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ABSTRACT

This paper analyzes the problem arising from the need to assign information about the normal vectors to
the surface at the nodes of a mesh of triangles. Meshes of triangles do not have normals uniquely defined
at the nodes. A widely used technique to compute the normal direction at any given node is to compute the
weighted average of the normals of each surrounding triangle.

The present study proposes new weighting factors to compute the normal directions at the nodes of the
mesh of triangles of a general surface. Previous weights found in the literature used the geometric dimensions
of the triangles themselves to design the weighting factors. The new factors are proposed using the trian-
gles’ circumscribed circles dimensions. The new weights provide superior results than the ones obtained by
previous best practices for a wide range of surfaces.

An advanced framework based on the approachability of smooth surfaces by quadrics is presented and
used. This framework helps to understand the improved performance of the presented factors with respect to
other factors found in the literature. A comprehensive numerical comparison analysis is performed, and the
most precise of all factors is clearly identified. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Sometimes, when analyzing surfaces with the help of triangle meshes, it is necessary to have infor-
mation about the direction of the normal direction to the surface at the nodes. A triangle-based linear
discretization (with C 0 continuity) does not provide direct and unambiguous information about the
surface normal at the nodes of the mesh. This circumstance also extends to the edges of the trian-
gles. In general, each node is connected to more than one triangle. Each of those triangles does have
a normal vector uniquely defined. Therefore, there is a need to infer the normal vector at the node
from the many normal vectors of the triangles sharing that node (Figure 1). This is a problem that
appears in many fields of computational mechanics:

� CFD analysis requires information about the normal vectors to the surfaces surrounding the
fluid. This is required, for example, to determine the force applied by the fluid pressure on the
surface [1].
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Figure 1. Schematic representation of a point P belonging to a surface discretized by a set of np trian-

gles. Each triangle has a unique unit normal vector defined to it
�
ON tri
i

�
, and the goal is to find the best

interpolation of those vectors to obtain the normal at point P : ONP .

� Shell analysis requires computing the curvature of a surface. Some advanced formulations need
deriving the normals at the nodes in order to compute the surface’s curvature [2, 3].
� Fluid-structure interaction analysis requires transferring information between the fluid and the

structure. In [4], Tezduyar et al. propose using the normals at the nodes of a surface mesh to
project the scalar pressure field from the fluid to the structure. In later publications [5], they
move away from the problem of computing the normals at the nodes by using the normals of
the elements at the integration points.

Because errors in the primitive function involve larger errors in its derivative, it is of the utmost
importance to minimize the error in the computation of the normals at the nodes in the mesh of
triangles if we want to use this information in the estimation of curvatures. This is a topic that has
raised the interest of many authors in the past, specially in the domain of computer-aided geomet-
rical design. Some authors study this as an interpolation problem: Meek and Walton [6] make an
asymptotic study on the error of various structured and unstructured interpolation and fitting ap-
proaches, and OuYang and Feng [7] also compare weighting and fitting methods by performing an
average of several numerical computations. Excellent reviews of all these methods can be found in
[8, 9].‡ Some remarkable works in this field are the developments by Max [10], Meyer et al. [11],
and more recently Langer et al. [12].

1.1. Problem statement

In this paper, the authors use the interpolation (weighting) approach, using the topological infor-
mation provided by the mesh. Thus, given a set of triangles forming a discretization of a surface
S , let

°
ON
tri

1 , : : : , ON
tri

np

±
2R3 (1)

‡For an excellent review of interpolation and fitting methods aimed at deriving curvatures from triangular meshes, the
reader can refer to [13]
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be the set of unit normal vectors of the triangles around a node P 2 S . The goal is to find the
weighting factors:

wi 2R, i D 1� np j ONP D

npX
iD1

wi ON tri
i

k

npX
iD1

wi ON tri
i k

C EO (2)

where ONP is the actual unit normal vector of S at P and EO represents the error made, so that EO is
minimized (see Figure 1 for a graphical representation).

1.2. Analysis of the approach

The main concern when deriving the weightswi is to find a good mapping function between the unit

normal of each triangle
�
ON tri
i

�
and its local representation of the surface S at the point of study P .

Previous works on this field have mostly taken one of two different approaches:

� either the derivation of the weights takes only into account the discrete information of the
triangles in the mesh and neglects the higher order nature of the surface being approximated,
� or the higher order nature of the surface is accounted for, but then the need to fit high order

functions forces to drop the idea of using a formula similar to Equation (2).

Next, we will describe a theoretic framework that tries to bridge both approaches.
Let us consider the surface S and its local Taylor expansion series at point P . Then, by truncat-

ing this series at the second order terms, we will obtain a quadric. So now we have two different
approximations to S at P , namely

� the set of triangles with a vertex at P
� and the quadric.

If we now make the assumption that the quadric interpolates all the vertices of the set of triangles,
the error we are making is of the order of h2. Being h a measure of the size of the triangles. This
allows us to reinterpret the relationship between ON tri

i and the surface S . ON tri
i can be thought of as

the normal direction of a plane section of the quadric.
We will still make one more assumption. This is that the conic resulting from the intersection

with the quadric is a closed curve. This may seem like a very strong assumption. But in fact, it is
no more limiting than the restriction that represents the triangles themselves. What this assumption
implies is that the section of the quadric is bounded; just like the triangles are.

