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Abstract

The Proper Generalized Decomposition (PGD) is devised as a computational method to solve high-dimensional
boundary value problems (where many dimensions are associated with the space of parameters defining the
problem). The PGD philosophy consists in providing a separated representation of the multidimensional solution
using a greedy approach combined with an alternated directions scheme to obtain the successive rank-one terms.
This paper presents an algorithmic approach to high-dimensional tensor separation based on solving the Least
Squares approximation in a separable format of multidimensional tensor using PGD. This strategy is usually
embedded in a standard PGD code in order to compress the solution (reduce the number of terms and optimize
the available storage capacity) but it stands also as an alternative and highly competitive method for tensor
separation.
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1. Introduction

1.1. Framework and motivation

Data is often collected in terms of multidimensional arrays. The number of dimensions is denoted by
d and the object containing the information is a tensor F of order d. A multi-index notation identifies
each entry of the array as corresponding to specific values of d parameters. The size of the tensor in each
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dimension is denoted by ni, for i = 1, 2, . . . , d and F is characterized by the generic term [F ]j1j2...jd for
ji = 1, 2, . . . , ni.

Tensor separation is a generalization of matrix diagonalization and allows representing the data collected
in the tensor in a compact form. The separated form is expressed as the sum of M terms, each of them
consisting in the tensorial product of d vectors of dimensions ni, i = 1, 2, . . . , d. Note that only in terms of
storage, the number of entries of F is

∏d
i=1 ni and in the separable version it is described with M

∑d
i=1 ni

scalar quantities. For small values of M , this represents a huge reduction of the information to be stored.
In the following, the methodology to perform this separation is presented first in the simple case of

d = 2, where it can be done optimally. Then, the generalization to higher dimensions, in which there is
no optimal strategy, is devised using the PGD philosophy.

1.2. SVD and matrix separation

For d = 2, F is a matrix and the Singular Value Decomposition (SVD) (and matrix diagonalization as a
particular case for squared matrices) is the standard and optimal tool to obtain a reduced representation
of a 2D array (a matrix or second order tensor). The outcome of the SVD allows representing the matrix
as a sum of tensor products (rank-one matrices) of the left and right eigenvectors, each weighted by the
corresponding eigenvalue.

Namely, the SVD of F ∈ IRn1×n2 consists in finding square unit matrices U ∈ IRn1×n1 and V ∈ IRn2×n2

such that
F = UΣV T (1)

being Σ a diagonal matrix in IRn1×n2 containing the singular values of F . That is, U and V are such
that UTU = IIn1 and V TV = IIn2 , and Σ has the format

Σ =




σ1

σ2
. . .

σn2

0 0 0 0
...

...
...

...

0 0 0 0




for n1 > n2 or Σ =




σ1 0 . . . 0

σ2 0 . . . 0

. . . 0 . . . 0

σn1
0 . . . 0




for n1 < n2.

It is assumed that the singular values are sorted in decreasing order, that is

σ1 ≥ σ2 ≥ · · · ≥ σmin(n1,n2) ≥ 0.

The column vectors of matrices U and V are denoted by uj and vk, for j = 1, 2, . . . , n1 and j =
1, 2, . . . , n1, that is such that

U = [u1 u2 . . .un1 ] and V = [v1 v2 . . .vn1 ]

Thus, the SVD in (1) is rewritten as

F =

min(n1,n2)∑

j=1

σjujv
T
j =

min(n1,n2)∑

j=1

σjuj ⊗ vj . (2)

Note that the two notations in the equation above are equivalent because each term ujv
T
j is a rank-one

n1 × n2 matrix that can also be denoted as uj ⊗ vj using the tensor (or external) product. The latter
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notation is preferred in the following because it is easily extended to problems of dimension higher than
two.

The representation displayed in (2) is particularly attractive to obtain a Least-Squares (LS) low rank
approximation of F . The Frobenius matrix norm reads

‖F ‖2 = F : F = [F ]j1j2 [F ]j1j2 (3)

Using this Euclidean-type norm, the truncation of (2) to M terms (being M < min(n1, n2)) results in the
best LS rank-M approximation, that is

M∑

j=1

σjuj ⊗ vj = arg min
A ∈ IRn1×n2 of rankM

‖F −A‖ (4)

This LS optimality is associated with the orthogonality of the left and right eigenvectors.
In particular, the best rank-one approximation of F is σ1u1 ⊗ v1. This is easily shown by noting that

for any rank-one matrix w1 ⊗w2 where w1 =
∑n1

k=1 αkuk and w2 =
∑n2

`=1 β`v`, LS discrepancy with F
reads

‖F −w1 ⊗w2‖2 = ‖Σ−α⊗ β‖2 (5)

being α ∈ IRn1 and β ∈ IRn2 the vectors representing w1 and w2 in the bases of left and right eigenvectors
({u1, . . . ,un1

} and {v1, . . . ,vn2
}, respectively). It is clear from the right-hand-side of (5) that an optimal

choice for α and β is αk = βk = δk1
√
σk.

