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Abstract

In this paper we introduce some pressure segregation methods obtained from a non-standard
version of the discrete monolithic system, where the continuity equation has been replaced by a
pressure Poisson equation obtained at the discrete level. In these methods it is the velocity instead
of the pressure the extrapolated unknown. Moreover, predictor corrector schemes are suggested,
again motivated by the new monolithic system. Key implementation aspects are discussed, and
a complete stability analysis is performed. We end with a set of numerical examples in order to
compare these methods with classical pressure correction schemes.

1 Introduction

At the continuous level, from the Navier-Stokes equations for incompressible flows (the momentum
and continuity equations) a pressure Poisson equation (PPE, from now onwards) can be obtained. An
alternative system to the classical Navier-Stokes equations can be the momentum equation together
with the PPE instead of the continuity equation. Unfortunately, the numerical approximation of the
PPE equation is an involved task due to the presence of third order derivatives for the velocity field. In
order to facilitate the numerical approximation, asimplifiedPPE could be considered by assuming that
the divergence and the Laplace operators commute and deleting the viscous contribution to the PPE.
Nevertheless, as it is shown by Gresho and Sani in [8], this alternative form is not equivalent to the
Navier-Stokes equations. Therein it is shown that the system with thesimplifiedPPE admits spurious
solutions that are not solution of the original Navier-Stokes equations.

In this article we explore an alternative version of the fully discretized monolithic system that is ob-
tained at the discrete level. As for the continuous problem, from the discrete momentum and continuity
equations a discrete pressure Poisson equation (DPPE, from now onwards) can be easily obtained. This
leads to a new fully discrete monolithic system composed by the DPPE and the discrete momentum
equation. However, it is not our interest to solve this DPPE monolithic problem.

In this paper we are interested in the development of new pressure segregation methods. We classify
these methods in two families: pressure-correction methods and velocity-correction methods.

The concept of pressure-correction schemes appeared when trying to obtain second order accurate
projection methods. In [17] Van Kan introduced a second order pressure-correction method where the
pressure in the momentum equation was extrapolated from the value of the previous time step. In fact,
the classical Chorin-Temam projection method can be understood as a pressure-correction scheme with
a zero order extrapolation of the pressure.
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The appearance of methods where it is the velocity instead of the pressure the extrapolated unknown
is very recent. In [11] Guermond and Shen have introduced first versions of velocity-correction methods
(VC, from now onwards).

Different VC schemes can be easily obtained at the discrete level from the DPPE monolithic system.
We propose a method where the pressure is obtained from the DPPE using an extrapolated velocity.
After it is computed, this pressure is used in the momentum equation in order to obtain the velocity.

The DPPE system matrix is a cumbersome matrix. This is why a further approximation is suggested
in order to make the method more appealing from a computational point of view. This approximation
can be understood as an improved version of the one widely used for pressure-correction methods
(see [3]).

From pressure-correction methods, predictor-corrector methods can be easily obtained. Here we
design a predictor-corrector scheme where all the terms are motivated from the DPPE monolithic sys-
tem. This is a main difference in comparison to some predictor-corrector methods based on pressure-
correction schemes (see [7]).

The stabilized version of velocity-correction schemes using the orthogonal subscale stabilization
method (see [4]) has also been studied and some possibilities discussed.

We have proved some stability bounds for different schemes. We have compared the inherent pres-
sure stability of VC methods with that of pressure-correction methods. This analysis is similar to that
presented in [5] for pressure-correction methods. In fact, the present paper is a continuation of the effort
initiated in this reference to analyze and design robust methods that uncouple the velocity and pressure
calculations.

The outline of the paper is as follows. In Section 2 some preliminaries for the continuous and
discrete problems are stated for the monolithic system. In Section 3, velocity-correction methods are
introduced and discussed. Section 4 is devoted to a new family of predictor-corrector methods. The sta-
bilized version of VC schemes is introduced in Section 5. In Section 6 some implementation aspects are
discussed. Section 7 is devoted to the numerical analysis of VC methods. Stability results for different
cases are obtained. The important point is that no reference at all is made to compatibility conditions
between the velocity and pressure interpolating spaces, that is, they do not need to satisfy any inf-sup
condition. Section 8 presents a set of numerical tests that show the behavior of these new schemes in
comparison with the classical pressure-correction methods and, finally, the paper concludes in Section 9
with some final remarks.

