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Summary

In this paper the necessary requirements for the good behaviour of shear constrained Reissner-
Mindlin plate elements for thick and thin plate situations are re-interpreted and a simple explicit form
of the substitute shear strain matrix is obtained. This extends the previous work of the authors presented
in [20], [19].The general methology is applied to the re-formulation of some well known quadrilateral
plate elements and some new triangular and quadrilateral plate elements which show promising features.
Some examples of the good behaviour of these elements are given.

1. INTRODUCTION

Recent work in the development of efficient plate finite elements has Been fnostly
based in the so called Reissner-Mindlin thick plate theory [14],[17]. This by-passes
the difficulties caused by the C! requirement of the classic Kirchhoff theory [18], [20].
However, its direct aplications to thin plate situations can induce locking and various
artifices to eliminate this effect, like the introduction of reduced or selective integration
procedures [1],[11], [12],(16],[19], [22] or the use of constrained substitute shear strain
fields [2]-[4], [7]-[10], [15], [21], [24] have been proposed.

It is now clear that both these approaches can been re-interpreted in the more
general framework of a mixed formulation in which shear forces and displacements are
approximated independently [20]. Moreover, the mixed form provides the necessary
requirements that the elements should satisfy to be applicable for both thick and thin
plate situations . This has allowed to define a general methodology for the formulation
of successful shear constrained plate elements [15] and some of these have been recently
reported by the autors [15], [21].

In this paper we re-examine the problem of thick plate elements based on
constrained shear strain fields. We show that the condition of vanishing shear strain
for the thin plate limit can only be naturally achieved if the coefficients defining the
approximating shear strain polynomial are a linear function of both nodal rotations
and deflections. This explains the success of reduced integration techniques and the

use of constrained transverse shear strain fields which lead to the satisfaction of such



a condition. In the paper, the methodology proposed in [15] for defining “a priori”
adequate constrained shear strain fields and for the derivation of the corresponding
substitute shear strain matrix is detailed. This methodology is applied to re-formulate
the well known 4 and 9 node quadrilateral plate elements of Bathe and Dvorkin [3],[9]
and Hinton and Huang [10], the new triangular elements of Zienkiewicz et al [24]
and some new quadrilateral and triangular elements. Finally, examples of the good

behaviour of these elements is given.

2. BASIC CONCEPTS

The basic expressions of the Reissner-Mindlin plate theory are the following:
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In above w, 6; and 6y are the deflection and rotations of a point in the plate mid-

surface. For sign convenion see Figure 1.
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Figure 1. Definition of displacement variables in a plate.




Bending moments/curvature relationship (isotropic conditions only presented)

M(C Et3 1 v 0 Xz
m = § M, S na-w.|v 0 xy ¢ = Dy x (3)
May 0 0 %] (xay

Shear forces/shear strains relationship

= (G} - oull 21z} - e »

In above E, G, v ,t are the Young’s modulus, shear modulus, the Poisson’s ratio and
b ) ) g

the plate thickness, respectively and « is the warping coefficient accounting for non

uniform shear distribution (usually taken as a = 5/6).

Total plate energy

_ 1 g 1 T
H_z//AxmdA-kZ//A'ysdA //Awqu (5)

The first two integrals of (5) represent the bending and shear energies, respectively,
whereas the third one represents the external energy due to a distributed force ¢ acting

over the plate area A.

3. FINITE ELEMENT DISCRETIZATION

Consider a finite element discretization of the plate using isoparametric elements

[19]. The deflection w and the rotations 6, 0y can be interpolated using a different

approximation as

w = Ny , 6 = Nyb (6)

where (©) denotes nodal (or internal parameters) values (w; = [wi] , 6; = [6s;,64]7).

Egs.(6) can be combined to give

U = [w,ﬁz,ﬁy]T = Nu (7)

Ny
with @ = [w;, 6,0, , N; = [ " ] , Ng, = NI, 8)
where Ny, and Ny, are the CY shape functions interpolating the deflections and the

rotations, respectively.



Substitution of eqs.(6)—(7) in (1)-(2) yields

x = L0 = LNy = B,u (9)

¥ = Su = SNu = B;ua (10)

where By and By are the standard bending and shear strain matrices, respectively

given by
) 1
0 S5 0 ONY
’ oN? 2 N 0
By=1|0 o0 ; Be= w (11)
T’“y N 0 NP
onN? onN? dy 4
0 B o

Substitution of eqs.(9)-(10) in the expression of the potential energy (5) yields, after
minimization, the discretized equilibrium expressions and the usual form of the bending

and shear stiffness matrices is obtained as [10],[16].