Remark 1 The equality (5) is a direct consequence of observing that

‖F −w1 ⊗w2‖2 = ‖F ‖2 + ‖w1 ⊗w2‖2 − 2F : w1 ⊗w2,

‖F ‖2 =

min(n1,n2)∑

k=1

σ2
k = ‖Σ‖2 , ‖w1 ⊗w2‖2 =

n1∑

k=1

n2∑

`=1

α2
kβ

2
` = ‖α⊗ β‖2

and

F : w1 ⊗w2 =

n1∑

k=1

n2∑

`=1

αkβ`F : (uk ⊗ v`) =

min(n1,n2)∑

k=1

αkβkσk = Σ : α⊗ β

These properties are due to the orthonormality of the bases {uj}j=1,...,n1
and {vj}j=1,...,n2

that has as a
direct consequence

F : (uk ⊗ v`) =


∑

j

σjuj ⊗ vj


 : (uk ⊗ v`) =

∑

j

σj(uj · uk)(vj · v`) = δk`σk

The generalization of these tools to high order tensor formats is the object of extensive research ac-
tivities and different strategies are labeled as High-Order SVD (HOSVD). Nevertheless, for a number of
dimensions larger than two the orthogonality among the eigenvectors and therefore the optimality of the
separation is no longer guaranteed.

1.3. Problem statement: High-order separation

For d > 2, tensor F ∈ IRn1×···×nd is expressed in a separable format if for some integer value M , and
for i = 1, 2, . . . , d and m = 1, 2, . . . ,M , there exist a set of vectors f̃

m

i ∈ IRni such that

F =

M∑

m=1

f̃
m

1 ⊗ f̃
m

2 ⊗ · · · ⊗ f̃
m

d (6)
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An alternative version of this format uses unit vectors fmi and amplitudes σm, for i = 1, . . . , d and
m = 1, . . . ,M

F =

M∑

m=1

σmf
m
1 ⊗ fm2 ⊗ · · · ⊗ fmd (7)

Note that (6) and (7) are readily shown to be equivalent by taking

fmi =
1

‖f̃mi ‖
f̃
m

i for i = 1, . . . , d and σm =

d∏

i=1

‖fmi ‖ for m = 1, . . . ,M

1.4. Standard approaches

The problem of finding a separable expression with the form of (6) or (7) that approximates a tensor
F has a wide range of applications in many engineering and scientific fields. The pioneering works ap-
peared in the field of psicometrics, see for example the work of Tucker [1] and Harshman [2], and in the
field of chemometrics [3,4]. Later, the interest of tensor decompositions reached many different scientific
communities such as neuroscience [5,6], computer vision [7,8], signal processing [9,10] and data mining
[11]. Numerical analysis is no exception and examples of applications on tensor decompositions include
[12,13]. This list is by no means exhaustive, for a comprehensive review on tensor decomposition methods
see [14].

2. PGD strategy and rank-one algorithm

The PGD strategy aims at obtaining an approximation of some tensor F in the separable form given by
(7). The idea is extensively described in [15–18] and references therein and consists in combining a greedy
algorithm (that is, computing first for m = 1 and compute sequentially for any m when the previous
m − 1 terms are already obtained) with an alternated directions scheme to solve the series of rank-one
problems corresponding to term m.

2.1. Greedy scheme and rank-one terms

The first step in the greedy algorithm is to find a rank-one approximation of F , namely find d unit
vectors f1

1, . . . ,f
1
d and the corresponding amplitude σ1 such that

F ≈ σ1f1
1 ⊗ f1

2 ⊗ · · · ⊗ f1
d

or, equivalently,

F ≈ f̃1

1 ⊗ f̃
1

2 ⊗ · · · ⊗ f̃
1

d. (8)

Also at this stage, the LS criterion is used to qualify the best rank-one approximation, following the
ideas draft in the appendix of [18] describing the PGD compression strategy. That is, the d vectors

f̃
1

1, . . . , f̃
1

d are sought such that they minimize the scalar functional J (·) defined by

J (f̃
1

1, . . . , f̃
1

d) = ‖F − f̃1

1 ⊗ f̃
1

2 ⊗ · · · ⊗ f̃
1

d‖. (9)