In no way are we implying in the current argument that this framework will produce approxima-
tions with an error bounded by O / h2.§ What this analysis provides us is a framework to enrich
the information provided by the set of ON tri

i and their corresponding triangles.

1.3. Outline

In Section 2, we present a review of different weighting factors previously used in the literature, and
we also propose new factors taking advantage of the framework presented earlier. In Section 3, we
introduce the methodology followed for studying the numerical performance of each of the factors
presented. Section 4 gives a thorough overview of the results obtained. The different factors are
compared against each other in a wide range of cases. Emphasis is made in presenting the results
graphically, although a table with numerical values is also presented at the very end. Additionally,
in Section 5, the reader can see an explicit example of the improvements and accuracy provided by

§This can indeed happen if we do fit a quadric and obtain the information of the normal at P directly from the quadric
[6, 9].
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the most precise of the proposed weights. Finally, in Section 6, the main conclusions are summa-
rized, and the authors also highlight the importance of the results presented in the fields of numerical
methods and computational geometry.

2. PREVIOUS AND NEW WEIGHTING FACTORS PROPOSED

Taking into account the framework presented in Section 1.2 and assuming that plane sections of
the surface approached by a quadric produce closed conics,¶ then we can infer that each triangle
is providing information about an ellipse. However, there is too little information in the trian-
gle to determine a circumscribing ellipse. We can make an approximation to the ellipse using the
circumscribed circle instead.

We will use this result to propose different weighting factors based on the magnitudes of the
circumscribed circle.

Note that this approach has similarities to the one proposed by Max in [10]. In his work, Max
makes the assumption that the surface S can be approached locally at P by a sphere. Therefore, he
derives the weights that will yield the exact normal at P if the surface S was a sphere. We could
arrive to the result of using the circumscribed circles by making sections of the sphere. However,
we esteem that the framework presented is more complete, as the different sources of error are
decomposed for further analysis.

Because real meshes used in finite element problems represent surfaces with very different shapes,
our aim is to improve the result obtained by Max in [10] for a random surface. Clearly, nothing
will beat Max’s formula to recover normals in spheres. But can we better approximate the curva-
ture of a broader range of surfaces? A new collection of weighting factors is presented to evaluate
comparatively their exactitude and versatility in front of others presented previously in the literature.

From this point, we make an abuse of notation. We will refer to the definition of each set of
weighting factors using a descriptive subindex, and we will omit the superscript:

widescription � wdescription (3)

2.1. Determination of weights to approximate the normal to a circle

Let us first show the solution for the problem reduced to two dimensions. For the 2D case, Max
[10] and Linhard et al. [2] show the way that leads to the exact solution (Figure 2 and Equations (4)
to (7)).

ON1 D
�
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�
1
2
.�
2
C �1/

�
, sin

�
1
2
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2
C �1/

��
(4)
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2R � cos
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2
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�
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2
C �2/
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lC2 D
ˇ̌
2R � cos

�
1
2
.�
2
C �2/

�ˇ̌
(7)

lC1 and lC2 are the respective lengths of segments C1 and C2 in Figure 2. While ON1 and ON2 are
their respective unit normal vectors pointing outward. The angles �1 and �2 mark the position of

¶There are three classes of quadrics that cannot produce closed conic sections: hyperbolic paraboloid, hyperbolic cylinder,
and parabolic cylinder.
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Figure 2. Schematic representation of the problem reduced to two dimensions. A curve is approxi-
mated/represented by a circle with its center at the origin. And two chords (representing segments that
discretize and approximate an arch of the circle) meeting at the intersection of the circle with the vertical

axis are depicted. Similarly, the normal vectors to each of the segments are shown.

points P1 and P2 on the circle and are measured counterclockwise with origin on the X axis. Oper-
ating, we can verify that the sum ON1=lC1 C

ON2=lC2 yields a vector with only vertical component.
So, in this 2D example, the weighting factors would be defined as follows:

wi D
1

lCi
�
not

wi1=lC (8)

2.2. Inverse of the circumscribed circle’s diameter and internal angle (new)

We start with this construction for didactic purposes. In order to keep the development simple, let
us consider that the quadric that approximates the surface S is a sphere of radius R centered at the
origin (this will force the sections to yield circles). The node under study will be the north pole,
that is, the intersection of the positive Z axis with the sphere’s surface. Firstly, we must note that—
unlike the 2D case—the number of triangles meeting at the north pole in which we can discretize
the sphere is not determined. Let us consider then the most simple case in which the north pole is
surrounded by only three triangles (Figure 3).

In order to select a magnitude of the circumscribed circle taking advantage of the 2D case result,
we may proceed as follows:

(1) Let us consider the three unit normal vectors to each of the triangles surrounding the north
pole as free vectors.

(2) Once in the free vectors framework, we can consider these vectors as being also normal to a
geometric entity different from the triangle. As explained in the framework presented in Sec-
tion 1.2, we will choose a magnitude of the circumscribed circle to the triangle. In Figure 3,
this circle is represented in blue color for the triangle defined by points A, B , and C .

(3) Let us consider now the diameter of the circumscribed circle with an end in A (north pole).
Because A is a vertex of the triangle, it is also a point on the circle. In Figure 3, this diameter
is represented in dark green color.

