint solution and its storage are often
computationally unaffordable. In order to overcome this difficulty, in section 3 the adjoint
problem is solved using a modal analysis strategy. This reduces both the computational cost
and the memory requirements for the adjoint problem. Moreover, the information provided by
modal solution of the adjoint problem is straightforwardly used to adapt the finite element
mesh along the computation of the direct problem.

The advantages of using the modal description of the solution of the adjoint problem are even
more manifest if dealing with a timeline-dependent quantity of interest, s(t). In this case, there
is no longer a single adjoint problem but a family of them, each one associated with each time t
in I. For some particular quantities of interest, the members of this family of functions can be
generated as a translation in time of a representative member of the family. If this representative
member is characterized by a modal description, both the translation and the combination with
the solution of the direct problem are simply implemented and computationally efficient. This
is described in detail in section 4.
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3 A modal-based error representation for scalar quantities of
interest

This section is devoted to present a novel approach to assess the error of û measured by a
scalar quantity of interest LO using the modal analysis to obtain a proper approximation of
the adjoint solution.

3.1 Error representation and adjoint problem

An auxiliary problem associated with the functional LO(·), usually denoted by adjoint or dual
problem [29, 46, 41, 42, 43, 44] is introduced to derive an error representation. The variational
form of the adjoint problem consists in finding ud ∈W such that

B(w,ud) = LO(w) ∀w ∈W . (12)

The adjoint solution ud characterizes the quantity of interest defined by LO(·). Note that
having ud at hand allows explicitly computing the quantity of interest associated with the
loading described by L(·). This is because if ud is available, the quantity L(ud) is computable
and coincides with LO(u). The associated strong form of the adjoint problem is

ρ(üd − a1u̇
d)−∇ · σd = −fO in Ω× I, (13a)

ud = 0 on ΓD × I, (13b)

σd · n = −gO on ΓN × I, (13c)

ud = uO at Ω× {T}, (13d)

u̇d = vO at Ω× {T}, (13e)

with the constitutive law
σd := C : ε(ud − a2u̇

d). (14)

Note that the terms affected by a1 and a2 have opposite sign that the ones in the original
problem (1). Consequently, the adjoint problem has to be integrated backwards in time, starting
from the final conditions (13d) and (13e).

The semidiscrete equation associated with the adjoint problem (13) reads: find ud,H(t) ∈ VH
0

verifying the final conditions ud,H(T ) = uO and u̇d,H(T ) = vO and such that for all t ∈ I

(ρ(üd,H(t)− a1u̇
d,H),w) + a(ud,H(t)− a2u̇

d,H(t),w) = −lO(t; w) ∀w ∈ VH
0 , (15)

where lO(t; w) := (fO(t),w) + (gO(t),w)ΓN
.

The solution of the adjoint problem ud allows representing the error in the quantity of interest
in terms of residuals. Indeed, taking w = ê := u− û in equation (12) yields

LO(ê) = B(ê,ud). (16)

The residual error equation for ê is readily derived from (4) as

B(ê,w) = R̂(w) := L(w)−B(û,w), for all w ∈W , (17)
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being R̂(·) the weak residual associated with the approximation û. Hence, the resulting error
representation

LO(ê) = R̂(ud) (18)

allows obtaining the error in the quantity of interest provided that the exact solution of the
adjoint problem is available.

Conversely, if an accurate approximation of the adjoint solution is available, say ũd, the error
in the quantity of interest is estimated as [21, 46]

seT = LO(ê) ≈ R̂(ũd) =: s̃eT . (19)

The quality of the functional approximation ũd is critical to obtain accurate estimates of the
error in the scalar quantity of interest.

3.2 Modal-based approximation for the adjoint problem

The modal analysis or mode superposition, see [54], provides information on the dynamical
behavior of the structural system: its natural vibration modes and frequencies. This information
is often used to obtain numerical solutions of the problem avoiding the time integration of the
complete system of Ordinary Differential Equations resulting from (5). This technique can be
used to solve both the primal and adjoint problems, corresponding both to the same structural
system (the eigenvalue problem to be solved is the same). Here, this technique is applied to
the adjoint problem in order to find a proper approximation ũd.

The natural modes and frequencies of the problem are computed solving the generalized eigen-
value problem associated with the homogeneous undamped version of the semidiscrete problem
(either (5) for the primal or (15) for the adjoint). That is, taking l(t; w) = 0 or lO(t; w) = 0
and a1 = a2 = 0. Thus, the natural frequencies and modes (ωHi ,q

H
i ) ∈ R×VH

0 , i = 1, . . . , Ndof

are the eigenvalues and eigenfunctions of

a(qH ,w) = (ωH)2(ρqH ,w) ∀w ∈ VH
0 . (20)

Note that the number of eigenpairs solution of this problem is the number of degrees of free-
dom in the computational H-mesh, denoted by Ndof . Eigenpairs are sorted from low to high
frequencies, namely ωH1 ≤ ωH2 · · · ≤ ωHNdof

, and eigenvectors are normalized to be orthonormal
with respect to the product (ρ·, ·), i.e.

(ρqHi ,q
H
j ) = δij , 1 ≤ i, j ≤ Ndof. (21)

The modal analysis is applied to obtain the adjoint solution ud,H(x, t) by expressing it as a
linear combination of the eigenvectors qHi , i = 1, . . . , Ndof, that is

ud,H(x, t) =

Ndof∑
i=1

qHi (x)yHi (t). (22)

Thus, for the new unknowns of the problem, yHi (t), the system of ODEs resulting from (15) is
transformed into the uncoupled set of scalar ordinary differential equations

ÿHi − [a1 + a2(ωHi )2]ẏHi + (ωHi )2yHi = li, (23a)

yHi (T ) = ui, (23b)

ẏHi (T ) = vi, (23c)
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where the r.h.s. terms li, ui and vi are computed using the data characterizing the quantity of
interest (9) and the eigenvector qHi

li(t) := (fO(t),qHi ) + (gO(t),qHi )ΓN
, ui := (ρuO,qHi ) and vi := (ρvO,qHi ). (24)

Remark 3. The time dependent coefficients of the decomposition (22), yHi (t), may be computed
in many cases by analytically solving (23). In particular, for constant-in-time data fO and gO,
the term li is also constant in time, and it is easy to see that taking α = a1 + a2w

2
i then

yHi (t) =
1

2
e

(
α+
√
α2−4ωi

2
)

(t−T )/2
(

2viωi
2 − αuiωi2 + αli

ωi2
√
α2 − 4ωi2

+ ui −
li
ωi2

)
+

1

2
e

(
α−
√
α2−4ωi

2
)

(t−T )/2
(
−2viωi

2 + αuiωi
2 − αli

ωi2
√
α2 − 4ωi2

+ ui −
li
ωi2

)
+

li
ωi2

,

if α2 − 4ωi
2 6= 0. If not, for α2 − 4ωi

2 = 0

yHi (t) =

(
(ui −

li
ω2
i

)(1 + T − t) + (T − t)vi
)
e−α(T−t)/2 +

li
ω2
i

.

Note that if α2 − 4ωi
2 < 0, the arguments of the exponential functions are complex numbers

but yHi (t) remains a real function.

The cost of modal analysis scales as [55, 54, 56]

O(Ndof ·N2
bw) +O(N2

dof ·Nbw) +O(N3
dof),

where Nbw denotes the half-bandwidth of the finite element matrices associated with the com-
putational H-mesh. This is computationally unaffordable unless the modal description (22) is
truncated up to the first M terms, being M � Ndof , namely

ud,H,M (x, t) :=

M∑
i=1

qHi (x)yHi (t). (25)

The cost of the truncated modal analysis scales as

O(Ndof ·N2
bw) +O(Ndof ·Nbw ·M) +O(Ndof ·M2).