K = k() 4 k() (12)
with
(€) _ // T . g _/ T
K, = By D;B;dA K;’ = B; D;B;dA
b i) B ; ) d (13)

where, indexes b and s refer to bending and shear contributions, respectively.

4. THIN PLATE LIMIT

In the thin plate limit Kirchhoff’s assumptions of vanishing transverse shear strain
must be satisfied. This implies 94 = 0. From eq.(10) we can write for rectangular or

straight sides triangular elements with n nodes
7T = Bsﬁ - 01(6),5) + QZ(Gaé)E + a3(‘:’)é)n + - + an(lf),é)fpnq =0

(14)

Satisfaction of (14) implies of course that

aj(a_),a) =0 3; j7=1,n (15)



Eq.(15) imposes a set of linear relationships between nodal deflections and rotations
which usually can also be interpreted on physical grounds. Only elements satisfying
(15) indentically can, in the limit, reproduce naturally the thin plate conditions with
absence of locking.

However, in many elements the a;’s are a function of the nodal rotations only, and
the condition a;(0;) = 0, requiring that 8; = 0 for the thin plate solution, prevents
any bending strains and hence leads to locking.

The above concepts will be applied to two well know beam and plate elements in

next section.
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Figure 2. (a) Two node linear Timoshenko beam element. (b) Four node rectangular
plate element.

4.1. Two node linear Timoshenko beam element

The geometry of the element is shown in Figure 2a. The displacement field is

interpolated as

2 2
w = ZNiwi , 0 = ZNiai (16)
1=1 1=1

The one dimensional shape functions N;(€) are also shown in Figure 2. The shear

strain field is obtained as

Ow w9 — w9y 01 + 65 1
D202 (A0 L lg, — gy =
7 e T | 502 —61)¢ (17)



The Euler-Bernoulli condition (v = 0), implies

7:0=>{°‘1:Oi'6' mar = gl

ag = 0 e 0 = 6, (18)

The condition on «; physically means that the average element rotation equals
the element slope, which is clearly satisfied for slender beams. On the other hand,
ag = 0 imposes an uniform or zero rotation on the element. This invariably leads

to a vanishing of the bending energy and thus to locking.

4.2 Four node rectangular Reissner-Mindlin plate element

The element geometry is shown in Figure 2b. The displacement field is given by

4 4
w =5 Nw; , 0 =[0:6]T =3 N, (19)

Where the bilinear shape functions N; are also shown in Figure 2.

Lets’s consider the expression of the transverse shear strain v,

ow . i 1 €ini m
Tz = 5o + b = i;[(‘mwl + 403i) * (4a wi + 49:0.')77"‘
_ . 20
%Gz;)é + (éih(’z;)ﬁn] = oy(w;, 0z;) + -

+ ag(w;,0z;)n + a3(0z;)€ + a4(bz;)én

A similar expression can be obtained for 7y simply interchanging = and £ by y and

The limiting Kirchhoff conditions (yz = 7y = 0) implie now a; = ay = a3 =
a4 = 0. Clearly the conditions on a3 and agy impose a linear relationship between the
nodal deflections and the average 6 rotation (6y for vy) on the element. This can be
physically interpreted similarly as in the case of the condition a7y = 0 for the beam
element of previous example. However, the element is unable to satisfy naturaly the

conditions a3 = a4 = 0, and this leads to the trivial solution 8;; = 0 (6, = 0 for 7y)
and thus to locking.
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4.3 Some remedies to avoid locking

From these examples it can be deduced that a simple way to avoid locking is
to evaluate the shear strains only in points where the spurious ag(6;) vanish, using
for instance a numerical quadrature based on such points. Thus, for the two node

beam element computation of 4 at the element mid-point eliminates the undesirable

ay coeflicient leading to

1 17_ A
713070 3)0 = B @)

. _ |wa —wy 01 + 6, . [ 1 1
V=0 = a1 = 7 + 5 ] =

Matrix B is termed in literature “substitute shear strain matrix” [10], [12].
Computation of the element stiffness matrix simply implies now to use B, instead
of the standard shear strain matrix By in the computation of ng), while the bending
contribution Kl(,e) remains unaltered (eq.(13)).