(4) This diameter defines at its opposite end another point on the sphere. Let us call this new point
A0. A and A0 define a great circle of the sphere of radius R. Using this construction, we can
partially recover the layout of the 2D problem. In this way, the great circle becomes the circle
in 2D (Figure 2), and the diameter AA0 becomes the segment associated to the unit normal
vector. Thus, the normal vector to the triangle defined by A, B , and C can be seen as lying
within the same plane that contains the great circle with center at the origin that connectsA and
A0 and perpendicular to AA0. In Figure 3, the great circle connecting A and A0 is represented
in light green color.

(5) Applying the result obtained in the 2D case, we already know that if we divide the unit normal
vectors by the length of the diameters of the corresponding circumscribed circles, we obtain a
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Figure 3. Schematic representation of the 3D construction presented in Section 2.2. A sphere with its center
at the origin and three triangles (red) sharing a node located at the intersection of the sphere’s surface and
the Z axis named north pole (point A) are depicted. Similarly, the circumscribed circle (blue) to the triangle
formed by points A, B , and C , as well as its diameter (dark green) through point A are also shown. Finally,

also the great circle (light green) that intersects A and A0 is shown.

set of normal vectors all having in common the magnitude of their horizontal component (i.e.,
their projection on the XY plane). This magnitude is 1=2R.

(6) The only step missing now would be to do a second ponderation that minimizes the sum of
all the horizontal projections of the vectors. We propose to use as second complementary fac-
tor: the triangle’s internal angle at the vertex occupied by the node considered. In fact, other
authors have previously used this weighting factor in an isolated manner [14][15].

Equation (9) shows the formula of the weighting factor to apply to the unit normal vector to a
triangle considering the inverse of the diameter of the circumscribed circle to the triangle and
the internal angle of the triangle in OA.

w˛=¿ı D
sin˛

k
��!
BC k

� ˛ (9)

where ˛ is calculated as follows:

˛ D arccos

 ��!
AB �

��!
AC

k
��!
AB k � k

��!
AC k

!
(10)

and sin˛ can be computed as

sin˛ D
k
��!
AB �

��!
AC k

k
��!
AB k � k

��!
AC k

(11)

2.3. Inverse of the circumscribed circle’s area (new)

The weights constructed following the process described in Section 2.2 rely heavily on the assump-
tion that the surface is sufficiently approximated by a sphere. That is because one of the assumptions
is that all the great circles have the same radius R. In the more general case, this hypothesis will
not hold.

Therefore, let us propose the use of the area of the circumscribed circle as the magnitude to use.
Assuming that smaller circles will provide information more local to P , we will use the inverse
of the area as the weighting factor. Equation (12) shows the formula of the weighting factor for
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Figure 4. Random cubic surface and four-triangle mesh.

the calculation of the vector normal to a triangle considering the inverse of the area of the
circumscribed circle to the triangle. As in Equation (9), we have removed as well any constant
coefficients.

w1=Aı D

 
sin˛

k
��!
BC k

!2
(12)

2.4. Exact solution for a spherical surface

Max [10] deduces which are the weights that return the exact normals at the nodes of a
sphere’s triangular mesh. In addition, these weights are extremely simple to compute as shown in
Equation (13). This weight is the sine of the internal angle of the triangle in OA divided by
the lengths of the adjacent edges AB and AC . Moreover, in [10], there is a study that shows the
properties when approximating the vertex normals by using these weighting factors for an arbitrary
set of surfaces.

wsin.˛/=.b�c/ D
sin˛

k
��!
AB k � k

��!
AC k

(13)

2.5. Inverse of the triangle’s area

Out of simplicity, different authors [2, 3] have proposed using the inverse of the area of the tri-
angle as weight. Implicitly, the argument is that the smaller the triangle, the more representative
its normal becomes with respect to the normal at the node under study. Therefore, the weight
applied when computing the average should be larger. However, this argument does not care about
the nature of the surface being approximated. Equation (14) shows the formula of the weighting
factor for the calculation of the vector normal to a triangle considering the inverse of the
triangle’s area.

w1=A� D
1

k
��!
AB �

��!
AC k

(14)

2.6. Other weights tested

In order to better understand the weight proposed in Section 2.2, we have decomposed it into its
two main components (see Equations (15) and (16)) and introduced them into the numerical anal-
ysis presented on Section 3. After drawing preliminary conclusions, we have also proposed a new
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Figure 5. Convergence plots depending on the number of cases considered (ns) for each one of the 11
weighting factors. (a) 1=¿ı, (b) 1=Aı, (c) 1=.b � c/, (d) ˛=¿ı, (e) ˛=Aı, (f) sin.˛/=.b � c/, (g) A�, (h) 1, (i)

1=
p
.b � c/, (j) 1=A�, and (k) ˛. RMS, root-mean-square.

weighting factor expressed by Equation (17).

w1=¿ı D
sin˛

k
��!
BCk

(15)

w˛ D ˛ (16)

w˛=Aı D

 
sin˛

k
��!
BCk

!2
� ˛ (17)

Additional weights included in the analysis are the area of the triangle (Equation (18)) that was
studied by Meek and Walton [6], equal weights (Equation (19)) suggested by Gouraud [16], and
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finally two other weights (Equations (20) and (21)) as tested by Max [10].

wA� D k
��!
AB �

��!
ACk (18)

w1 D 1 (19)

w1=.b�c/ D
1

k
��!
ABk � k

��!
ACk

(20)

w1=
p
.b�c/ D

1q
k
��!
ABk � k

��!
ACk

(21)

3. NUMERICAL ANALYSIS

With the goal of comparing and verifying the goodness and accuracy of the previous weighting fac-
tors, a numerical analysis has been performed with all of them. The starting point of this analysis
is the methodology used by Max in [10], conveniently extended. We have chosen this methodology
because it allows us to reproduce asymptotic behavior as studied by Meek and Walton [6] but at the

Figure 6. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on the kmax and np . RMS, root-mean-square.