Note that modal analysis is competitive with respect to the Newmark method only if the
number of computed eigenvectors M is small when compared with the number of computed
time steps N . The cost estimate for the Newmark method reads [54]

O(Ndof ·N2
bw) +O(Ndof ·Nbw ·N).

Thus, modal analysis is competitive with respect to Newmark method if M is significantly
lower than N .

Note that the number of required vibration modes M has to be selected such that the truncated
high frequency modes (for i > M) are negligible in (22). That is, ud,H,M is a good approximation
to ud,H . This is equivalent to assume that for i > M the values of li, ui and vi, as defined in
(24), are close to zero, and consequently yHi (t) ≈ 0. This is guaranteed if the data fO, gO, uO

and vO are well captured by the expansion of the first M eigenvectors.

12



Remark 4. The eigenpairs (ωHi ,q
H
i ) are H-discrete approximations of the following infinite-

dimensional generalized eigenvalue problem: find ω ∈ R and q ∈ V0 such that

a(q,w) = ω2(ρq,w) ∀w ∈ V0. (26)

The computed eigenfrequencies and eigenvectors (ωHi ,q
H
i ), solutions of (20), are good approxi-

mations of (26), (ωi,qi), only for the lower frequency modes [54]. This is supporting the choice
of considering only the first M terms in the expansion (22).

3.3 Spatial enhancement of the adjoint approximation

Taking ũd = ud,H,M in (19) as an approximation to ud provides a raw estimate for the error in
the quantity of interest. This requires injecting ud,H,M as an argument of the residual. However,
the resulting value R̂(ud,H,M ) is expected to be null if time integration is assumed to be exact
or, in any case, very small. This is because ud,H,M and û have the same spatial resolution,
associated with VH

0 , producing an effect analogous to Galerkin orthogonality.

Thus, it is advisory to use an enhanced approximation ũd having a richer space resolution than
ud,H,M .

The proposed approach is to find ũd as a higher order polynomial approximation (piecewise
p+ 1 polynomials in the H-mesh), obtained from ud,H,M using recovery techniques [57, 58].

The computed eigenpairs (ωHi ,q
H
i ), i = 1, . . . ,M are post-processed into enhanced eigenpairs

(ω̃i, q̃i), using a technique similar to [49]. The core of the post-processing technique is computing
q̃i from qHi using a space recovery technique described in detail below. Once q̃i is available, ω̃i
is readily computed by using Rayleigh coefficients

ω̃i :=
a(q̃i, q̃i)

(ρq̃i, q̃i)
. (27)

The enhanced time dependent functions ỹi(t) are computed using the enhanced vibration modes
(ω̃i, q̃i) solving the set of scalar ODE’s

¨̃yi − [a1 + a2(ω̃i)
2] ˙̃yi + (ω̃i)

2ỹi = l̃i, (28a)

ỹi(T ) = ũi, (28b)

˙̃yi(T ) = ṽi, (28c)

where l̃i(t) := (fO(t), q̃i) + (gO(t), q̃i)ΓN
, and ũi and ṽi are the coefficients best fitting uO and

vO in the enhanced eigenvector basis, that is

uO ≈
Ndof∑
i=1

q̃i(x)ũi and vO ≈
Ndof∑
i=1

q̃i(x)ṽi. (29)

Remark 5. Note that the enhanced eigenvectors {q̃i}i=1,...,M are no longer orthonormal. In
limit cases, it may even occur that the enhanced eigenvectors are not linearly independent.
Thus, the final conditions for the ODE’s, ũi and ṽi, cannot be computed using simple scalar
products, like in (24). The values ũi and ṽi are computed solving a small least squares problems
minimizing the squared error of equations (29). A simpler alternative used in the examples and
providing fair results, similar to the least squares approach, is taking ũi = ui and ṽi = vi.
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Finally ũd is computed as the expansion of enhanced vibration modes, i.e.

ũd(x, t) :=

M∑
i=1

q̃i(x)ỹi(t). (30)

The recovery procedure for the adjoint solution is performed only once, previous to the direct
computation. The harmonic time description is highly efficient because it does not require any
further post-process at every time step.

The post-processing technique to enhance the eigenvectors, from qHi to q̃i, consists in a local
(for each element of the H-mesh) least squares fitting of a p+ 1 degree polynomial.

Let Ωe ⊂ Ω, e = 1, . . . , Nel, be the elements of the H-mesh (Nel is the total number of

elements). Let Ωpatch
e denote the patch of elements around Ωe, consisting of all the elements

sharing nodes with Ωe, and let X e and X patch
e denote the set of nodes of element Ωe and patch

Ωpatch
e respectively, see figure 2.

Averaged
 D.O.F. 

D.O.F. of 

D.O.F. of 

Figure 2: Definition of element patches (left) and illustration of the averaging of discontinuous
function q̂i into the continuous function q̃i (right).

The least squares problem stated in each patch Ωpatch
e reads: find qei ∈ [Pp+1(Ωpatch

e )]d such
that qei (x) = qHi (x) for x ∈ X e (it coincides with qHi at the nodes of Ωe) and

qei = arg min
w∈[Pp+1(Ωpatch

e )]d

∑
x∈Xpatch

e

(
w(x)− qHi (x)

)2
, (31)

where Pp+1(Ωpatch
e ) denotes the space of polynomials of degree p + 1 in Ωpatch

e . Problem (31)
results in a small linear system of equations for each element of the computational H-mesh.

The post-processed eigenvector q̃i is obtained assembling the contributions of the restriction
of the local recovered functions qei to the corresponding element Ωe, q̂i :=

∑
e qei |Ωe . Note

that q̂i is discontinuous because, for two neighboring elements Ωe and Ωe′ with a common side
Γee′ := Ω̄e∩Ω̄e′ , functions qei and qe

′
i coincide at the endpoints of Γee′ but, in general, not in the

other points of Γee′ . In order to build up a continuous approximation q̃i, the local contributions
are averaged on the element sides. This is simply performed averaging the values of the degrees
of freedom associated with the element edges (not vertices), as illustrated in figure 2.
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3.4 Practical quantities of interest in modal-based error assessment

The suitability of the modal-based technique introduced above to approximate the solution of
the dual problem depends on the particular choice for the quantity of interest. This section
presents two types of quantities of interest such that the proposed modal-based estimate is
computationally affordable. Note that the cost of building the error estimate is related with
the number of eigenmodes M required to properly capture the data characterizing the quantity
of interest fO, gO, uO and vO. Thus, the quantities of interest presented in this section are
selected such that they require a small number of eigenmodes M . Other quantities of interest
such as the ones presented in [29, 46, 42, 41, 44] may require a higher number of eigenmodes
and, consequently, the proposed technique is not competitive with respect to other alternatives.

The optimal choice to get an efficient response with this approach is selecting a quantity of
interest defined using only the first vibration mode

LO1 (u) :=

∫
I
(αfρq1, u̇(t)) dt+ (ρq1, u̇(T )) + a(αuq1,u(T )). (32)

This corresponds to take fO = αfρq1, gO = 0, vO = q1 and uO = αuq1 in equation (9).
The constants αf and αu are introduced in order to obtain consistent dimensions in (32).
This quantity has not a direct physical interpretation other than being a sum of averages of
velocities (both in time and space and in space for time T ) and an energy average of the strains
(or stresses) at time T . Moreover, this quantity of interest is computationally inexpensive
because requires computing only one vibration mode (M = 1).