For the four node rectangular plate element we observe that the spurious coefficients
a3 and o4 vanish automatically if v, is sampled on quadrature points along the line
¢ = 0 (conversely vy should be sampled along the line 17 = 0). The derivation of the
resulting B, matrix for this case is obvious and can use either the standard single
point quadrature for v and 7y of ¢ = =0, or alternatively 2 points for 4, and two
separate points for ~,.

The preceeding arguments are the basis of the well known reduced integration
procedures widely used in practice [1], [11], [13], [16], [19], [22]. However, reduced
integration techniques have proved not to be generally sufficient for the development
of robust isoparametric thick plate elements, leading frequently to mechanisms which
can polute the solution [11], [12], [19], [22]. An alternative procedure is to impose
“a priori” a shear strain field which satisfies condition (15), thus allowing the natural

satisfaction of the limit thin plate condition. The shear strains are now written as
m
7= Nymn = Ny ¥ (22)
k=1

Where 7} are the values of the shear strains at some selected points within the

element. Combining eqs.(16) and (10) yields
m -~
7T = 2 NyBsu, = Bea (23)
k=1

It is easy to choose eq.(22) so that eq.(15) is satisfied to guarantee the absence of
locking.

-~



The spproximation to the total potential energy can now be written using eqs.(9)
and (22) as

I = % / /,4 [LO)TD,LO dA + % / /A [N, ]TD,N, 7 dA — / /A wg dA  (24)

Above expression can be used for generation of stiffness equations written in terms
of u only when constraints relating u and 4 have been imposed (egs.(2) or (3)). In the
next section we shall discuses how such constraints are imposed Note that in (24) C°
continuity is required for the rotations @, whereas the deflection w, and the substitute
shear strains 4 can be discontinuous. This possibility has been exploted by Arnold and

Falk in the development of a three node triangular plate element with a discontinuous
deflection field [2].

5. CHOICE OF SUBSTITUTE STRAIN FIELDS

Adequate substitute strain fields can be successfully chosen by direct observation,
having in mind the objectives of obtaining strain fields satisfying eq.(15).
Thus, from the expression of v for the 2D linear beam element (eq.(17)) it is easy

to define a constant substitute strain field as

v = a1(w;, ;) (25)

The value of a; can be obtained by sampling v at the element mid point. Thus
in effect achieving the constraint of eq.(2) by collocation at that point. This leads to
an identical expression for the substitute shear strain matrix to that given in eq.(21)
using one point selective integration. The analogy between both procedures becomes

quite evident in this case.

For the bilinear rectangular plate element we can write after observation of the
initial strain field (see (eq.(20))

Y= = al(wi,gz;) =t a'Z(wiaazi)n

(26)
Ty = ag(wi,Gy‘.) + a4(wi,9yt-)£

The values of the «;’s can be computed by sampling the shear strains (or colocating
€q.(2)) at the four points shown in Figure 3a and the substitutive shear strain matrix
can be readily obtained. The reader will inmediately recognize this element to be

identical to that proposed by Bathe and Dvorkin [3],[9].
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Figure 3. Four node quadrilateral plate element: (a) Assumed shear strain field. (b)

Integration points for the 4, and Y, terms in the original shear stiffness
matrix.

It is interesting to note that the shear stiffness matrix for this case using exact
(2 x 2) integration is identical to that obtained with the original shear strain field and
the four points selective quadrature rule shown in Figure 3b.
The reason for this is that:
(1) A collocation of the initial shear strain field (viz eq.(10)) along the lines ¢ = 0 and
n = 0 for vz and 7y respectively yields precisely the strain field of eq.(26).
2) The two points quadrature along the lines ¢ = 0 and 7 = 0 for the original 7z and
vy terms, respectively (Figure 3b), integrate ezactly the quadratic terms in 7 and

¢ contained in the shear stiffness matrix, thus yielding the some final expresssion

for K as that directly obtained from eq.(26).

For a general quadrilateral with isoparametric coordinates ¢ and 7 the situation
is identical as for as the first point above is concerned providing v¢ and -y, are used
instead of 7, and 7y. However the two Gauss point integration of Figure 3b is no
longer exact and yields a different shear stiffness matrix (and worst numerical results)
than that obtained using a 2 x 2 integration.