Figure 7. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on the kmax and np . Vertical axis reversed. RMS, root-mean-square.
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same time retains the capability of finding differences between weights with equivalent asymptotic
properties without loss of generality.

First of all, cubic surfaces of the form

�.x,y/D Ax2CBxy CCy2CDx3CEx2y CFxy2CGy3 (22)

have been randomly generated. By construction, the origin of coordinates belongs to the surface,
and the normal at this point coincides with the Z axis, which will be taken as a reference. Because
one of the goals of the study is to evaluate the influence of the surface’s curvature on the precision
of the calculation of the vertex normal, the coefficients of this surface will be taken as follows:

¹A,B ,C ,D,E,F ,Gº 2 U.�kmax , kmax/ (23)

where U refers to the uniform distribution of probability in the indicated interval. The value of kmax
will be set according to the following set of values:

kmax D ¹10
�5, 10�4, 10�3, 10�2, 10�1, 1, 10º (24)

Secondly, when the surface has been obtained, a mesh of np triangles is built. This mesh is ob-
tained after determining the number of surrounding points (np D 3� 9) to the origin of coordinates

Figure 8. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on kmax , for np D 3. RMS, root-mean-square.

Figure 9. Errors made in the approximation of the vertex normals for the best 5 weighting factors depending
on kmax , for np D 3. RMS, root-mean-square.
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and placed on the surface �.x,y/. In this way, several kinds of meshes are taken into account. With
this purpose, np vertices are generated in polar coordinates .r , � , ´/ surrounding the origin. The
values of r and � are randomly and uniformly assigned in the intervals .0, 1� and Œ0, 2��, respec-
tively. The values of � are sorted in increasing order. The angles ˛i at the internal vertex for each
of the np triangles can be obtained as the difference between the angle �iC1 and the previous one
�i , rejecting the cases where the result is greater than � (otherwise the angle would not belong to a
triangle). Translating the vertices to Cartesian coordinates .r , �/! .x,y/, these are then located on
the surface according to ´D �.x,y/.

With the aim of carrying out a statistical research, a big enough number of ns random surfaces
must be generated. Because we need to determine the number of surfaces ns that is statistically
representative for the study, the following sequence of values is set:

ns D ¹10
5, 2 � 105, 5 � 105, 106, 2 � 106, 5 � 106, 107º (25)

A statistical convergence analysis using this sequence is performed to determine how many sur-
faces are required to be taken into account in the study (Figure 5). As an example, a random surface

Figure 10. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on kmax , for np D 4. RMS, root-mean-square.

Figure 11. Errors made in the approximation of the vertex normals for the best 5 weighting factors
depending on kmax , for np D 4. RMS, root-mean-square.
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is shown in Figure 4 along with a randomly generated triangular mesh (in this case, four triangles
are drawn).

Once the surface and its associated triangular mesh are obtained, the approximated normal vector
in the node is calculated as the sum of the unit normals of each triangle multiplied by the weighting
factor chosen in each case, as it is shown in Equation (26).

Nj D

npX
iD1

wi ON tri
i (26)

where wi is the weighting factor chosen and ON tri
i is the unit normal of the i-th triangle. The

approximated unit normal must be calculated a posteriori, if needed.
After the generation of the ns surfaces and the calculation of the corresponding approximated

vertex normals, the angular deviations with respect to the exact normal are computed, and the

Figure 12. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on kmax , for np D 5. RMS, root-mean-square.

Figure 13. Errors made in the approximation of the vertex normals for the best 5 weighting factors
depending on kmax , for np D 5. RMS, root-mean-square.
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root-mean-square error (RMSE) angle in degrees is estimated as shown in Equation (27) for each
weighting factor.

RMSE D

vuut nsX
jD1

d2j

ns
(27)

where dj are the deviations—in degrees—of the normal relative to each one of the ns surfaces, as
it is shown in Equation (28):

dj D arccos. ON´ � ONj / �
180

�
(28)

The exact normal to the surface is parallel to the Z axis, ON´ D .0, 0, 1/, and ONj is the ap-
proximated normal vector calculated in each case by using the corresponding weighting factor and
normalized properly.

As seen earlier, three variables have been considered in the calculations:

� kmax: maximum absolute value of surface coefficients

Figure 14. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on kmax , for np D 6. RMS, root-mean-square.

Figure 15. Errors made in the approximation of the vertex normals for the best 5 weighting factors
depending on kmax , for np D 6. RMS, root-mean-square.
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� np: number of triangles around the node whose normal vector is estimated
� ns: number of surfaces generated

Considering that each variable can take seven different values, all their possible combinations
have been calculated (73), obtaining in each case the angular error for the 11 weighting factors.