Note that, following (30), computing the enhanced approximation ũd associated with (32) and
the estimate R̂(ũd) does not require having at hand the exact eigenvector q1, which is replaced
by q̃1. Note that this requires taking fO = αfρq̃1, gO = 0, vO = q̃1 and uO = αuq̃1 in
equations (28) and (29) but not in the definition of the quantity of interest LO1 (w) in (32). It
is worth noting that the numerical experiments (see the example in section 5.2) demonstrate
that the estimate R̂(ũd) is a fair approximation of the error measured with the exact quantity
of interest (taking q1 and not q̃1 in (32)).

A second choice for a suitable quantity is considering the average of displacements at the final
time of the computation

LO2 (u) := (λO,u(T )) + (λON ,u(T ))ΓN
, (33)

where the data λO and λON are weighting functions allowing to localize the average of displace-
ments in some subdomains in Ω and ΓN respectively. The quantity (33) has to be rewritten
in the same form as the generic quantity (9) in order to compute its associated enhanced
approximation ũd using the rationale presented above. Thus, the quantity (33) is rewritten as

LO2 (u) = a(uO,u(T )),

taking fO = 0, gO = 0, vO = 0 in equation (9) and being uO the solution of the static problem:
find uO ∈ V0 such that

a(uO,w) = (λO,w) + (λON ,w)ΓN
∀w ∈ V0. (34)

Note that here uO is not given as part of the data λO and λON characterizing LO2 . The function
uO has to be computed as the solution of (34) and therefore uO has to be approximated
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by some ũO. This enhanced approximation is obtained applying the post-processing technique
presented in section 3.3 to the discrete solution uO,H ∈ VH

0 of problem (34). The error estimate
R̂(ũd) is readily computed after obtaining an enhanced adjoint approximation ũd, which is
obtained using the procedure described in section 3.3 using ũO instead of uO. This quantity is
more meaningful than the previous one, but it requires in general computing several vibration
modes (M > 1) in order to properly capture ũO by the expansion of q̃i, i = 1, . . . ,M .

4 Assessing timeline-dependent quantities

The first part of this section extends concepts already introduced for scalar quantities, to
timeline-dependent quantities. Secondly, an associated error estimate is introduced, based on
the modal-based description of the adjoint solution.

4.1 Error representation and family of adjoint problems

Recall that, for a given time t ∈ I, s(t) = LOTL(u; t). In that sense, for this particular value of
t, s(t) is seen as a scalar quantity of interest taking t as the final time. This scalar quantity of
interest is characterized as LO(·) = LOTL(·; t). The associated adjoint problem is analogous to
the one presented in 3.1 and reads: find ud

t ∈W |[0,t] such that

Bt(w,u
d
t ) = LOTL(w; t) ∀w ∈W |[0,t]. (35)

Note that the solution of this problem is denoted by ud
t emphasizing that there is a different

solution for each time t. Consequently, equation (35) describes a family of problems, one for
each time t. The bilinear form in (35) is defined as

Bt(v,w) :=

∫ t

0
(ρ(v̈(τ) + a1v̇(τ)), ẇ(τ)) dτ +

∫ t

0
a(v(τ) + a2v̇(τ), ẇ(τ)) dτ

+ (ρv̇(0+), ẇ(0+)) + a(v(0+),w(0+)),

and the space W |[0,t] denotes the restriction of W to the time interval [0, t]. Analogously as
for the derivation of (13), the associated strong form of problem (35) is readily derived as

ρ(üd
t − a1u̇

d
t )−∇ · σd

t = −fO in Ω× [0, t], (36a)

ud
t = 0 on ΓD × [0, t], (36b)

σd
t · n = −gO on ΓN × [0, t], (36c)

ud
t = uO at Ω× {t}, (36d)

u̇d
t = vO at Ω× {t}, (36e)

with the constitutive law
σd
t := C : ε(ud

t − a2u̇
d
t ). (37)

Recall that the data fO, gO, uO and vO enters in the definition of LOTL(·; t) as indicated in
(11). Note that for each time t, problem (36) is of the same type as (13) and therefore has
to be integrated backwards in time. Thus, the family of adjoint problems associated with the
timeline-dependent quantity LOTL is a family of standard problems in elastodynamics.
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For a particular instance of time t, the error representation of the timeline-dependent quantity
of interest se(t) is similar to the standard scalar case but taking the adjoint solution ud

t related
with the particular value t ∈ I, namely

se(t) = R̂t(u
d
t ), (38)

where

R̂t(w) := Lt(w; t)−Bt(û,w) and

Lt(w) :=

∫ t

0
l(τ ; ẇ(τ)) dτ + (ρv0, ẇ(0+)) + a(u0,w(0+)).

Hence, an estimate for se(t) is obtained injecting an enhanced adjoint approximation ũd
t in

equation (38)
se(t) ≈ R̂t(ũd

t ). (39)

Obviously, it is not possible in practice to independently compute the infinite solutions ũd
t

(one for each time t ∈ I) and then using them in equation (38) to assess se(t). However,
taking fO and gO constant in time (which accounts for a number of interesting cases), the
different functions ud

t corresponding to different time instances are all equivalent after a time
translation. Thus, if ud

t is properly computed for a particular value of t, for instance t = T ,
the general functions ud

t for t 6= T are easily recovered as a direct post-process of ud
T . This

fundamental result, shown in the following theorem, is the crucial observation that allows the
error estimation technique to be brought to fruition.

Theorem 1. For a given t, let ud
t be the solution of the adjoint problem defined by equa-

tions (36). Assume that data fO and gO in (10) are constant in time, i.e. fO(x, t) = fO(x)
and gO(x, t) = gO(x).

Then, ud
t is related with the adjoint solution associated with the final time T , ud

T , via the time
translation

ud
t (τ) = ud

T (τ + T − t). (40)

Proof. Let u?t (τ) := ud
T (τ + T − t). Then, the proof of the theorem follows at once by showing

that the solution u?t (τ) verifies (36).

Observe that the adjoint solution ud
T defined in (13) takes values in all the simulation period

I = [0, T ]. When restricting the time interval I to [T − t, T ] for a particular t ∈ I, the restricted
solution ud

T (s), s ∈ [T − t, T ] verifies that

ρ(üd
T − a1u̇

d
T )−∇ · σd

T = −fO in Ω× [T − t, T ],

ud
T = 0 on ΓD × [T − t, T ],

σd
T · n = −gO on ΓN × [T − t, T ],

ud
T = uO at Ω× {T},

u̇d
T = vO at Ω× {T},

along with the constitutive law

σd
T := C : ε(ud

T − a2u̇
d
T ).
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Applying the translation s = τ + T − t, the restricted solution ud
T (s) defined in [T − t, T ]

transforms into u?t (τ) = ud
T (τ + T − t) defined in [0, t] veryfing

ρ(ü?t − a1u̇
?
t )−∇ · σ?t = −fO(τ − T + t) in Ω× [0, t], (41a)

u?t = 0 on ΓD × [0, t], (41b)

σ?t · n = −gO(τ − T + t) on ΓN × [0, t], (41c)

u?t = uO at Ω× {t}, (41d)

u̇?t = vO at Ω× {t}, (41e)

with the constitutive law
σ?t := C : ε(u?t − a2u̇

?
t ).

Note that, equations (36) and (41) are identical except for the external loads. Thus the result
follows from the assumption that the loads fO and gO are constant in time.