2 Preliminaries and problem statement

2.1 The continuous problem

Let Ω be the domain ofRd occupied by the fluid, whered = 2 or 3 is the number of space dimensions,
Γ = ∂Ω its boundary and[0, T ] the time interval of analysis. The Navier-Stokes problem consists of
finding a velocityu and a pressurep such that

∂tu− ν∆u + u · ∇u +∇p = f in Ω, t ∈ (0, T ), (1a)

∇ · u = 0 in Ω, t ∈ (0, T ), (1b)

u = 0 on Γ, t ∈ (0, T ), (1c)

u = u0 in Ω, t = 0, (1d)

whereν is the kinematic viscosity,f is the force vector andu0 is the velocity initial condition. We have
considered the homogeneous Dirichlet boundary condition (1c) for simplicity.
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An alternative form of the Navier-Stokes equations where the continuity equation (1b) is replaced
by a new equation that replaces the mass conservation can also be considered. A pressure Poisson equa-
tion (PPE) that implies mass conservation can be obtained by taking the divergence of the momentum
equation (1a) and invoking (1c), leading to the system

∂tu + u · ∇u− ν∆u +∇p = f , (2a)

∆p = ∇ · (f + ν∆u− u · ∇u). (2b)

The pressure boundary condition is obtained by imposing that the normal component of the pressure
gradient is equal to the normal component of the term within parenthesis in the right hand side of (2b).
As commented below, the term∇ · (ν∆u) complicates the finite element approximation of the PPE
equation. We can extract this term from the equation by commuting operators, leading to asimplified
PPE:

∆p = ∇ · (f − u · ∇u). (3)

Unfortunately, this equation is ill-posed. It can be shown that (2a)-(3) admits extraspurioussolutions
that do not satisfy the original Navier-Stokes equations. Thesespurioussolutions satisfy

∂t(∇ · u)− ν∆(∇ · u) = 0, (4)

which does not necessarily imply∇ · u = 0 for t ∈ (0, T ). Thus, the false equivalence between the
original continuity equation (1b) and the simplified PPE obtained at the continuous level makes (2a)-(3)
an inappropriate alternative to the original Navier-Stokes equations. The problems arising when using
the simplified PPE are analyzed in [8].

2.2 Weak form

To pose the weak form of problem (1), we need the functional spacesV0 = H1
0(Ω), andQ = L2(Ω)/R.

As usual,L2(Ω) denotes the space of square integrable functions andH1(Ω) the spaces of functions
in L2(Ω) with first derivatives also inL2(Ω), whereasH1

0 (Ω) is the subspace ofH1(Ω) of functions
vanishing on∂Ω. Its dual will be denoted byH−1(Ω) and the duality pairing betweenH−1(Ω) and
H1

0 (Ω) by 〈·, ·〉. A bold character is used for the vector counterpart of these spaces.
For the evolutionary Navier-Stokes equations we also need to introduce(V0)t ≡ L2(0, T ;V0) and

Qt ≡ L1(0, T ;Q), whereLp(0, T ; X) is the space of time dependent functions in a normed spaceX

such that
∫ T
0 ‖f‖Xdt < ∞, 1 ≤ p < ∞. Then, the weak form of (2) consists of findingu ∈ (V0)t and

p ∈ Qt such that:

(∂tu, v) + ν(∇u,∇v) + (u · ∇u, v) + 〈∇p, v〉 = 〈f , v〉 ∀v ∈ V0, (5a)

〈∇q, u〉 = 0 ∀q ∈ Q. (5b)

In these equations we have assumed that the force vector belongs toH−1(Ω).
If we want to obtain the weak form of (2) with homogeneous Dirichlet boundary conditions, we

need some more regularity in the solution. Let us consider the functional spaces(Ṽ0)t ≡ L2(0, T ; Ṽ0)
andQ̃t ≡ L2(0, T ; Q̃), with Ṽ0 ≡ H1

0(Ω) ∩ H2(Ω) andQ̃ ≡ H1(Ω)/R. Now we assume that the
force vector belongs toL2(Ω). The weak form consists of finding(u, p) ∈ (Ṽ0)t × (Q̃)t such that:

(∂tu,v) + ν(∇u,∇v) + (u · ∇u,v) + (∇p,v) = (f , v), (6a)

(∇p,∇q) = (f − u · ∇u + ν∆u,∇q), (6b)
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for all (v, q) ∈ Ṽ0 × Q̃. We could recover the regularity requirements of the previous formulation
by taking the pressure test function inH2(Ω). However, either this choice or (6b) imply the need to
construct finite element approximations toH2(Ω), which is an involved task (at least for conforming
interpolations, as we consider throughout). Thus, the finite element discretization of the pressure Pois-
son equation (6b) will not be studied. We could try to circumvent the regularity assumptions neglecting
the diffusive term in (6b). Unfortunately, the simplified Poisson equation is ill-posed, as commented
above.