Note that in this context, analogously to (3) the Frobenius-type norm for tensors reads

‖F ‖2 = [F ]j1j2...jd [F ]j1j2...jd =

n1∑

j1=1

n2∑

j2=1

· · ·
nd∑

jd=1

[F ]
2
j1j2...jd

. (10)
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That is, (
f̃
1

1, . . . , f̃
1

d

)
= arg min

IRn1×···×IRnd
J (f̃

1

1, . . . , f̃
1

d) (11)

Functional J (·) is nonlinear and therefore also the problem given in (11) is nonlinear and requires devising
an iterative solver. Note also that the set of possible solutions (constituted by all the rank-one tensors)
is not provided with the structure of a linear vectorial space. Obviously, the sum of two rank-one tensors
is, in general, a tensor of rank two.

The algorithm proposed to solve problem (11) is detailed in section 2.2. Once the solution of (11) is
available, this is taken as the first term of the PGD approximation, that is

F 1
PGD

= f̃
1

1 ⊗ f̃
1

2 ⊗ · · · ⊗ f̃
1

d. (12)

From this point on, the algorithm is recursive and obtains the best approximation of the remainder part
of F . Namely, assuming that FM−1

PGD
is available

FM−1
PGD

=

M−1∑

m=1

f̃
m

1 ⊗ f̃
m

2 ⊗ · · · ⊗ f̃
m

d ,

the next term is obtained as

FM
PGD

= FM−1
PGD

+ f̃
M

1 ⊗ f̃
M

2 ⊗ · · · ⊗ f̃
M

d ,

and (
f̃
M

1 , . . . , f̃
M

d

)
= arg min

IRn1×···×IRnd
‖F − FM−1

PGD
− f̃M1 ⊗ f̃

M

2 ⊗ · · · ⊗ f̃
M

d ‖. (13)

Note that (11) and (13) have exactly the same structure, they are both rank-one least squares approx-
imation problems and therefore the same iterative algorithm devised for (11) is going to be used for
(13).

The stopping criteria used to decide wether the number of PGD terms, M is sufficiently large are mainly
based on characterizing the relative importance of the last term added to the sum. An alternative approach
is computing the residual ‖F − FM

PGD
‖, but this is often discarded because it requires reconstructing FM

PGD

as a multidimensional tensor and this has a large computational cost.
Recall that using normalized vectors, the expression for the PGD solution reads

FM
PGD

=

M∑

m=1

σmf
m
1 ⊗ fm2 ⊗ · · · ⊗ fmd . (14)

Typically, M is considered to be large enough if, for some tolerance η?, the following inequality holds

σM < η?σ1.

That is, the greedy algorithm is stopped when the amplitude σM of the last term is significantly lower
than the amplitude of the first one.

2.2. Alternated directions scheme: iterating in sectional problems

This section is devoted to describe the iterative algorithm devised to solve the rank-one problem (11)

(or (13)). Thus, the goal is to compute
(
f̃
1

1, . . . , f̃
1

d

)
minimizing the functional J (f̃

1

1, . . . , f̃
1

d) given by

(9). The idea is to follow an alternated directions strategy, consisting in computing each of the sectional

unknowns, say f̃
1

γ for γ = 1, 2, . . . , d, assuming that all the others (f̃
1

j for j 6= γ) are known. This is done
for γ = 1, 2, . . . , d and then iterated until convergence is reached.
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The functional J (·) is rewritten as:

J (f̃
1

1, . . . , f̃
1

d) = ‖F ‖2 +

d∏

j=1

f̃
1T

j f̃
1

j − 2F : f̃
1

1 ⊗ · · · ⊗ f1
d (15)

where the symbol : must be understood here as total tensor contraction (summing up in all the indices)
as corresponds to the expression of the norm described in (10).

Thus, in order to compute an approximation to f̃
1

γ , it is assumed that the other modes, f̃
1

j for j 6= γ

are known and the functional J (·) is to be minimized with respect to f̃
1

γ . Namely

J (f̃
1

γ) = ‖F ‖2 + αf̃
1T

γ f̃
1

γ − 2f̃
1T

γ g (16)

where the computable quantities α and g are

α :=




d∏

j 6=γ

f̃
1T

j f̃
1

j


 (17)

and

g := F ..
. d⊗

j 6=γ

f̃
1

j , (18)

where symbol ..
.
indicates tensor contraction of all possible indices. In this case, provided that F is a tensor

of d dimensions and
⊗d

j 6=γ f̃
1

j is a tensor of d− 1 dimensions, this means summing up in all indices ij for
j = 1, . . . , d with j 6= γ. That is, (18) is equivalent to

[g]iγ :=

n1∑

i1=1

· · ·
nγ−1∑

iγ−1=1

nγ+1∑

iγ+1=1

· · ·
d∑

id=1

[F ]i1...iγ−1iγiγ+1...id

d∏

j 6=γ

[
f̃
1

j

]
ij
. (19)

Thus, the operation represented in (18) (in compact form) and (19) (with the complete index notation)
consist in contracting all the dimensions of tensor F but one (the dimension γ, for γ = 1, 2, . . . , d) with

the tensorial product of all the vectors f̃
1

j , for j 6= γ.