Theorem (1) allows to efficiently recover the family of enhanced approximations ũd
t from the

enhanced approximation ũd
T as

ũd
t (τ) = ũd

T (τ + T − t). (42)

Consequently, the approximation ũd
T is the base for assessing the error both in the scalar and

timeline-dependent quantities, providing in the latter case more meaningful information. The
translation (42) is done very efficiently by means of the modal description of ũd

T :

ũd
t (τ) =

M∑
i=1

q̃iỹi(τ + T − t). (43)

Recall that, functions ỹi may be known analytically in many cases and therefore computing
the translation yi(τ + T − t) is inexpensive in that cases.

4.2 Error estimates for timeline-dependent quantities of interest: algorith-
mic details

The methodology proposed here aims at assessing the error in the timeline-dependent quantity
se(t) at the computational times T = {t0, . . . , tN} introduced above. Thus, the resulting esti-
mates are s̃e

j ≈ se(tj) for j = 0, . . . , N . This option could be generalized without any additional

conceptual difficulty to use a different set of points t̃0, . . . , t̃Ñ .

Once the recovered solution of the adjoint problem corresponding to tj , ũd
tj , is available, the

estimate s̃e
j is computed following equation (39)

s̃e
j := R̂tj (ũ

d
tj ) for j = 0, . . . , N.

The previous equation is rewritten using the modal description (43) as

s̃e
j =

M∑
i=1

[∫ tj

0
r̂(τ ; q̃i) ˙̃yi(τ + T − tj) dτ + r̂0,v(q̃i) ˙̃yi(T − tj) + r̂0,u(q̃i)ỹi(T − tj)

]
, (44)
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where

r̂(τ ; q̃i) := l(τ ; q̃i)− (ρ(¨̂u(τ) + a1
˙̂u(τ)), q̃i)− a(û(τ) + a2

˙̂u(τ), q̃i), (45a)

r̂0,u(q̃i) := a(u0 −ΠHu0, q̃i), (45b)

r̂0,v(q̃i) := (ρ(v0 −ΠHv0), q̃i). (45c)

Expressions (44) and (45) describe the proposed error estimate. Note that the quantities r̂0,u

and r̂0,v introduced in (45b) and (45c) are independent of the selected time tj and also of τ .
Thus, these two quantities are computed just once for each mode q̃i, independently of the
number of sampling points selected, N , and the number of time-integration points used to
compute the expression in (44). The quantity r̂ in (45a) depends on τ but not on tj and
therefore has to be evaluated once for each mode q̃i and for each integration point of the time-
quadrature to integrate the expression (44). This suggests taking the same time-integration
points for each sampling time tj (but using only those previous to tj). The option adopted
here is to a use composed Gauss quadrature based on the Newmark time partition. With this
choice, the estimate s̃e

j is computed as the sum of contributions of the initial conditions and
the time steps

s̃e
j =

N∑
n=0

s̃e
j,n for j = 0, . . . , N,

where s̃e
j,0 is defined as

s̃e
j,0 :=

M∑
i=1

[
r̂0,v(q̃i) ˙̃yi(T − tj) + r̂0,u(q̃i)ỹi(T − tj)

]
,

and s̃e
j,n is defined for n 6= 0 as

s̃e
j,n :=


M∑
i=1

∫ tn

tn−1

r̂(τ ; q̃i) ˙̃yi(τ + T − tj) dτ if tj > tn−1,

0 otherwise.

The algorithm providing the admissible approximation û and the estimates s̃e
j , j = 0, . . . , N ,

is detailed in algorithm 1.

5 Numerical examples

This section presents the performance of the error estimates both for the scalar and timeline-
dependent quantities of interest in three numerical examples.

All the examples are plane stress problems which are approximated in space using linear (p = 1)
triangles and in time using the Newmark method with parameters β = 1/4 and γ = 1/2. The
Newmark method is unconditionally stable for this particular choice of β and γ. Therefore, no
stability restrictions have to be imposed to the time step length ∆t.

5.1 Example 1

This example illustrates the performance of the proposed error estimates in a 2D wave prop-
agation problem. The problem definition is taken from [45] where it is used to test an error
estimate providing error bounds in quantities of interest.

19



Data: Problem geometry (Ω, ΓN, ΓD), final time (T ), material data (E, ν, ρ), loads
and initial conditions (f , g, u0, v0), computational mesh (VH

0 ), time partition
(T ), data defining the timeline quantity of interest (fO, gO, uO, vO) and number
of vibration modes M .

Result: Admissible solution û and timeline error estimates s̃e
j , j = 0, . . . , N .

// Modal analysis

Compute the eigenpairs (ωHi ,q
H
i ) and post-process them into (ω̃i, q̃i), i = 1, . . . ,M ;

// Adjoint problem

Compute the values l̃i, ũi, ṽi (using fO, gO, uO, vO and q̃i, i = 1, . . . ,M) ;

Compute the time dependent functions ỹi(t) (using l̃i, ũi, ṽi and ω̃i, i = 1, . . . ,M) ;
// Initialize computation

Initialize Newmark solution uH,∆t0 = ΠHu0, vH,∆t0 = ΠHv0;

Initialize admissible solution û(0) = uH,∆t0 , ˙̂u(0) = uH,∆t0 ;
Initialize estimate s̃e

j = s̃e
j,0, j = 0, . . . , N ;

// Time stepping

for n = 1 . . . N do
// Compute solution

Compute Newmark solution uH,∆tn , vH,∆tn , aH,∆tn ;
Compute the admissible solution û in the time interval [tn−1, tn];
// Error assessment

Compute contributions to the estimates s̃e
j = s̃e

j + s̃e
j,n, j = n, . . . , N

(using the admissible solution û and the modal based description of the adjoint q̃i
and ỹi);

end

Algorithm 1: Algorithm for problem approximation and error assessment.

(a) Problem geometry (b) Time-dependent external load

Figure 3: Example 1: Problem statement.

The problem geometry is the rectangular plate sketched in figure 3(a). The plate is initially at
rest (u0 = v0 = 0) and loaded with the time dependent traction

g =

{
−g(t)e2 on Γg,

0 elsewhere,
(46)

where e2 := (0, 1) and g(t) is the impulsive time-dependent function defined in figure 3(b) with
parameters gmax = 30 Pa and tg = 0.005 s. No body force is acting in this example (f = 0).
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Table 1 details the geometrical parameters and material data, where E and ν are the Young’s
modulus and Poisson’s ratio respectively and the parameter ξ is the dimensionless damping
factor. In the examples included here we take a1 = 0, and its corresponding value is ξ := 1

2ω1a2,
see [45, 42]. Three different values of the viscosity parameter a2 are considered. The solution
of the problem consists of elastic waves propagating along the plate, see [45] for a qualitative
description of the solution.

Table 1: Example 1: Problem parameterization

Geometry

Ω (−0.5, 0.5)× (0, 0.5) m2

Γg [(0.075, 0.125) ∪ (−0.075,−0.125)]× (0.5) m
T 0.25 s

Material properties

E 8/3 Pa
ν 1/3
ρ 1 kg/m3

a1 0 s
a2 {0, 10−4, 10−2} s
ξ {0, 0.0247, 2.47} %

In a first phase, the error estimate is analyzed for the scalar quantity of interest

sT := (ρq1, u̇(T )). (47)

This quantity is a particular case of the quantities represented by the functional LO1 presented
in section 3.4. The quantity sT is associated with the exact first eigenvector of the generalized
eigenvalue problem (26) which is unknown. In the following, function q1 is replaced by a refer-
ence eigenvector qH,p+1

1 solution of the eigenvalue problem (26) in the discrete space VH,p+1
0 .