We would indeed anticipate the element to give very similar results (and to have
some difficiences) if a single point quadrature were used for the shear terms in the
manner originally suggested by Hughes et al [11].

It has been shown [20],[23] that the choice of the substitute strain field must satisfy

certain additional requirements if singularity and locking are to be avoided. Starting



with the mixed form in which deflections, rotations and shear strains are independently

interpolated the neccesary conditions to be satisfied are

ng + nw > ny (27a)
Ty > Mgy (270)

There ny, ng and ny stand for the number of “free” variables (afther discounting the
prescribed boundary condltlons) in each set of interpolating parameters w, 8 and ¥,
respectively.The above 1nequa,ht1es have to be satisfed for any element patches as a
condition which is necessary (although not always sufficient) for convergence [23].

It is interesting to note that the inequality (27a) can also be interpreted as a
generalization of the well known “singularity rule” widely used in the context of
reduced integration techniques to define approximate quadratures giving a singular
shear stiffness matrix K, thus preserving the existance of the correct numerical
solution [16], [19], [22]. Elements satisfying (27a) have therefore a singular K. This
gives another evidence of the analogies between shear constraint methods and reduced
integrations techniques. The proof of this interpretation is given in Appendix A.

In reference [24] the authors have examined a number of currently used plate
elements and found that all those proving to be successfull in practice satisfy eqs.(27).
Also in [24] the authors have proposed general new triangular plate elements which
show very promising features. In the next section a general methology for the derivation

of the substitute shear strain matrix for isoparametric plate elements is presented.

6. A METHODOLOGY FOR THE DERIVATION OF THE SUBSTITUTE
SHEAR STRAIN MATRIX B,

We consider the derivation of the substitute shear strain matrix of an isoparametric
plate element of n nodes with an independent interpolation of deflections, rotations

and shear strains defined by eqs.(6) and (22), and satisfying conditions (15).

Step 1. The starting point is the expression of the natural shear strains in a. polynomial

from using the natural coordinate system &,m, lee.

251
r_ frel _ [1 &€ n &y En? | 0 0 0 0} o B
7_{%;}h[000 0 0 | 1 ¢ g £ : = Aa (28)
aﬂ,y

The cartesian shear strains are directly obtained as

10



¥ {z;’}:rly’ (29)

where J is the standard 2 x 2 jacobian matrix of the transformation z,y— €, 7.

We also define the tangential shear strain along a particular natural direction ¢; as

Vg, = c0s Bive + sin By (30)

where f3; is the angle that the direction ¢ forms with the natural ¢ direction. The
natural directions &; over the element edges can be chosen as the direction of increasing

global node numbers for the end points at each element edge.

Step 2. The tangential shear strains Vg, are sampled at ny selected points along
natural directions £;. Thus, substituting eq.(30) in (28) and sampling the resulting

equation at the n, points we obtain the following system of equations

P(&ismisBi)o = ¢ (31)

where 77 = [72—, 763, ‘e ,7;—17]71 contains the prescribed shear strains at the ny sampling
points. From eq.(31) we obtain

a = Ply; (32)
Step 3. The tangential shear strains 7Y are related to the natural shear strains at the
ny sampling points by the simple transformation
% = TG (33)
. A~ n n
with 7, = ['7%,'771)a72,772; oo ,757)7777]71'
Step 4. The natural and cartesian shear strains at the sampling points are related by
J! 0 71
: bocy (34)
0 I ] A,
Where 4; = [+ , 'y;/] and J* is the jacobian matrix at the ith sampling point.

Step 5. The cartesian shear strains at the sampling points are related to the nodal

displacement by

11



Yi B!

2
|
I

: i pu=B,u (35)
~ n
Tn, B;"”
where B is the standard shear strain matrix of eq.(11) computed at the ith sampling
point.