The vector f̃
1

γ minimizing J (f̃
1

γ) in (16) is precisely

f̃
1

γ =
1

α
g (20)

This has to be done for all the dimensions, that is for γ = 1, 2, . . . , d and iterated until the consecutive

approximations of f̃
1

j reach stationarity. That is to say, assume each loop on γ is computing f̃
new

j as an

approximation to f̃
1

j starting from initial guesses f̃
old

j . Convergence is reached once, for some tolerance

η, ‖fnew
j − fold

j ‖ < η for all j = 1, 2, . . . , d. Note that the stationarity condition is expressed in terms of
the normalized vectors f j to avoid the possibility that arbitrary constants with unit product may affect

the d terms. Note that the sectional errors ‖fnew
j − fold

j ‖ are already relative because all the vectors
are normalized. Moreover, in the practical implementation the global error taken into the account is
the product of all the sectional norms that stands for the Frobenius norm of the multidimensional error
tensor, namely

ε = ‖F new
PGD
− F old

PGD
‖ =




d∏

j=1

(fnew
j − fold

j )T(fnew
j − fold

j )



1/2

(21)

The strategy presented above for a rank-one approximation of some tensor F is summaryzed in Algo-
rithm 1.
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The strategy presented above for a rank-one approximation of some tensor F is sum-
maryzed in Algorithm 1.

Data: Tensor of order d to be approximated: F with general term [F ]i1i2...id ,
(for iγ = 1, . . . , nγ and γ = 1, . . . , d)
Result: Rank-one approximation: F

PGD
= σf 1 ⊗ f 2 ⊗ · · · ⊗ f d

Initialize: assign values to f old
i , for i = 1, 2, . . . , d ; select a tolerance η

Compute σold =
d∏

j=1

[
f oldT
j f old

j

]1/2
;

Normalize: f old
j ←

[
f oldT
j f old

j

]−1/2
f old
j , for j = 1, 2, . . . , d ;

while ε > η or εσ > η do
for γ = 1 . . . d do

Compute α =
∏

j 6=γ
f oldT
j f old

j

Compute g such that

[g]iγ =

n1∑

i1=1

· · ·
nγ−1∑

iγ−1=1

nγ+1∑

iγ+1=1

· · ·
d∑

id=1

[F ]i1...iγ−1iγ iγ+1...id

d∏

j 6=γ

[
f̃

1

j

]
ij

Compute f new
γ =

1

α
g

end

Compute σnew =
d∏

j=1

[
f newT
j f new

j

]1/2
;

Normalize: f new
j ←

[
f newT
j f new

j

]−1/2
f new
j , for j = 1, 2, . . . , d ;

Compute modal error ε =

[
d∏

j=1

(f new
j − f old

j )T(f new
j − f old

j )

]1/2
;

Compute amplitude error εσ =
∣∣σnew − σold

∣∣ / |σnew|;
Update f old

j ← f new
j , for j = 1, 2, . . . , d ; σold ← σnew;

end
Store f j ← f new

j , for j = 1, 2, . . . , d ; σ ← σnew;

Algorithm 1: Algebraic rank-one approximation for non-separable tensor F
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Algorithm 1. Algebraic rank-one approximation for non-separable tensor F .

2.3. Accounting for a separable input

Algorithm 1 is easily adapted to the case in which the input tensor is already provided in a separated
format. That is, instead of having F , we have Φ such that

Φ =

L∑

`=1

φ`1 ⊗ φ`2 ⊗ · · · ⊗ φ`d (22)

The LS approximation of Φ in the form of another separated tensor F
PGD

is meaningful because it may
significantly reduce the number of terms required to represent the same tensorial magnitude. That is, one
would expect having M � L and achiving a similar accuracy. Actually, this strategy is often used along
the PGD computations because, when solving parametric boundary value problems, the PGD terms may
exhibit redundancies (linear functional dependencies) from a LS viewpoint, see [18].