The space VH,p+1
0 is obtained increasing by one the interpolation order of VH

0 . In order to have
a reference error to assess the effectivity of the presented error estimation approach, the exact
solution u (which is also unknown) is replaced by an admissible reference solution computed
using the space VH,p+1

0 and a time step length ∆t/2. Note that the proposed approximations
to u and q1 are discretization-dependent.

The numerical solution of the problem û is computed for three different meshes and four time
step lengths. Table 2 contains detailed information on both the space and time discretizations.
The element size H appearing in table 2 is defined as the size of the smallest triangular element,
where the size of a triangular element is taken as the diameter of its inscribed circle. The coarsest
mesh (referred as mesh id. 1) is plotted in figure 4. Note that only half of the computational
domain Ω is discretized by introducing suitable symmetry conditions.

Each computational mesh provides the approximation to the quantity of interest

ŝT = (ρq1, ˙̂u(T )). (48)

The error se
T = sT − ŝT is computed using the reference value for sT previously defined. On the

other hand, the estimate s̃e
T is computed following section 3.4. Note that for the quantity of

interest introduced in (47) only one vibration mode (M = 1) is required to build the enhanced
adjoint approximation ũd.

Figures 5 and 6 show the space and time convergence of the errors se
T and s̃e

T for the three
different values of the damping parameter a2 given in table 1. The space convergence curves are
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Figure 4: Example 1: Computational domain and coarsest computational mesh.

Table 2: Example 1: Space and time discretizations

Mesh id. Nnod # Elements Type H [m]

1 3051 5899 Triangle 3.2 · 10−3

2 12000 23596 ” 1.6 · 10−3

3 47595 94384 ” 7.9 · 10−4

Time step id. # steps ∆t [s]

1 100 2.5 · 10−3

2 200 1.3 · 10−3

3 400 6.2 · 10−4

4 800 3.1 · 10−4

obtained keeping constant the time step length, ∆t = 6.2 ·10−4 s, whereas the time convergence
curves are obtained keeping constant the space discretization, i.e. using meshes id. 1 and 3
respectively.

Figure 5 shows that he estimate s̃e
T is in very good agreement with the reference error se

T . The
optimal convergence rate for quantities of interest is two times the rate for the energy norm.
That is, the error in the quantity of interest converges as O(H2), see [59]. Note that the optimal
space convergence rate is achieved both for s̃e

T and se
T .

Note in figure 6 that the time convergence plots rapidly converge to a constant value which is
the committed space discretization error. Thus, the time discretization errors of s̃e

T and se
T are

very small when compared to the space discretization errors. Even for the coarser mesh, the
reduction of the time step does not vary the accuracy of the approximations.

Figures 5 and 6 show that the effectivities of the estimate s̃e
T is qualitatively the same for all

the values of the damping parameter a2, even in the limit case a2 = 0. Thus, the presented
technique is robust with respect to the damping parameter. Recall that the same behavior
is not observed when dealing with error estimation techniques providing error bounds which
effectivities degenerate as the amount of damping tends to zero, see [41, 42, 43, 44, 45]. In fact,
existing techniques providing error bounds in energy norms or in quantities of interest can not
even deal with the case a2 = 0.
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a2 = 0 s a2 = 10−4 s a2 = 10−2 s

Figure 5: Example 1: Evolution of the relative error along a uniform H refinement process,
for three values of the viscosity parameter a2. Exact (reference) values described by the red
triangles pointing downwards and estimated values described by the blue triangles pointing
upwards. The results are computed with a constant time step length ∆t = 6.2 · 10−4 s.

a2 = 0 s a2 = 10−4 s a2 = 10−2 s

Figure 6: Example 1: Evolution of the relative error along a uniform ∆t refinement process,
for three values of the viscosity parameter a2. Exact (reference) values described by the red
triangles pointing downwards (mesh 1) and squares (mesh 3) and estimated values described
by the blue triangles pointing upwards (mesh 1) and crosses (mesh 3).

A related timeline-dependent quantity is considered also for this example,

s(t) = (ρq1, u̇(t)).
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Figure 7 shows the reference and approximated timeline quantities s(t) and ŝ(t) := (ρq1, ˙̂u(t))
and the reference and estimated errors se(t) and ŝe(t) for mesh id. 1 and time step id. 3,
see table 2. As in the scalar case, the proposed estimate s̃e(t) is really close to the reference
value se(t) in all cases, also for a2 = 0. It can be observed that, in this example, the quantity
of interest associated to the lowest eigenvector q1 is nearly unaffected by the change in the
damping coefficient a2. However, the time dependent errors se(t) and its approximations s̃e(t)
are smoothed out as the coefficient a2 increases.

a2 = 0 s a2 = 0 s

a2 = 10−4 s a2 = 10−4 s

a2 = 0−2 s a2 = 10−2 s

Figure 7: Example 1: Approximated and reference timeline-dependent quantity (left) and es-
timated and reference errors in the timeline-dependent quantity (right) for the three values of
the damping parameter a2 (a2 = 0 s, top; a2 = 10−2s, center; a2 = 10−4s, bottom).
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5.2 Example 2

Consider the structure given in figure 8(a). The structure is initially at rest (u0 = v0 = 0),
clamped at the supports and subjected to the time-dependent traction

g =

{
g(t)e1 on Γg,

0 elsewhere.

The set Γg is the region of the Neumann boundary where the load is applied, e1 := (1, 0)
is the first cartesian unit vector and function g(t) describes the time evolution of g given in
figure 8(b). The traction g is the only external loading in this example (that is f = 0). Other
material and geometric parameters univocally defining the problem are reported in table 3.

P1

P2

P3

P5

P4

P6

P7

(a) Problem geometry (b) Time dependent loading at Γg

Figure 8: Example 2: Problem statement.

Table 3: Example 2: Problem parameterization

Geometry (data in m)

P1 := (0.55, 0.00)
P2 := (0.45, 0.45)
P3 := (0.45, 0.55)
P4 := (0.45, 1.45)
P5 := (0.55, 1.55)
P6 := (−0.55, 1.55)
P7 := (−0.45, 1.45)
Γg := {−0.55} × (1.45, 1.55)

Physical properties

E = 2 · 1011 Pa
ν = 0.2
ρ = 8 · 103 kg/m3

a1 = 0 s
a2 ∈ {0, 1 · 10−4, 1 · 10−3} s
ξ ∈ {0, 1.75, 17.6} %
T = 2 · 10−3 s

External load

gmax = 108 Pa
tg = 2 · 10−4 s

Consider the scalar quantities of interest

su,T := (λON ,u(T ))Γg and sv,T := (ρq1, u̇(T )),
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where λON := e1/meas(Γg). The quantity su,T is an average of the horizontal displacements at
the Neumann boundary Γg. Note that su,T is a particular case of the quantities represented by
the functional LO2 (·) introduced in section 3.4. On the other hand, sv,T is a weighted average of
the velocities and it is a particular case of the quantities represented by LO1 (·) also introduced
in section 3.4. The unknown values su,T and sv,T are approximated in this example with an
overkill discretization

su,T = (λON ,u
ovk(T ))Γg and sv,T = (ρqovk

1 , u̇ovk(T )),

where the superscript ()ovk refers to functions computed with the overkill discretization. The
parameters of the overkill discretization are given in table 4. Note that only one overkill dis-
cretization is considered in this example which does not depend on the selected H-mesh.

The space and time discretizations used in this example are shown in table 4. The particular
combinations of space-time discretizations which are actually taken into account are represented
in figure 9. The same figure shows the coarsest finite element mesh (mesh id. 1). The other
meshes are obtained as nested subdivisions of the coarser one.