The first aspect that needs to be determined is which is the minimum value of ns required to
provide statistically significant results with a small interval of confidence. With this objective, a set
of convergence plots has been carried out (Figure 5), showing the error made in the approximation
of the normal for

� each weighting factor w,
� each value of kmax , and
� for every value of np .

As it is shown in the legend, the different values of kmax—which modulate the degree of cur-
vature of the surfaces—are separated in color strips. Each of these strips is composed by a set of
curves, representing each one a value of np . The variable ns is represented in the horizontal axis. The
results obtained show a group of six factors (Figure 5(a), (b), and (d)–(g)) with very little variation

Figure 16. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on kmax , for np D 7. RMS, root-mean-square.

Figure 17. Errors made in the approximation of the vertex normals for the best 5 weighting factors
depending on kmax , for np D 7. RMS, root-mean-square.
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and bounded errors, except for the cases where the number of triangles around the node is equal to
3, which seem to not present good convergence. This fact offers a first conclusion: The confidence
interval of the results corresponding to meshes with np D 3 needs to be greater than that for the rest
of the values of np . On the other side, the other five factors (Figure 5(c) and (h)–(k)) show bigger
errors and a worse convergence to reach a stable value, with high oscillations for a lower number of
cases. Nevertheless, if the results obtained with the generation of 10 million are taken into account,
this second group of factors seems to converge. For this reason, from now on, the rest of the study
will be performed considering always the results obtained with 10 million surfaces generated.

4. RESULTS

In this section, the authors will represent the results obtained in the study using ns D 107 surfaces
for each of the cases considered and varying the values of kmax and np .

The domain of study can be visualized in Figure 6 (np D 3�9; kmax D ¹10�5, 10�4, 10�3, 10�2,
10�1, 1, 10º) and the RMSE obtained for each of the weighting factors in this domain. The factors
have been sorted depending on the errors obtained for most of the domain of study, so at the top of
the legend, there is indicated the worst ranked factor, and at the bottom, the best one. In order to

Figure 18. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on kmax , for np D 8. RMS, root-mean-square.

Figure 19. Errors made in the approximation of the vertex normals for the best 5 weighting factors
depending on kmax , for np D 8. RMS, root-mean-square.
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show a complementary view of the domain of study and the results, the same plot is represented in
Figure 7 but with the vertical axis reversed.

As commented in Section 3, there are two main groups of weighting factors with similar
behavior. It also can be observed that for the situation where kmax—which controls the surface’s
curvature—takes values around 1 and 10, the errors made by all the factors have similar orders of
magnitude. Nevertheless, it should be considered that in these cases, the error is huge (several tens
of degrees).

Likewise, it can be seen that the cases with three triangles around the node (np D 3) generate
bigger errors and even alter the order of the weighting factors. This result deserves some comment.
The two factors that deliver the best results in the case where np D 3 are the two factors with the
assumption that the surface S is approximated by a sphere (Equations (9) and (13)). And for values
of np > 3, their precision drops. This can be explained because in general, a sphere will not approx-
imate well a surface represented by more than three triangles. It is worth mentioning that a regular
mesh of triangles features six triangles around each node.

Looking at Figure 7, the authors observe clearly that the most precise weighting factor is the
one given by the combination of the triangle’s interior angle and the inverse of the circumscribed
circumference’s area related to this triangle (Equation (17)).

Figure 20. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on kmax , for np D 9. RMS, root-mean-square.

Figure 21. Errors made in the approximation of the vertex normals for the best 5 weighting factors
depending on kmax , for np D 9. RMS, root-mean-square.
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Moreover, it must be emphasized that contrary to our intuition, the weighting factor that uses the
inverse of the triangle’s area is the worst of all of those considered, as shown by the results.

For more details, in Figures 8 to 22, several cuts of the surfaces of Figure 6 are shown, according
to the number of triangles. In this way, each figure represents the RMSE depending on the kmax for
every value of np . To achieve better clarity, detailed figures with the five best weighting factors are
also included. See also in Figure 22 a cut of Figure 6, showing the results obtained for the surfaces
with a value of kmax D 10�1. This figure shows that for all the factors except for two,—inverse of
the triangle’s area and inverse of the product of the adjacent edges (this one diverging slightly)—
the RMSE when computing the vertex normals is reduced as the number of triangles in the mesh
increases. Seeing Figure 22, it is easy to understand the combination of the factor in Equation (16)
with the factor in Equation (12). Because the weight that uses the internal angle as a factor is the
one that improves the most as the number of triangles increases. This justifies the directional value
of the information provided by the angle. In Figure 23 the five best weighting factors are shown,
with their corresponding detailed plots.

A noteworthy result is that all four new weights proposed in this study (see Equations (9), (12),
(15), and (17)) are among the five factors showing a better behavior (see, e.g., the excellent cor-
relation displayed in Figures 9, 11, 13, 15, 17, 19, and 21). This result seems to validate the three
principal hypotheses set forth in the framework presented in Section 1.2:

Figure 22. Errors made in the approximation of the vertex normals for the 11 weighting factors depending
on np , for kmax D 10�1. RMS, root-mean-square.