In practice, replacing the full tensor F by the separated tensor Φ results only in a difference in the
computation of the auxiliary vector g in (18) or (19). Actually, in this case, (18) is readily replaced by

g = Φ ..
. d⊗

j 6=γ

f̃
1

j =

L∑

`=1




d∏

j 6=γ

φ`Tj f̃
1

j


φ`γ . (23)

Thus, adapting Algorithm 1 to the case in which the input tensor is already expressed in separable
format requires only replacing the line in which vector g is computed, using (23) instead of (18). This is
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in practice the only difference between the algorithm providing rank-one tensor separation and rank-one
tensor compression.

3. Complete LS PGD algorithm

The strategies described in the previous sections allow obtaining a LS PGD approximation FM
PGD

ac-

cording to (14) of a d-dimensional tensor F ∈ IRn1×···×nd . The same strategy works also for an already
separated input tensor Φ as given in (22). Both the separation of F and the compression of Φ are per-
formed by algorithms having the same structure and the only difference is in the computation of vector
g which is performed using (18) for the separation and (23) for the compression.

The present section is devoted to summarize the ideas of sections 2.1 and 2.2 in a compact algorithmic
form.

As already indicated above, the main idea is to use the rank-one approximation Algorithm 1 to compute
the successive terms that conform F

PGD
, following the greedy approach described in section 2.1. The core of

the algorithm is the rank-one updating from Fm−1
PGD

to Fm
PGD

. This is essentially following the same rationale

as in Algorithm 1 but replacing F by F − Fm−1
PGD

as the tensor to be rank-one approximated.
Thus, the rank-one approximation inside the greedy loop aims at approximating

fm1 ,f
m
2 , . . . ,f

m
d and σm that provides the best rank-one update of Fm−1

PGD
. Here again, this results in a

different expression to compute vector g, alternative to (18), namely

g = (F − Fm−1
PGD

) ..
. d⊗

j 6=γ

fmj = F ..
. d⊗

j 6=γ

fmj −
m−1∑

m̃=1

σm̃




d∏

j 6=γ

f m̃T
j fmj


f m̃γ . (24)

Where the separated structure of F
PGD

is used in the last term, following exactly the same as in (23) with
Φ.

Thus, the difference between the rank-one approximation described in Algorithm 1 and the complete
PGD approximation summarized in Algorithm 2 lies in the addition of an outer loop on the number of
terms (looping for m) and in the computation of g that is performed according to (24).

3.1. Algorithmic details: separated and complex inputs

Analogously as it discussed in Section 2.3, Algorithm 2 is easily adapted to accept a separable input
Φ instead of a full multimensional tensor F . Here again, the only difference between separation (of F )
and compression (of Φ) lies in the expression to compute vector g that for compression reads

g = (Φ− Fm−1
PGD

) ..
. d⊗

j 6=γ

fmj =

L∑

`=1




d∏

j 6=γ

φ`Tj f
m
j


φ`γ −

m−1∑

m̃=1

σm̃




d∏

j 6=γ

f m̃T
j fmj


f m̃γ . (25)

In the case the input data is complex, that is either F or Φ lie in Cn1×···×nd instead of IRn1×···×nd ,
the algorithm has to be slightly modified. In practice, all the modifications derive from the fact that the
Frobenius-type norm for complex tensors differs from (10) in the sense that the first argument in the
product has to be conjugated and therefore it reads

‖F ‖2 = F̄ ..
.
F =

[
F̄
]
j1j2...jd

[F ]j1j2...jd =

n1∑

j1=1

n2∑

j2=1

· · ·
nd∑

jd=1

∣∣∣[F ]j1j2...jd

∣∣∣
2

, (26)

8



Data: Tensor of order d to be approximated: F with general term [F ]i1i2...id ,
(for iγ = 1, . . . , nγ and γ = 1, . . . , d)
Tolerances 0 < η � 1 for alternated directions and 0 < η? � 1 for greedy algorithm

Result: PGD approximation: F
PGD

=
M∑

m=1

σmf
m
1 ⊗ fm2 ⊗ · · · ⊗ fmd

Initialize counter of PGD terms m = 1 and starting value of amplitude σ1 = 1
while σm > η?σ1 do

Initialize: assign values to f old
j , for j = 1, 2, . . . , d ;

Compute σold =
d∏

j=1

[
f oldT
j f old

j

]1/2
;