Table 4: Example 2: Space and time discretizations.

Mesh id. Ndof # Elements Type p H [m]

1 3394 2902 Triangle 1 7.41 · 10−3

2 12592 11608 ” 1 3.71 · 10−3

3 48400 46432 ” 1 1.85 · 10−3

ovk. 189664 185744 ” 1 9.26 · 10−4

Time step id. # steps ∆t [s]

1 100 2.00 · 10−5

2 200 1.00 · 10−5

3 400 5.00 · 10−6

4 800 2.50 · 10−6

ovk. 3200 6.25 · 10−7

The space-time discretization of the problem provides the approximation ŝu,T = (λON , û(T ))Γg

and ŝv,T = (ρqH1 ,
˙̂u(T )) to the exact quantities of interest su,T and sv,T respectively. Note that

the approximation ŝv,T is computed using the discrete eigenvector qH1 instead of the exact one

q1 (approached by qovk
1 ). The reason is that (ρqH1 ,

˙̂u(T )) provides a very good approximation
to (ρqovk

1 , ˙̂u(T )) in this example.

The estimates s̃e
u,T ≈ se

u,T := su,T − ŝu,T and s̃e
v,T ≈ se

v,T := sv,T − ŝv,T are computed following
the strategy of section 3. As mentioned in section 3.4, the computation of the displacement
estimate s̃e

u,T , requires introducing the auxiliary linear elasticity problem

a(uO,w) = (λON ,w)Γg ∀v ∈ V0, (49)

which allows rewriting the quantity su,T as

su,T = a(uO, û(T )).
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Figure 9: Example 2: Coarsest finite element mesh used in this example (left). Element sizes
and time step lengths used in the example (right).

Recall that, computing the enhanced adjoint solution ũd for this quantity requires finding the
values ũi, i = 1, . . . ,M such that

uO ≈
M∑
i=1

ũiq̃i.

Since uO is not available, it is replaced by an enhanced field ũO obtained by post-processing
uO,H , the finite element approximation of the elasticity problem (49), using the technique ex-
plained in section 3.3. The values ũi are computed using three different strategies. The first one
is to recover the coefficients ũ1

i using the least squares technique described in remark 5. The
second assumes that the recovered eigenvectors are orthonormal and recovers the coefficients
as ũ2

i = (ρũO, q̃i). Finally, the third strategy uses the original orthonormal eigenvectors qHi ,
ũ3
i = (ρuO,H , q̃Hi ). Figure 10 shows that the least squares technique allows to properly recover

the extractor ũO by increasing the number of modes M in the decomposition. The two cheaper
alternatives (2 and 3) behave very differently. Assuming that the recovered eigenvectors be-
have like an orthonormal basis, provide non-converging approximations to the extractor ũO.
Strategies 1 and 3 provide very close results. The third strategy is considered in this example
to compute the values ũi. The default number of vibration modes used to compute the estimate
s̃e
u,T in this example is M = 60.

Figures 11 and 12 show the convergence of the computed estimates s̃e
u,T and s̃e

v,T and of the
overkill errors se

u,T and se
v,T with respect to the space and time discretizations, respectively,

for two different values of the damping parameter a2. The space convergence curves are ob-
tained keeping the time discretization constant whereas the time convergence plots are obtained
keeping the space discretization constant.

Figure 11 shows that the errors s̃e
v,T and se

v,T converge at the optimal space convergence rate.
On the other hand, the errors s̃e

u,T and se
u,T converge at the optimal rate for all cases except

one (a2 = 0 s and ∆t = 2.00 · 10−5 s). In this case, the time discretization error is dominant
with respect to the spatial error, and thus refining the spatial mesh does not yield any gain in
accuracy. In the other cases, the space integration error is dominant and therefore the optimal
space convergence is achieved.
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Figure 10: Example 2: Comparison of three different strategies providing the values ũi, i =
1, . . . ,M (left). Convergence of the three different representations of the extractor ũO in the
recovered eigenvector basis {q̃i}i=1,...,M (right).

Figure 12 shows that the optimal time convergence rate is achieved for the values s̃e
u,T and se

u,T

computed with H = 7.4 ·10−3 m and a2 = 0. That is the only case where the time discretization
errors are dominant. In the other, cases the space discretization error is dominant and, therefore
the time convergence stagnates to a constant value.

Consequently, figures 11 and 12 show that the estimates s̃e
u,T and s̃e

v,T properly assess the error
associated with both the spatial and time discretizations.

Table 5 shows the effectivities of the estimates showed in Figures 11 and 12. Note that the
effectivities for the estimate s̃e

v,T are better than for s̃eu,T . That is because s̃eu,T has a truncation
error associated with the number of vibration modes M whereas s̃ev,T only requires one vibration
mode (M = 1) and therefore has no truncation error. The effectivities for the estimate s̃e

u,T

are better for the high values of the viscosity parameter a2. That is because when the viscosity
is high, the high frequencies of the problem are damped, and therefore the truncation error
associated with M becomes less relevant. However, the estimates s̃e

u,T and s̃ev,T give accurate
error approximations regardless of the amount of damping. This is a major difference with
respect to the estimates [42, 45] furnishing bounds of the error which are only applicable for a
non-zero amount of dissipation and which strongly degenerate as the dissipation vanishes.

In order to analyze the recovery procedure for the vibration modes, the effectivity of the
postprocessed pair (ω̃i, q̃i) is assessed comparing them with the pair (ωH,p+1

i ,qH,p+1
i ) solution

of the eigenvalue problem (20) in the space VH,p+1
0 . The effectivity of the finite element and

enhanced eigenmodes are quantified by the indicators

ηi =
ωHi

ωH,p+1
i

and η̃i =
ω̃i

ωH,p+1
i

.

Table 6 shows the computed eigenvalues in the coarse mesh ωHi , the recovered ω̃i and the

reference ones ωH,p+1
i , along with the computed effectivities ηi and η̃i for several eigemodes.

Note that the recovered eigenpairs are in very good agreement with the reference values. Thus,
the use of the simple and cheap recovery procedure allows considerably improving the accuracy
of the discrete eigenvalues ωHi .
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su,T and a2 = 0 s su,T and a2 = 10−4 s su,T and a2 = 10−3 s

sv,T and a2 = 0 s sv,T and a2 = 10−4 s sv,T and a2 = 10−3 s

Figure 11: Example 2: Evolution of the relative error along a uniform H refinement process,
for three values of the viscosity parameter a2. Exact (overkill) values described by the red
triangles pointing downwards (∆t = 2.0 · 10−5 s) and red squares (∆t = 2.5 · 10−6 s) and
estimated values described by the blue triangles pointing upwards (∆t = 2.0 · 10−5 s) and blue
crosses (∆t = 2.5 · 10−6 s).

Consider now the timeline-dependent quantities associated with su,T and sv,T , namely

su(t) = (λON ,u(t))Γg and sv(t),= (ρq1, u̇(t)).

The problem discretization provides the approximations

ŝu(t) = (λON , û(t))Γg and ŝv(t) = (ρqH1 ,
˙̂u(t)).