Step 6. Combining steps (28), (29), (32)(35) we can finally obtain

y=JT1TAP!'TCB,a = B, u (36)

with B;,=J1APlTCB, (37)

giving the substitute shear strain matrix.
REMARK 1

In cuadrilateral plate elements with shear collocation points along the sides the
expression relating the natural shear strains with their values at the collocation point
can sometimes be directly obtained as o' = [AP~'T]4'. This avoids the computations

of matrices A, P~! and T and of the corresponding matrix product.
REMARK 2

It should be noted that point sampling is not the only way to relate the tangential
natural strains with the nodal displacements. Any weighting specified along the ¢

directions will suffice to achieve this. For instance we can write

| w

3

ow _
[75— - 5% - 95—] dE = 0 (38)

where W is an appropiate weighting function. Eq.(38) allows to directly obtain an
expression relating the tangential natural strains 7¢ and the nodal displacements (steps
3-5) as

7¢ = [TCBlu (39)
The substitute strain matrix is now readily obtained as

~

B, =J AP [TCB] (40)

12



4 node (QLLL) element 9 node (QQQQ) element Variables

[64,0,]
O [w]

Figure 4. Four node (QLLL) and nine node (QQQQ) quadrilateral plate elements.
Displacement and strain variables.

7. APPLICATIONS TO SOME OLD AND NEW PLATE ELEMENTS

7.1 Four node quadrilateral plate element with linear shear strains

The above methodology will be applied to the derivation of the substitute shear
strain matrix of the well known four node plate element of Bathe and Dvorkin [3]. We
choose a standard bilinear field for the interpolation of # and w and the following linear

shear strain field in the natural coordinate system linear

Ye = a1+ azn

1 7 0 0] (41)

g =a3z+agn ; ie. Az[o 001 ¢

It is easy to check that the assumed shear strain field satisfies the inequalities (27)
for meshes of more than 2 x 2 elements which guarantees the good behaviour of the

element in practice.

The four e;’s are obtained by sampling the tangential shear strain VE of at the four

points over the £ directions shown in Figure 4. This gives

13



1 0 O aq ,),g_ 1 0 1 0
0 0 1 1 |]Jagl| | 4 _1|l-1 01 o
11 0 0 [fas( )il ™ P T30 10 1 (42)
0 0 1 -1 oy Te 0 1 0 -1
P
The tangential shear strains 7;— are related with the 72,7% by
2 1 0 FYEW
K ’ 0 1 K )
. . — Lt
\ = 1 0 :4 =Ty (43)
g 0 0 1) |7
g
It is interesting to note that
— 17(1—=75) 0 0 0 | (1+79) 0 0 0
AP lT)= —[ ] 44
[ =3l 07 00 a+e) | 0 00 (1-¢ (44)

This expression could have been anticipated if the shear assumed strain field would

have been directly written in the form

1 1
7e = 51—y + 5L+

1 1 (45a)
=51+ O+ (1 -
which gives
i
T
{75} —[APIT)!{ : (45b)
T P,
¢
Tn

from where the matrix product A P! T can be directly obtained.
The substitute shear strain matrix is finally obtained by eq.(37) with
I 0
JZ

B;
J4 B;%

14



For further reference this element will be termed QLLL (refering to Quadrlla.tera.l

biLinear deflections, biLinear rotations and Linear shear)

7.1 Nine node quadrilateral plate element with quadratic shear field

This element was originally presented by Hinton and Huang [10] and Bathe et al.
[4]. From the expressions of the standard quadratic shape functions for w and @ [19]

and the arguments of previous sections the following “correct” quadratic shear field

can be obtained

Ve = a1 + gl + a3 + agn + asn® + agén’

(47)
Tn = a7 + agl + agn + ajpén + a11€? + ayané?

It can be checked that this element satisfies the conditions (27) for all element
patches.

Figure 4 shows the 12 sampling points for computation of the a;’s. The derivation
of matrix By follows the steps given in previous section.

The computations can be simplied if the matrix product A P~ T is directly
obtained by writting eqs.(45) as

1 1
e = 7[Aver + BrgIn(L +n) + {4 + BfI(1 — n*)]+
(48)
1
+ 5[4 + Brgln(n — 1)

with A = 14/3¢ and B =1 —/3¢. A similar expression can be written for v, simply

interchanging { by 7 and points 1 to 6 by 7 to 12, respectively. From (48) the matrix
product A P~1 T is obtained as

B, A1)p B1,
0, = 0, =% 8, =

APIT =

(49)
2x24

with A=14v3n B=1—379; s =s(1+4s), sg=1—s%, s5 =s(s—1), s=¢,7

The remaining C and By matrices necesaries for computation of Bg by eq.(37) are

given by

Iy 0 B!
' 5= : (50)

15



The same ideas can be used for obtaining the shear strain matrix of the eight node
and other higher order quadrilateral plate elements. Details of the adequate shear
constrained fields for some of these elements can be found in (10].