Normalize: f old
j ←

[
f oldT
j f old

j

]−1/2
f old
j , for j = 1, 2, . . . , d ;

while ε > η or εσ > η do
for γ = 1 . . . d do

Compute α =
∏

j 6=γ
f oldT
j f old

j

Compute g such that

[g]iγ =

n1∑

i1=1

· · ·
nγ−1∑

iγ−1=1

nγ+1∑

iγ+1=1

· · ·
d∑

id=1

[F ]i1...iγ−1iγ iγ+1...id

d∏

j 6=γ

[
f old
j

]
ij

−
m−1∑

m̃=1

σm̃

(∏

j 6=γ
f m̃T
j f old

j

)
[
f m̃γ
]
iγ

, for iγ = 1, 2, . . . , nγ ;

Compute f new
γ =

1

α
g

end

Compute σnew =
d∏

j=1

[
f newT
j f new

j

]1/2
;

Normalize: f new
j ←

[
f newT
j f new

j

]−1/2
f new
j , for j = 1, 2, . . . , d ;

Compute modal error ε =

[
d∏

j=1

(f new
j − f old

j )T(f new
j − f old

j )

]1/2
;

Compute amplitude error εσ =
∣∣σnew − σold

∣∣ / |σnew|;
Update f old

j ← f new
j , for j = 1, 2, . . . , d ; σold ← σnew;

end
Store: σm ← σ; fmj ← f new

j , for i = 1, 2, . . . , d;
Update m← m+ 1;

end
Store: M ← m;

Algorithm 2: Algebraic PGD approximation for multidimensional tensor F
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where the bar (̄·) stands for the conjugate quantity. This affects the computation of the norms of the
sectional vectors such that the scalar products require not only to transpose one of the vectors but also
to conjugate it. Moreover, in the tensorial multicontraction in, for instance, (25) what is located left to
symbol ..

.
must be conjugated. This results in replacing (25) by

g = (Φ− Fm−1
PGD

) ..
. d⊗

j 6=γ

fmj =

L∑

`=1




d∏

j 6=γ

φ̄
`T
j f

m
j


φ`γ −

m−1∑

m̃=1

σm̃




d∏

j 6=γ

f̄ j
m̃T
fmj


 f̄ m̃γ . (27)

3.2. Disambiguating normalization

In the stopping criterion of the alternated directions iterations, the comparison of the successive ap-
proximation to the sectional modes in Algorithms 1 and 2 is carried out in terms of the normalized vectors,

9



see (21). Thus, in the algorithms, the normalization is readily indicated as fnew
j ←

[
fnewT
j fnew

j

]−1/2
fnew
j ,

for j = 1, 2, . . . , d. However, this operation must be a little bit more sophisticated. In the real framework,
the normalization must also disambiguate the sign. In other words, dividing by the norm there could be
±1 factors that may affect all the sectional modes (with an even number of −1 that globally cancel out).
In this situation, the numerical stopping criterion is requiring more iterations although, in practice, the
stationarity in the alternated directions iterations has already been reached. The solution to this problem
is simple but it cannot be overlooked. One possibility is to disambiguate the sign by enforcing that the
largest (in absolute value) component of fnew

j is positive.
If dealing with complex variables, the standard normalization would be

fnew
j ←

[
f̄
newT
j fnew

j

]−1/2
fnew
j , for j = 1, 2, . . . , d. In this case, the ambiguity is not only up to a sign but

up to any complex coefficient with unit module. The different modes fnew
j may be affected by coefficients

zj , j = 1, 2, . . . , d, with |zj | = 1 and such that
∏d
j=1 zj = 1 to cancel out globally. In order to disambiguate

these factors, the normalization is carried out such that that the largest (in module) component of fnew
j

is real and positive.

4. Numerical examples

The methodologies presented above for PGD tensor separation and tensor compression are tested in
this section for different numerical examples.

4.1. Example 1: separation of a 2D manufactured tensor

The first example uses a tensor F synthetically manufactured from a reduced number (six) of separated
modes. Thus, the separation algorithm, whose input is the full reconstructed tensor is challenged to
produce a number of modes similar to the number used to manufacture the input. The bidimensional
(d = 2) tensor F is generated from a separated expression,

Φ(x, y) =

6∑

`=1

φ`x ⊗ φ`y (28)

where the modal vectors φ`x and φ`y, for ` = 1, . . . , 6, are defined as the images of vector ξ = [0 1
99

2
99 . . .