Figure 13 plots the values of the exact quantities of interest su(t) and sv(t) computed using
the overkill mesh and the approximations ŝu(t) and ŝv(t) for the three different values of the
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a2 = 0 s a2 = 10−4 s a2 = 10−3 s

a2 = 0 s a2 = 10−4 s a2 = 10−3 s

Figure 12: Example 2: Evolution of the relative error along a uniform ∆t refinement process, for
three values of the viscosity parameter a2. Exact (overkill) values described by the red triangles
pointing downwards (H = 7.4 · 10−3 m) and red squares (H = 1.9 · 10−3 m) and estimated
values described by the blue triangles pointing upwards (H = 7.4 · 10−3 m) and blue crosses
(H = 1.9 · 10−3 m).

parameter a2. Note that, the approximations ŝu(t) and ŝv(t) are in very good agreement with
the exact ones su(t) and sv(t).

Figure 14 shows the evolution of the errors se
u(t) = su(t)− ŝu(t) and se

v(t) = sv(t)− ŝv(t) jointly
with the assessed errors s̃e

u(t) and s̃e
v(t) for three meshes keeping constant ∆t = 2.0 · 10−5 s

and a2 = 0 s. For both quantities of interest, the exact errors se
u(t) and se

v(t) are fairly well
approximated with the estimates s̃e

u(t) and s̃e
v(t). Note that the quality of the estimate s̃e

v(t)
improves as the element size is decreased. This is because the eigenpair (ωH1 ,q

H
1 ) is better

captured by the fine mesh than for the coarser ones. On the other hand, the estimate s̃e
u(t)

reproduces the average behavior of the error se
u(t). However, more vibration modes should be
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Table 5: Example 2: Effectivities of the error estimates.
a2 = 0 s a2 = 1 · 10−4 s a2 = 1 · 10−3 s

H [m] ∆t [s]
s̃e
u,T

se
u,T

s̃e
v,T

se
v,T

s̃e
u,T

se
u,T

s̃e
v,T

se
v,T

s̃e
u,T

se
u,T

s̃e
v,T

se
v,T

7.41 · 10−3 2.0 · 10−5 0.676 0.835 0.771 0.835 0.766 0.834
7.41 · 10−3 1.0 · 10−5 0.624 0.835 0.769 0.835 0.767 0.834
7.41 · 10−3 5.0 · 10−6 0.630 0.835 0.769 0.835 0.767 0.834
7.41 · 10−3 2.5 · 10−6 0.616 0.835 0.769 0.835 0.767 0.834

1.85 · 10−3 2.0 · 10−5 0.889 1.000 1.016 1.012 0.999 1.022
1.85 · 10−3 1.0 · 10−5 0.797 1.008 0.983 1.012 0.992 1.022
1.85 · 10−3 5.0 · 10−6 0.391 1.010 0.983 1.012 0.992 1.022
1.85 · 10−3 2.5 · 10−6 0.548 1.010 0.983 1.012 0.992 1.022

7.41 · 10−3 2.0 · 10−5 0.676 0.835 0.771 0.835 0.766 0.834
3.70 · 10−3 2.0 · 10−5 0.820 0.813 0.797 0.818 0.795 0.824
1.85 · 10−3 2.0 · 10−5 0.889 1.000 1.016 1.012 0.999 1.022

7.41 · 10−3 2.5 · 10−6 0.616 0.835 0.769 0.835 0.767 0.834
3.70 · 10−3 2.5 · 10−6 0.580 0.817 0.789 0.818 0.793 0.824
1.85 · 10−3 2.5 · 10−6 0.548 1.010 0.983 1.012 0.992 1.022

Table 6: Example 2: Effectivity of the recovered eigenfrequencies [rad/s]. The eigenvalues ob-
tained using the overkill mesh are ωovk

1 = 3.3585 · 102, ωovk
20 = 1.4625 · 104, ωovk

40 = 3.8587 · 104

and ωovk
60 = 6.3211 · 104.

H [m] i ωHi ω̃i ωH,p+1
i ηi η̃i

7.41 · 10−3 1 3.5282 · 102 3.3984 · 102 3.3667 · 102 1.0480 1.0094
7.41 · 10−3 20 1.5243 · 104 1.4780 · 104 1.4745 · 104 1.0338 1.0024
7.41 · 10−3 40 4.0870 · 104 3.9257 · 104 3.9035 · 104 1.0470 1.0057
7.41 · 10−3 60 6.7082 · 104 6.5151 · 104 6.4901 · 104 1.0336 1.0039

3.71 · 10−3 1 3.4111 · 102 3.3703 · 102 3.3596 · 102 1.0153 1.0032
3.71 · 10−3 20 1.4863 · 104 1.4745 · 104 1.4734 · 104 1.0088 1.0007
3.71 · 10−3 40 3.9476 · 104 3.9058 · 104 3.9004 · 104 1.0121 1.0014
3.71 · 10−3 60 6.5174 · 104 6.4933 · 104 6.4862 · 104 1.0048 1.0011

1.85 · 10−4 1 3.3736 · 102 3.3607 · 102 3.3562 · 102 1.0052 1.0013
1.85 · 10−4 20 1.4766 · 104 1.4735 · 104 1.4729 · 104 1.0025 1.0004
1.85 · 10−4 40 3.9088 · 104 3.9009 · 104 3.8993 · 104 1.0024 1.0004
1.85 · 10−4 60 6.4953 · 104 6.4871 · 104 6.4847 · 104 1.0016 1.0004

considered in computing s̃e
u(t) to capture all the features.

Figure 15 shows the dependence of the error estimates s̃e
u(t) on the number of vibrations

modes M using mesh id. 2 and time step id. 4. The higher is M , the better s̃e
u(t) approximates

se
u(t). This is because the truncation error associated with M is reduced. On the other hand,

the estimate is closer to the reference value as the damping parameter a2 increases. That is
because the high frequencies of the problem are damped and the truncation error becomes
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su(t) and ŝu(t) for a2 = 0 s sv(t) and ŝv(t) for a2 = 0 s

su(t) and ŝu(t) for a2 = 10−4 s sv(t) and ŝv(t) for a2 = 10−4 s

su(t) and ŝu(t) for a2 = 10−3 s sv(t) and ŝv(t) for a2 = 10−3 s

Figure 13: Example 2: Evolution of the timeline-dependent quantities su(t) (left) and sv(t)
(right) for three values of the parameter a2. The approximate quantities ŝu(t) and ŝv(t) are
computed with the discretization H = 7.41 · 10−3 m and ∆t = 2.0 · 10−5 s.

less important. This is related to the parabolic character of the damping term. Note that in
parabolic problems errors tend to dissipate along the time evolution, see [60].

As previously noted, the quality of the estimates clearly depends on the number of modes: as
expected, when M increases and only the recovery procedure for each vibration mode affects
the quality of the estimator. It is also worth noting that even though a fairly large number
of modes are required to properly detect all the features of the evolution of the error in the
quantity of interest, the shape of the curve is captured for reasonable low values of M . Finally,
observe that, for the same number of modes, the estimate is closer to the reference value as
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ŝeu(t) and s̃u(t) for mesh 1 (Nelem = 3394) ŝev(t) and s̃v(t) for mesh 1 (Nelem = 3394)

ŝeu(t) and s̃u(t) for mesh 2 (Nelem = 12592) ŝev(t) and s̃v(t) for mesh 2 (Nelem = 12592)

ŝeu(t) and s̃u(t) for mesh 3 (Nelem = 48400) ŝev(t) and s̃v(t) for mesh 3 (Nelem = 48400)

Figure 14: Example 2: Time evolution of the errors associated to su(t) (left) and sv(t) (right)
for the three computational meshes and keeping constant ∆t = 2.50 · 10−6 s.

the damping parameter a2 increases.

5.3 Example 3

The example presented here is similar to the previous one but increasing the structural com-
plexity. The aim is to demonstrate that the proposed methodology is not limited to simple
academic cases. This example is efficiently tackled with an affordable number of modes and
computational resources.