For further reference we will denote this element as QQQQ (Quadrilateral,

Quadratic deflections, Quadratic rotations and Quadratic shears)

7.3 Six node quadratic triangular plate element with linear shear strain
field

Recently [15], [24] the authors have shown the good performance of the six node
triangular element with quadratic variations for both the deflection and the rotation
fields and a linear interpolation of the shear strain (here termed TQQL for Triangular,

Quadratic w, Quadratic § and Linear v) as

; = (51)

Te=o1taftagy A [1 E 7 00 0}
Tn = ag+ asf + agn 0 01 ¢ q
The location of the six shear sampling points is shown in Figure 4. It easy to check that

the element passes satisfactionaly the conditions (27) for all element patches (21],[24].

The local directions ¢; are shown in Figure 5. It can be easily found for this case

1 51 m 0 0 0 10 0
1 & 72 0 0 0 10
p—|~¢ —as —anz a af3 ans| T — —a a
—a —aly —any a afs ang ’ —a a
0 0 0 1 & 1 0 1
0 0 0 1 fs 76 0 0 1
rJi 0 4
1
J2 Bg
J3 _ Bs \/5
C= 34 » Bs=4( . » e=—- (52
5 :
J ] Bg
L 0 J°

From eqs.(51) and (52) the substitute shear strain matrix of eq.(37) can be readily
obtained.

It has been checked that this element behaves well and it converges to the exact
solution in all examples analyzed [15], [24]. However, for coarse meshes its behaviour is
too flexible. A way to reduce the flexibility of the element, still preserving satisfaction
of eqs.(27) is to eliminate the normal rotations at the mid-side nodes. This can be
simply done by introducing the constraint 67 — %(0;‘1 + 67t = 0in a penalized

manner into the expression of the total potential energy (5) as

16



Variables

© [expey]
0 w

Figure 5. Six node quadratic triangular plate element with linear shear strain field

(TQQL).

- B . 1 i1 i1 2
M=T+7% 9;_5(0:; + 65ty (53)

where (3 is an appropiate penalty parameter. Numerical experience has shown that
o = 103Gt suffices to obtain good results.

A method of imposing this constraint explicity is given in next section.
7.4 Linear/Quadratic triangle

An improved version of the quadratic triangle of the preceeding section, also
presented by the authors in [15] and [24], is the following:

1) The deflection w varies linearly over the element as

w = Z L;w; (54)

=1
2) An incomplete quadratic variation of the rotations within the element is obtained
according to the following interpolation
3 —
6 = Z L101 + 4 L1L2612A9t4 + 4L2L3623A9t5 + 4L3L1€13A0t6 (55)

=1

17



where L; are the standard linear shape functions of the three node triangle, Aby,
is a hierarchical tangential rotation parameter at the element mid-side and e;j is

an unit vector indicating the direction of the element sides (Figure 6).

The vector of nodal variables can be written as

u; = ['wla 031 ) 01/1 y W2, 9:1:2 ) 9y3 y W3, 9:63, 0y3, A0t4, Aets 3 Aotg]T (56)

3) The shear strain field is again assumed to be linear in each element but the
tangential shear strains are assumed constant along each side.
From eq.(55) it can be deduced that the normal rotation varies linearly along the

sides, whereas the tangential rotation varies quadratically over the element.

Variables —

o [6,,6,] ¥

€
® A6, T%

0 w

e Y,

1O jm——
2 _én

Figure 6. TLQL triangular element (linear w, quadratic q and linear shear).

It can also be verified that the element satisfies condition (27) for all patches.

The derivation of the substitute shear strain for this element, DRM in [24] and
TLQL hereafter (for Triangular, Linear w Quadratic § and Linear 7), is simple
if we start from the six points strain field of the quadratic triangle of Figure 6.
This immediately gives matrices A and P identicals to those of eqs.(51) and (52),
respectively. Condition (3) is now accomplished by setting 751— = 'yg = 751_2’ 7? = 7? =

7?3 and fyg— = ,),éi = 7;—3, which yields the following matrix expression

18



9L
752 1 0 753 ol
. = 1 0 e ¢ =T% (57)
e o 1| L7
¢ Lo 0 1.
where v Y denotes the constant tangential natural shear strain along the element side