98
99 1]T ∈

IR100 by different continuous functions taking values in [0, 1], namely φ`x = φ`x(ξ) and φ`y = φ`y(ξ), where

10



φ1x(x) = sin(πx) φ1y(y) = sin(πy) (29a)

φ2x(x) = exp

(−(x− 0.5)2

0.01

)
φ2y(y) = − exp

(−(y − 0.5)2

0.01

)
(29b)

φ3x(x) = exp

(−(x− 0.2)2

0.01

)
φ3y(y) = exp

(−(y − 0.2)2

0.02

)
(29c)

φ4x(x) = exp

(−(x− 0.6)2

0.005

)
φ4y(y) = exp

(−(y − 0.9)2

0.005

)
(29d)

φ5x(x) = exp

(−(x− 0.1)2

0.01

)
φ5y(y) = exp

(−(y − 0.75)2

0.005

)
(29e)

φ6x(x) = exp

(−(x− 0.8)2

0.02

)
φ6y(y) = − exp

(−(y − 0.2)2

0.002

)
. (29f)

Figure 1 shows the 1D modal functions φ`x and φ`y. The reconstructed 2D tensor F is represented in
Figure 4a.

The PGD separation described in Algorithm 2 is applied to F , and provides

FM
PGD

=

M∑

m=1

σmf
m
x ⊗ fmy . (30)

The functions corresponding to vectors fmx and fmy defining the first six modes (depicted in Figure 1)
account for the exact separated representation of F . The algorithm in two-dimensions provides an optimal
separated form coinciding to the results provided by a singular value decomposition method (see Figure
2a). The modal error evolution is computed as the Frobenius norm of the difference of the tensors F and
FM

PGD
. The exact solution is reached with 6 modes up to machine precision as can be seen in Figure 2b.

4.2. Example 2: separation of a higher dimension tensor

Ir order to analyze the behaviour of the algorithm in higher dimensions, the previous case has been
extended to a seven-dimensional synthetic problem. A set of functions similar to (29) is used to build the
higher-order tensor,

φ1k(xk) = sin(πxk)

φjk(xk) = ajk exp

(−(xk − bjk)2

cjk

)
.

for j = 2, . . . , 6 and k = 1, . . . 7, in the domain [0, 1]7. The discretization of each dimension is done with
10 points, that is ξ = [0 1

9
2
9 . . .

8
9 1]T ∈ IR10, providing a full tensor with 107 real entries. Coefficients a,

b and c are described in Appendix A.
The results of the seven dimensional case show that the obtained separation does not recover the original

6 modes used to build the tensor. It actually requires 150 terms to obtain separated representation with
a relative error of 10−3 (Figure 3). This is standard in higher dimensional problems, because none of the
available separation procedures is able to provide optimal solutions for d > 2 [14]. Note however that
the reduction in terms of storage is significant: the 107 real entries of the full tensor are reduced in the
separated form to 150 × 7 × 10 ≈ 104. That is, the relative error of 10−3 is the (small) price to pay for
saving 3 orders of magnitude in the storage.
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Fig. 1. Example 1: Input modal functions φ`x and φ`y , for ` = 1, . . . , 6 (in blue) used to manufacture F and modes fj
x and

fj
y , for ` = 1, . . . ,M = 6 (in red) of the separated representation of FPGD .

4.3. Example 3: denoising data

An additional application of the proposed PGD algorithm is to filter noise in a data set. In this context,
this example retakes the previous 2D case of Section 4.1 perturbing the input by adding a random noise
with an amplitude of 2% of the maximum tensor value, see Figure 4b. Thus, the 6 modes describing the
tensor presented in Example 1 are duly identified and separated from the noise that is actually modelled
(or represented) by the remaining modes. Figure 5 shows the modal error evolution with respect to the

12



Fig. 2. Example 1: [Panel a] Modal amplitudes (σm) of the first 6 terms of the PGD separated tensor and comparison with

the modal amplitudes provided the Singular Value Decomposition method. [Panel b] Relative error of the PGD separated
tensor in Frobenius norm as a function of number of terms.

Fig. 3. Example 2: [Panel a] Modal amplitudes (σm) of the first 150 terms of the PGD separated tensor. [Panel b] Relative

error of the PGD separated tensor in Frobenius norm as a function of number of terms.

original and noised tensors. As it can be seen, the first 6 modes provide an accurate approximation of
the original tensor, while from mode 7 on, the algorithm is adding to the separated representation the
information added by the noise. It can be observed in Figure 5 that the discrepancies ‖F noised−FPGD

‖ and
‖F − F

PGD
‖ differ at the sixth mode and the following ones. This is associated with the fact that F

PGD
is

computed as an approximation of the tensor perturbed by the noise, F noised, and not from the original
one, F . This is essentially visible for the 6th mode because it is where relative amplitude of the mode
(the accuracy) meets the magnitude of the noise.