Consider the structure defined in figure 16. The structure is initially at rest (u0 = v0 = 0) and
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a2 = 0 s a2 = 1 · 10−4 s

a2 = 1 · 10−3 s

Figure 15: Example 2: Dependence of the assessed error s̃e
u(t) on the number of vibration modes

M for three values for the parameter a2.

locally loaded with the time dependent traction

g(x, t) :=

{
g(t)e2 x ∈ Γg,

0 x ∈ ΓN \ Γg.

The time weighting function g(t) is also a triangular-shaped function like in figure 8(b). Table 7
contains all the parameters uniquely defining the problem. The response of the structure under
the action of this load is shown in figure 17 for several simulation times.

In this example, the quantity of interest is an average of the vertical component of the dis-
placements in the region Γg. Both the value of the average at the final simulation time and its
evolution are considered, thus the following two quantities of interest are examined

sT = (λN,u(T ))Γg and s(t) = (λN,u(t))Γg ,

where λON = e2/meas(Γg). Note that these quantities coincide with su,T and su(t) of the previous
example, but here the subscript u is omitted being the only quantities of interest under study.
Recall that dealing with this quantity of interest requires introducing an auxiliary extractor
uO.
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Figure 16: Example 3: Problem statement and geometry definition.

Table 7: Example 3: Problem parameterization

Physical properties

E = 2.7 · 1010 Pa
ν = 0.2
ρ = 2.5 · 103 kg/m3

a1 = 0 s
a2 = 0 s
T = 2 · 10−2 s

External load

gmax = 1 · 108 Pa
tg = 1 · 10−3 s

Several meshes and time step lengths are considered in order to evaluate the performance of the
proposed estimates, see table 8. Table 8 also shows the parameters of the overkill discretization
used to approximate the exact quantities sT and s(t).

Table 8: Example 3: Space and time discretizations

Mesh id. Ndof # Elements Type p H [m]

1 2774 1876 Triangle 1 1.15 · 10−1

2 9310 7504 ” 1 5.77 · 10−2

3 33638 30016 ” 1 2.89 · 10−2

ovk. 127318 120064 ” 1 1.44 · 10−2

Time step id. # steps ∆t [s]

1 100 1.00 · 10−4

2 200 5.00 · 10−5

3 400 2.50 · 10−5

4 800 1.25 · 10−5

ovk. 3200 6.25 · 10−6
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(a) t = 0 ms (b) t = 6.67 ms

(c) t = 13.34 ms (d) t = 20.00 ms

Figure 17: Example 3: Deformed geometry and von Mises criterion at several times. Solution
computed using the mesh id. 3 and time step id. 4.

Using the same notation as in the previous examples, ŝT and ŝ(t) are the approximated quan-
tities of interest and s̃e

T and s̃e(t) are the estimates of the exact errors se
T = sT − ŝT and

se(t) = s(t)− ŝ(t).
Figure 18 shows the space and time convergence of the estimate s̃e

T and the overkill error se
T .

The space convergence curves are obtained for a constant time step length of ∆t = 1.00 ·10−4 s.
The computed estimates are fairly close to the overkill values, and, its accuracy improves as the
number of eigenmodes inreases. The results for M = 40 and M = 60 are quite close, and thus
there is no significant gain in increasing the number of modes in the decomposition far beyond
M = 40 since the performance of the error estimates is controlled by the recovery procedure.
The time convergence plot is obtained using different time steps for a constant element size
H = 1.15 · 10−1 m. In this case, the space discretization error is dominant with respect to the
time discretization error, and therefore, reducing the time step length does not yield any gain
in accuracy.

Table 9 shows the effectivities of the estimate s̃e
T for different spatial mesh and number of

eigenmodes. The quality of the estimate improves as the number of eigenmodes increases.
However, a rough approximation of the error, which might be sufficient in some applications,
is already obtained with M = 20 modes.

Figure 19 shows the evolution of the time-line dependent quantity of interest s(t) along with the
approximations ŝ(t) computed using the three spatial meshes for a fixed time step ∆t = 10−4

s. As can be seen, the approximations of the quantity of interest converge to the overkill value
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Figure 18: Example 3: Space (left) and time (right) convergence of estimate se
T and of the

reference error s̃e
T for different number of vibration modes M .

Table 9: Example 3: Computed effectivities
H [m] ∆t [s] s̃e

T /s
e
T

M = 20 M = 40 M = 60

1.15 · 10−1 1.00 · 10−4 0.468 0.617 0.622
5.77 · 10−2 1.00 · 10−4 0.586 0.900 0.879
2.89 · 10−2 1.00 · 10−4 0.792 1.207 1.188

as the mesh is refined, since the errors due to the time integration are negligible.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

t [ms]

s(
t)
[m

]

overkill
H = 1.15E−01 m
H = 5.77E−02 m
H = 2.89E−02 m

Figure 19: Example 3: Time evolution of the timeline-dependent quantity s(t) and its approx-
imation ŝ(t) computed using the three different computational meshes for a fixed time step
∆t = 10−4 s.

Finally, figure 20 shows the computed estimates s̃e(t) obtained varying the number of eigen-
modes in the adjoint decomposition and for several meshes. As in the previous examples, the
accuracy of the estimates increases with the number of considered eigenmodes. The estimate
s̃e(t), computed using M = 20 modes, reproduces the average behavior of se(t) whereas the
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estimate s̃e(t), computed using M = 40 or M = 60 modes, is a reasonably good approximation
to se(t).
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(a) H = 1.15 · 10−1 m
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(b) H = 5.77 · 10−2 m
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(c) H = 2.89 · 10−2 m

Figure 20: Example 3: Computed estimates s̃e(t) using different number of eigenmodes and
overkill error se(t) for the three computational meshes and a fixed time step ∆t = 10−4 s.
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6 Conclusions

This article presents a new type of goal-oriented error estimates assessing the error in timeline-
dependent quantities of interest. Timeline-dependent quantities are outputs of the solution
describing the time evolution of some space-post-processed functional. Compared to the tra-
ditional scalar quantities of interest, this approach fits better the requirements of end-users in
dynamic problems. Assessing the error in timeline-dependent quantities involves a family of
infinite adjoint problems (one for each time instant in the time interval under consideration).
However, all these adjoint problems are similar and they can be recovered from a common par-
ent problem (associated with the a scalar quantity of interest) by means of a simple translation
(shift) of the time variable.

The second novelty in this paper is the approximation of the adjoint problem using a decomposi-
tion into vibration modes. This allows efficiently precomputing and storing the adjoint solution.
Thus, the error estimate is computed along the time integration of the original problem. This
approach applies both for the scalar and timeline quantities, but it is specially indicated for
the latter because it simplifies the implementation of the time shift.

The error estimation strategies proposed in this work are based on an explicit approach. The
error estimate is computed injecting an enhanced approximation of the adjoint solution into
the residual of the direct problem. The enhancement is based on a local postprocess of the
computed eigenvectors, performed only once and not at each time step. This approach is very
efficient for some quantities of interest in which the adjoint solution is fairly represented in a
modal description.

The numerical examples show that the proposed estimates have a good effectivity for both
the scalar and timeline quantities of interest, accounting both for space and time discretization
errors. Contrary to other error estimates for linear visco-elastodynamics, the proposed estimates
do not degenerate in the limit case of pure elasticity (i.e. when no damping is introduced in
the formulation).

In current ongoing work, the proposed error estimation techniques are used as driving indicators
for mesh adaptivity.
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