&

tj. The value of {J for each side is obtained from eq.(38) with W =1 (Galerkin) as

g _ 1 ow H)d 1 o
K3 z{/(3€+f ‘= izf( wikt

1 r W 2 9
+§eij(9i + 0j)l27 + §A0tkl27 (58)

where k = 3 + 4, ¥ is the actual lenght of the element side, léz = lés = 1 and

l? V2. The + ambiguity in (58) is due to the fact that the direction of the tangential
shear must be defined by an unique direction on each edge of contiguous elements.
Failure to achieve this results in an inconsistent definition of the edge incremental
rotation degree of freedom Af;,. A way to overcome this dificulty is to define the
- direction for e;; in the direction of increasing (global) node numbers for the end points
of each element edge. The sign in (58) is chosen to be positive if the direction of e;j
corresponds to that for constructing the boundary integrals, otherwise a negative sign
is inserted.

Eqs.(57) and (58) allow to obtain an explicit form between the tangential natural

shear strains and the nodal displacements as

7¢ = T[CBla = [TCBla (59)

where T is defined by eq.(57) and

C llz S l12 C 12 s 112 z 5
¥1, _l%_v _122_1 11, 2 ] 2 ’ 0, 0, 0, 3l ’ 0, 0
23 23 23 23
€Bl= | o 0, 0, Lo Cul? Sl 1 Ol Sul™ 32
’ vl Sl V2 aa e 3
C 13 S 23 C 113 S llb
&1, —L%_l _le_n 0, 0, 0, ¥1, _l%_, _u!z_x 0, 0, 2=
(60)
where 535, C;; are the components of the side unit vector e;; = [Cy;, S; ] of Figure 6.
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The substitute shear strain matrix for the TLQL element can now be readily
obtained by eq.(40).

REMARK 3

Obviously the choice of W = 1 in €q.(38) yielding the relation (58) between the
constant shear strain along each side and the nodal displacements is not the only
possible one. Many other option for the weighting of eq. (38) can be attempted (point
collocation, subdomain collocation, etc.) each one yielding a different element, a
study of the numerical benefit of the diferent alternatives for selecting W is currently

investigated by the authors.
REMARK 4

The hierarchical rotation Abz, can be eliminated by imposing the vanishing of the

shear strain ¥

¢ along each side. This gives

.. T3 3

It is interesting to note that the resulting rotation field is identical to that of the
standard three node DKT element of Batoz et al. [6], this yielding the same stiffness

matrix in both cases.

7.5 Bilinear/quadratic quadrilateral with linear shear strain field

The above ideas can be easily applied to derive a new quadrilateral element with

the following displacement and shear strain fields:

(1) The deflection w varies bilinearly over the element as

4
W= ZNiwi (62)
i=1

where N; are the standard bilinear shape functions of the C° four node rectangle.

(2) An incomplete quadratic variation of the rotation is chosen as

4
0 = Z N;8; + 6@ - n)e1n A6y, + fn)(1 + £)eas Ay +

=1
FF(E1 + n)ewsAby, + F(n)(1 — €)eraAby, (63)

with f(§) =1-¢&y f(n) =1—n~
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Figure 7. QLQL quadrilateral plate element (linear w, quadratic @ and linear shear.)

(3) The shear strain field is assumed to be linear in each element and equal to that of
eq.(41).
It is easy to check that this element termed QLQL (Figure 7) satisfies conditions
(17) for all element patches.
The derivation of the substitute shear strain matrix for the QLQL element

follows precisely the steps explained in eqs.(41)—(46) for the standard four node
cuadrilateral (QLLL).

It is interesting to note that an elimination of the hierarchical tangential rotation

along the sides by an equation similar to (61) will yield a four node Discrete Kirchoff
Cuadrilateral similar to that presented by Batoz and Tahor (6].

8. NUMERICAL EXAMPLES

The behaviour of the different elements has been tested in the analysis of thick and
thin simply supported (SS) and fully clamped (CL) square plates under an uniform
loading ¢ and a central point load P. The structural properties of the plate are
E = 10.92, v = 0.3, side length= 10. The intensity of the loadings are ¢ = 1.0
and p = 1.0. Hard (w = §s = 0) boundary conditions have been assumed for the SS

case.
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Figures 8 and 9 show the convergence of the central deflection versus the total
number of degrees of freedom for the TLQL triangular element of section 7.4, for
different thicknesses (a/t = 10 to 106), mesh orientations and boundary condition for
the uniform loading and central point loading, respectively. Note: (a) The excellent
convergence of the element for all the range of thickness considered for both the SS
and CL cases. (b) The sensitivity of the solution to the mesh orientation.