Figure 23. Errors made in the approximation of the vertex normals for the best 5 weighting factors
depending on np , for kmax D 10�1.
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Table I. Errors made in the approximation of the vertex normals for the 11 weighting factors f depending
on kmax and np , for ns D 107.

w np kmax

3 4 5 6 7 8 9

1=A� 2.362 �10�1 2.031 �10�1 2.269 �10�1 2.702 �10�1 2.935 �10�1 3.346 �10�1 4.031 �10�1

˛ 1.182 �10�1 8.620 �10�2 6.784 �10�2 5.528 �10�2 5.118 �10�2 2.735 �10�2 2.765 �10�2

1=.b � c/ 7.918 �10�2 4.998 �10�2 5.094 �10�2 5.431 �10�2 4.700 �10�2 5.392 �10�2 5.944 �10�2

1=
p
.b � c/ 7.652 �10�2 4.632 �10�2 4.537 �10�2 4.563 �10�2 4.050 �10�2 4.442 �10�2 4.773 �10�2

1 7.573 �10�2 4.761 �10�2 4.166 �10�2 4.103 �10�2 3.793 �10�2 3.744 �10�2 4.000 �10�2

A� 1.473 �10�3 4.679 �10�4 3.772 �10�4 3.353 �10�4 3.108 �10�4 2.942 �10�4 2.817 �10�4 10�5

˛=¿ı 3.982 �10�4 2.424 �10�4 2.108 �10�4 1.915 �10�4 1.771 �10�4 1.658 �10�4 1.564 �10�4

1=¿ı 4.494 �10�4 2.334 �10�4 2.012 �10�4 1.830 �10�4 1.705 �10�4 1.613 �10�4 1.541 �10�4

sin.˛/=.b � c/ 3.821 �10�4 2.316 �10�4 1.978 �10�4 1.796 �10�4 1.684 �10�4 1.603 �10�4 1.541 �10�4

1=Aı 4.605 �10�4 2.199 �10�4 1.857 �10�4 1.669 �10�4 1.541 �10�4 1.447 �10�4 1.373 �10�4

˛=Aı 5.224 �10�4 2.172 �10�4 1.800 �10�4 1.616 �10�4 1.494 �10�4 1.406 �10�4 1.336 �10�4

1=A� 7.998 �10�1 6.688 �10�1 7.132 �10�1 8.472 �10�1 9.641 �10�1 1.110 1.242
˛ 4.016 �10�1 2.822 �10�1 2.215 �10�1 1.748 �10�1 1.418 �10�1 1.096 �10�1 8.799 �10�2

1=.b � c/ 2.610 �10�1 1.709 �10�1 1.581 �10�1 1.612 �10�1 1.682 �10�1 1.782 �10�1 1.787 �10�1

1=
p
.b � c/ 2.528 �10�1 1.577 �10�1 1.409 �10�1 1.404 �10�1 1.419 �10�1 1.467 �10�1 1.455 �10�1

1 2.565 �10�1 1.574 �10�1 1.320 �10�1 1.288 �10�1 1.257 �10�1 1.254 �10�1 1.252 �10�1

A� 1.467 �10�2 4.679 �10�3 3.772 �10�3 3.353 �10�3 3.108 �10�3 2.939 �10�3 2.818 �10�3 10�4

˛=¿ı 3.980 �10�3 2.424 �10�3 2.108 �10�3 1.915 �10�3 1.771 �10�3 1.658 �10�3 1.565 �10�3

1=¿ı 4.485 �10�3 2.334 �10�3 2.012 �10�3 1.830 �10�3 1.705 �10�3 1.614 �10�3 1.542 �10�3

sin.˛/=.b � c/ 3.819 �10�3 2.316 �10�3 1.978 �10�3 1.796 �10�3 1.684 �10�3 1.607 �10�3 1.544 �10�3

1=Aı 4.605 �10�3 2.200 �10�3 1.857 �10�3 1.669 �10�3 1.541 �10�3 1.448 �10�3 1.373 �10�3

˛=Aı 5.132 �10�3 2.172 �10�3 1.800 �10�3 1.616 �10�3 1.494 �10�3 1.406 �10�3 1.336 �10�3

1=A� 2.481 2.055 2.183 2.516 2.904 3.275 3.665
˛ 1.266 8.960 �10�1 7.082 �10�1 5.567 �10�1 4.534 �10�1 3.455 �10�1 2.822 �10�1

1=.b � c/ 8.224 �10�1 5.391 �10�1 4.991 �10�1 5.074 �10�1 5.368 �10�1 5.544 �10�1 5.753 �10�1

1=
p
.b � c/ 7.939 �10�1 5.037 �10�1 4.476 �10�1 4.413 �10�1 4.527 �10�1 4.564 �10�1 4.648 �10�1

1 8.081 �10�1 5.013 �10�1 4.219 �10�1 4.008 �10�1 3.964 �10�1 3.935 �10�1 3.945 �10�1

A� 1.304 �10�1 4.678 �10�2 3.772 �10�2 3.353 �10�2 3.108 �10�2 2.942 �10�2 2.817 �10�2 10�3

˛=¿ı 3.826 �10�2 2.424 �10�2 2.108 �10�2 1.915 �10�2 1.771 �10�2 1.658 �10�2 1.564 �10�2