That is the reason why the error computed against the original tensor increases after mode 6. Further-
more, in case of the error computed against the noised tensor, it decreases as the solution approaches
to the noised configuration. Note that from mode 6 on, such error decreases linearly with a very low
convergence rate as expected in the reproduction of a function with structure (noise).
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Fig. 4. Examples 1 and 3: [Top left panel] Representation of the tensor F used in Example 1. [Top right panel] Noised

version of F . [Bottom panel] Denoised tensor via the PGD algorithm.

4.4. Example 4: compression of higher-order complex separated tensor

The PGD compression strategy presented above is here applied to a complex tensor of large size and
dimension d = 4. The tensor, Φ, is already available in a separated format as shown in (22) and contains
the data to be compressed. It is the PGD solution of a parameterized sea wave propagation problem in
harbor taken from [18], see Figure 6 for an illustration. The four dimensions correspond to the space
distribution of the (complex) wave height and the three parameters, which are: 1) the incoming wave
direction, 2) the wave frequency and 3) the reflectivity of the coastline. The original dataset has L = 1500
modes using a discretization of space, frequency, angle and reflectivity of 15757, 100, 50 and 10 degrees of
freedom respectively. Note that the problem is stated in frequency domain and all dimensions are stored
as complex numbers. The full tensor of this solution, therefore, occupies 12GB of memory (corresponding
to 15757 × 100 × 50 × 10 = 787.85 × 106 complex entries) The storage of the separated solution with
1500 modes (corresponding to 1500× (15757 + 100 + 50 + 10) = 23.8755× 106 complex entries) requires
364MB. The goal of the compression is to approximate Φ by F

PGD
with M � L and to significantly

reduce the storage requirements while maintaining the accuracy of the represented quantities. Here
the PGD compression is carried out to obtain 200 modes (instead of using a tolerance η? to stop the
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Fig. 5. Example 3: Evolution with the number of modes of the relative error of the result of the PDG algorithm, FPGD ,
computed against i) the original tensor F and ii) the noised version F noised (used as input for PGD).

Fig. 6. Example 4: [Left panel] domain, boundary conditions and parameters of the parameterized wave problem (from [18]).
[Right panel] illustration of one spatial solution for some set of parameters.

process). Note that with 200 modes, the storage requirement reduce to 48.5MB. The objective is to check
wether the PGD compression produces a better description of the data when the number of modes is
limited by the storage capacity. The results are shown in Figure 7. In the left, the evolution of the modal
amplitudes is represented and, as expected, they globally show a decreasing trend until they get stabilized.
More interestingly, in the right curve, the actual error ‖Φ− Fm

PGD
‖ is represented and shows a monotonic

decreasing behavior. Moreover when compared with the error associated with the truncation of Φ to the
first 200 terms, namely ‖Φ −∑200

`=1 φ
`
1 ⊗ φ`2 ⊗ φ`3 ⊗ φ`4‖. This value is represented in the right panel of

Figure 7 as a red cross. It can be noted that, with respect to the first 200 terms of the original separation
of Φ, the error associated with F 200

PGD
is one order of magnitude lower.

This example is therefore demonstrating that the PGD compression is able to shorten the separable
expressions and improve the accuracy of the overall representation at a limited storage capacity.
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Fig. 7. Example 4: [Left panel] evolution of modal amplitudes (σm) along the first 200 terms of PGD compression. [Right
panel] evolution of the relative error of the PGD compression (with respect to the full Φ tensor). The red cross marks the

value of the norm of the difference between Φ and the tensor reconstructed with the first original 200 modes of Φ.

5. Concluding remarks

The PGD Least-Squares approximation is presented here as a computational tool to perform high-
dimensional tensor separation at an affordable computational cost and with a limited coding complexity.
The algorithms are discussed in detail, with special emphasis on the stopping criteria for both the greedy
strategy and the alternated directions iteration scheme.

Moreover, the same idea is also used to compress separated approximations with a large number of
terms and to reduce the storage requirements while keeping the accuracy of the separated representation.
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Appendices
A. Appendix

The functions used in the construction of the seven-dimensional tensor used in Section 4.2 are described
next. The matrix A built with the coefficients ajk reads,

A =




1 −1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 −1 1 1 1 1 1




Similarly, the coefficients bjk and cjk are,

B =




0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.6 0.9 0.6 0.6 0.6 0.6 0.6

0.1 0.75 0.1 0.1 0.1 0.1 0.1

0.8 0.2 0.8 0.8 0.8 0.8 0.8




C =




0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.02 0.01 0.02 0.02 0.02 0.02

0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.02 0.01 0.02 0.02 0.02 0.02
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