Figure 10 compares the error in the central displacement versus the total numbers
of degrees of freedom for the TQQL and TLQL triangular elements for the SS case,
uniform loading and thick and thin conditions. Results show the greater efficiency of
the TLQL element. Further evidence of the excellent behaviour of this element can be
found in [15] and [24].

Figure 11 shows the convergence of the center displacement for the QLQL
quadrilateral element for the same plate cases previously analyzed. Again excellent
convergence for all cases is obtained. Figure 12 compares the convergence of the QLLL,
QQQQ and QLQL quadrilateral elements under uniform loading for the SS case and
thick and thin plate situations. It can be seen the big efficiency of the QLQL element
for the case studied.

Finally, the convergence of the new QLQL quadrilateral and the TLQL triangular
elements is compared in Figure 13, again for uniform loading, SS conditions and thick
and thin situations. Both elements show excellent convergence in all cases and less

than 0.5% error is always obtained with meshes of just over 10 degrees of freedom

9. CONCLUSIONS

In the paper we have shown that the condition of vanishing shear strains for the
thin plate limit imposes that the coefficients defining the shear strains polynomial field
must be a linear function of the nodal rotations and deflections. This explains the
success of reduced integration techniques and the use of substitute transverse shear
strain fields which satisfy that condition. Indeed as discussed in [19] this shows why
the so called discrete Kirchhoff constraints are an efficent way of designing this plate
elements. A general expression for the substitute shear strain matrix has been obtained
which can be useful for the practical derivation of shear constrained elements based
on adequate shear /displacement fields. This methodology has been applied to some
of the existing plate elements and, in particular, to the new TLQL triangular and
QLQL quadrilateral elements which show an excellent behaviour for thick and thin
plate analysis. The possibilities of the methodology presented for deriving new discrete

Kirchhoff elements have also been outlined and this opens a line for future research in

this field
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APPENDIX A. PROOF OF THE SINGULARITY RULE FOR K,

Let’s write the substitute shear strain of €q.(37) for the whole mesh as

B; B! A
Bs = J-1 A Pp-1 T { 77.7 } = [JAP] o.: = [JAP]BS (A.l)
2Xn 2x2 2Xny Ny Xny n,yrx2n,y 2?:’)(" '_ 2Xny B;LY _ ‘ .
nyxn

B;
where [JAP] =314 p-1 4 B, :T{ : } (4.2)

nyXn B:LY

In (4.2) Ny is the total number of constrai

nts in the shear strains and n the number
of nodal variables.

The shear stiffness matrix K

s is obtained from (13) with B
that l%

s unstead of B,. Noting
s is constant over the element, we can write

. o o
K, = / /A B.[JAPIT D,[JAP|B,d4 —
nxn

contribution from K, only )

n o o o o o o o
f=3 Koy @ =B] D, Byt + B, B,y 0,4 ... 4 B, B, ] (44)
i=1

From eq.(4.4) we can deduce that

if 7y is the number of To
is a combinations of n,

o]
ws of By, vector 5
linear relationships in a,

Uz, -+, 0,. Hence, eq.(A.4) can be

rewritten afther eliminating the prescribed degrees of freedom, as

Cilaiwt - + ajus) + Cl(atut -+ aduy) 4 ... 4 Cry (it 4 afu;) = 4,
Crlogent -+ ajus) + CHatus 4+ aduy) 4 . 4 Cr(odut -+ aduj) = f,

(A.5)

C'lj(aiul-l— et ogug) + Cg(afu1+«~-+ QGuj)+ -4 C;’;w(aful+---+ a;:uj) = ¥



where j =ny + Ny is the number of free degrees of freedom.
The system of equation (A4.5) will become singular of the coefficients

C'f, Cé, ceel C,iby of any of the above equations of the other rows, i.e. if we can solve

C] = BiC}+ ByC2 ... 4 B,CT
C} = BiC}+ ByCl4 ... 4 B.C}

. . (4.6)
Cl, =BiC} +ByC2 4 ... +B,C}_

with 7 < 7 — 1. The solution of (A.6) is possible only if the number of coeflicients, r,

is greater or equal to the number of equation Ny, le.

T 2> Ty

or

wich is the singularity condition for the solution of (4.4).
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