1=¿ı 4.076 �10�2 2.334 �10�2 2.012 �10�2 1.830 �10�2 1.705 �10�2 1.613 �10�2 1.541 �10�2

sin.˛/=.b � c/ 3.658 �10�2 2.316 �10�2 1.978 �10�2 1.796 �10�2 1.684 �10�2 1.603 �10�2 1.541 �10�2

1=Aı 4.212 �10�2 2.199 �10�2 1.857 �10�2 1.669 �10�2 1.541 �10�2 1.447 �10�2 1.373 �10�2

˛=Aı 4.883 �10�2 2.172 �10�2 1.800 �10�2 1.616 �10�2 1.494 �10�2 1.406 �10�2 1.336 �10�2

1=A� 7.173 5.766 6.022 6.797 7.654 8.420 9.113
˛ 3.880 2.826 2.226 1.778 1.431 1.139 9.155 �10�1

1=.b � c/ 2.534 1.709 1.568 1.590 1.653 1.723 1.772
1=
p
.b � c/ 2.443 1.603 1.415 1.385 1.397 1.415 1.428

1 2.493 1.610 1.352 1.268 1.238 1.222 1.215
A� 9.650 �10�1 4.631 �10�1 3.766 �10�1 3.352 �10�1 3.107 �10�1 2.939 �10�1 2.818 �10�1 10�2

˛=¿ı 3.477 �10�1 2.424 �10�1 2.108 �10�1 1.915 �10�1 1.771 �10�1 1.658 �10�1 1.565 �10�1

1=¿ı 3.559 �10�1 2.333 �10�1 2.011 �10�1 1.830 �10�1 1.705 �10�1 1.614 �10�1 1.541 �10�1

sin.˛/=.b � c/ 3.293 �10�1 2.314 �10�1 1.978 �10�1 1.796 �10�1 1.684 �10�1 1.606 �10�1 1.544 �10�1

1=Aı 3.637 �10�1 2.199 �10�1 1.857 �10�1 1.669 �10�1 1.541 �10�1 1.448 �10�1 1.373 �10�1

˛=Aı 3.870 �10�1 2.165 �10�1 1.800 �10�1 1.616 �10�1 1.494 �10�1 1.406 �10�1 1.336 �10�1

1=A� 16.61 12.92 13.23 14.30 15.22 15.90 16.38
˛ 10.72 8.536 7.011 5.824 4.858 4.064 3.427

1=.b � c/ 7.362 5.439 4.949 4.884 4.931 5.018 5.109
1=
p
.b � c/ 7.055 5.203 4.586 4.352 4.240 4.176 4.131

1 7.305 5.439 4.643 4.242 4.000 3.837 3.719
A� 6.472 4.309 3.674 3.317 3.089 2.930 2.808 10�1

˛=¿ı 3.161 2.398 2.093 1.903 1.760 1.648 1.556
1=¿ı 3.171 2.314 1.999 1.819 1.695 1.603 1.531

sin.˛/=.b � c/ 2.975 2.271 1.958 1.782 1.672 1.592 1.532
1=Aı 3.221 2.183 1.847 1.660 1.533 1.439 1.365
˛=Aı 3.171 2.124 1.789 1.609 1.488 1.400 1.330

1=A� 26.71 23.45 23.25 23.50 23.73 23.91 24.03
˛ 25.15 23.32 21.55 19.93 18.49 17.25 16.19

1=.b � c/ 21.60 18.17 16.71 15.98 15.56 15.32 15.17
1=
p
.b � c/ 21.01 18.10 16.43 15.31 14.47 13.82 13.29

1 23.83 20.99 19.05 17.64 16.57 15.72 15.03
A� 33.63 29.82 27.96 26.62 25.63 24.84 24.22 1

˛=¿ı 20.81 17.46 15.64 14.40 13.44 12.66 12.01
1=¿ı 21.67 17.15 15.09 13.79 12.86 12.16 11.59

sin.˛/=.b � c/ 20.13 16.55 14.74 13.66 12.93 12.40 12.00
1=Aı 21.95 16.77 14.48 13.11 12.15 11.44 10.86
˛=Aı 21.40 16.71 14.45 13.09 12.12 11.41 10.83

1=A� 60.00 56.44 54.66 53.51 52.64 51.96 51.41
˛ 46.78 47.79 48.07 47.94 47.56 47.08 46.55

1=.b � c/ 60.11 55.64 53.24 51.76 50.72 49.97 49.41
1=
p
.b � c/ 55.22 51.12 49.23 47.75 46.53 45.48 44.58

1 61.96 56.42 55.18 53.29 51.98 50.75 49.72
A� 74.88 73.71 73.24 72.80 72.45 72.14 71.89 10

˛=¿ı 60.27 55.89 52.86 50.59 48.77 47.31 46.08
1=¿ı 61.76 55.51 52.42 50.15 48.37 46.94 45.73

sin.˛/=.b � c/ 61.03 56.31 53.55 51.85 50.68 49.87 49.29
1=Aı 65.08 59.47 56.23 53.97 52.27 50.95 49.90
˛=Aı 64.16 59.62 56.41 54.15 52.43 51.09 50.02
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(a) (b) 

Figure 24. Torus used for the practical example. The normals are computed at every node of the mesh. (a)
Geometric definition and (b) view of the mesh generated. The mesh has 7083 nodes and 14,166 elements.

(a) (b)

Figure 25. Errors made in the approximation of the vertex normals for the best weighting factor (w˛=Aı )
on a torus geometry. (a) Top view of the torus and (b) isometric view of the torus.

� Smooth surfaces can be approximated locally by quadrics.
� The normal direction to the element is not representative of the element’s geometry but instead

of the geometry resulting from the intersection of the element’s plane and the local surface.
� The plane section of a quadric that approximates locally the discretized surface is, in general,

a conic, but more precisely, it will almost always be a closed conic.

That is why, we propose using the geometric properties of circles when working with a mesh of
triangles.

All these plots support the result obtained by Meek and Walton in [6]. Remains an open-question
finding a weight-averaging method with non-uniform data which can provide normal estimates with
better than first order accuracy.

With the purpose of determining quantitatively the quality of the different weighting factors, the
authors present in Table I the errors made in each case for all the values of kmax and np . The factors
are sorted placing the worst ranked ones at the top and the best ones at the bottom. The analysis
of all these data shows the improvement of the present results with respect to the ones obtained in
[10]. Comparing the best weighting factor (Equation (17)) with the one proposed by Max (exact
solution for the sphere, Equation (13)), it can be observed that the error in the estimation of the
vertex normals has been reduced by around 10%.

Finally, considering the unexpected result already commented on page 263 in relation to the area
of the triangle and its inverse, the authors decided to try other combinations of weighting factors to
check whether better results were obtained. Thus, some vertex normals have been approximated by
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(a) (b)

(c) (d)

(e)

Figure 26. Different representations of the error variation obtained using the two different weights. Positive
values represent an increase of the error when using w˛=Aı with respect to wsin.˛/=.b�c/, while negative val-
ues represent a decrease of the error. (a) Top view of the torus, (b) isometric view of the torus, (c) isometric
view of the torus (inverse angle), and (d) bottom view of the torus, and (e) histogram of the error variation

for all the nodes in the mesh. The values have been reordered.

using weights such as the circumscribed circumference’s area, its diameter, the inverse of the trian-
gle’s interior angle, and other combinations of several factors. In all cases, the results were worse
than the ones already presented in this article.

5. PRACTICAL EXAMPLE

We want to introduce here a representative example of the advantage provided by the best factor with
respect to the previous best factor found in the literature. A torus has been selected as the geometry
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of choice. The torus’ geometry presents all kinds of Gaussian curvatures, which is ideal for demon-
strative purposes. We have defined the torus dimensions using the golden ratio (R=r D .1C

p
5/=2)

(Figure 24). Then, we have created an irregular mesh over the torus surface in order to have random
triangles for every vertex over the otherwise regular surface of the torus (Figure 24).

The normals are computed using two different weights. On one hand, we use wsin.˛/=.b�c/ in
Equation (13), considered to be the best existing weight in the literature. On the other hand, we use
the best performing weight we have found in our study: w˛=Aı in Equation (17). For every node in
the mesh, the error incurred by each formula is computed with respect to the actual normal vector
to the torus’ surface at that point. Then, we measure whether w˛=Aı increases or decreases the error
computed when using wsin.˛/=.b�c/.

Figure 25 provides a graphical representation of the error obtained when using the factor w˛=Aı
for interpolating the normals of the torus.

Figure 26 clearly shows that there are many more cases (more than double) where the w˛=Aı fac-
tor reduces the error for the normal interpolation with respect to the wsin.˛/=.b�c/ factor. Figure 26(a)
to (d) represents the result over the torus geometry, while Figure 26(e) represents the same result as
a distribution function.

6. CONCLUSIONS

A detailed analysis of the problem arising from the approximation of the normal vectors at the nodes
of a triangle mesh has been presented. At the same time, a theoretical framework for the study of
these approximations based on the assumption that smooth surfaces can be in turn approximated
by quadrics has been proposed. The results obtained by the authors are not only of interest for the
computational mechanics community but also for the computer graphics and computer-aided design
communities.

A number of justified alternative weighting factors—for the approximation of normal vectors at
the nodes of a triangle mesh—have been compared. From this comparison, it has been possible to
propose a new formula combining the properties of different factors in order to obtain a new weight-
ing factor for the approximation of the normal vectors at the nodes of a triangle mesh. This is the
factor that produces the most precise overall results. This new weighting factor referred to in the
paper as w˛=Aı yields more precise results than the results obtained with factors used previously in
the literature.

In order to approximate the normal vectors at the nodes of a triangle mesh using a weighted
average rule (see Equation (2)), the weight consisting in the interior angle of the triangle at the node
considered divided by the area of the circumscribed circle to the triangle (w˛=Aı) is recommended.
The mathematical expression of this weighting factor as a function of the coordinates of the nodes
of the triangle is shown in Equation (17).

Users who might be concerned by the use of trigonometric and root functions, and their com-
putational efficiency, may consider the use of another weight presented in this paper, referred to as
w1=Aı , and defined in Equation (12) or the formula proposed by Max [10] (referred to aswsin.˛/=.b�c/

in Equation (13)), depending on the form in which the normal vectors to each triangle are provided.
The present results can be applied to a large number of problems in computer modeling where

the precise characterization of surfaces is important.
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