2.3 Discrete problem

In this section we study the discretization of (1). For the time discretization we propose the trapezoidal
rule and backward differencing schemes (BDF). For the spatial approximation we will use in this section
the standard Galerkin finite element method. However, no reference will be made to the need to satisfy
any compatibility condition between the velocity and pressure finite element spaces. The introduction
of stabilization techniques is deferred until Section 5, where a stabilization technique designed to allow
equal velocity-pressure interpolation and convection-dominated flows will be presented.

2.3.1 Monolithic time discretization

Let us introduce some notation that we will use throughout the work. Consider a uniform partition of
the time interval of sizeδt, and let us denote byfn the approximation of a time dependent functionf
at time leveltn = nδt. For a parameterθ ∈ [0, 1], we will denote

fn+θ = θfn+1 + (1− θ)fn,

δfn+1 ≡ δ(1)fn+1 = fn+1 − fn,

δ(i+1)fn+1 = δ(i)fn+1 − δ(i)fn, i = 1, 2, 3, ...

The discrete operatorsδ(i+1) are centered. We will also use the backward difference operators

Dkf
n+1 =

1
γk

(fn+1 −
k−1∑

i=0

αk
i f

n−i),

which fork = 1, 2 and 3 become:

D1f
n+1 = δfn+1 = fn+1 − fn,

D2f
n+1 =

3
2
(fn+1 − 4

3
fn +

1
3
fn−1),

D3f
n+1 =

11
6

(fn+1 − 18
11

fn +
9
11

fn−1 − 2
11

fn−2).

We will also use the backward extrapolation operators

f̃n+1
0 = 0,

f̃n+1
1 = fn,

f̃n+1
2 = 2fn − fn−1,

or, in general,

f̃n+1
i = fn+1 − δ(i)fn+1 = fn+1 +O(δti), i = 0, 1, 2, ...
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For the time integration of problem (5) we consider two types of finite difference approximations.
The first is the generalized trapezoidal rule, which consists of solving the following problem: from
knownun, find un+1 ∈ V0 andpn+1 ∈ Q such that

(
1
δt

D1u
n+1 + un+θ · ∇un+θ,v) + ν(∇un+θ,∇v)− (pn+1,∇ · v) = 〈fn+θ, v〉, (7a)

(q,∇ · un+θ) = 0, (7b)

for all (v, q) ∈ V0×Q. The force termfn+θ in (7a) and below has to be understood as the time average
of the force in the interval[tn, tn+1], even though we use a superscriptn + θ to characterize it. The
pressure value computed here has been identified as the pressure evaluated attn+1, although this is
irrelevant for the velocity approximation. The values of interest ofθ areθ = 1/2, corresponding to the
second order Crank-Nicolson scheme, andθ = 1, which corresponds to the backward Euler method.

Backward differencing (BDF) time integration schemes will also be considered for the methods
proposed later on. The first order one (BDF1) coincides with the backward Euler method. BDF1 and
the second order scheme BDF2 areA-stable. Higher order methods do not keep this interesting property
anymore, limitation known assecond Dahlquist barrier. Nevertheless, BDF3 holds a less demanding
A(α)-stability property, withα = 86◦, that makes these methods still appropriate. See [13] for a
complete exposition of BDF methods and their stability properties.

For the second order scheme BDF2,u1 can be computed from the backward Euler method, whereas
for n ≥ 1 the unknownsun+1 ∈ V0 andpn+1 ∈ Q are found by solving the problem

(
1
δt

D2u
n+1 + un+1 · ∇un+1,v) + ν(∇un+1,∇v)− (pn+1,∇ · v) = 〈fn+1, v〉,

(q,∇ · un+1) = 0,

for all (v, q) ∈ V0 ×Q. The BDF3 also requiresu2 for being initialized.
For ak-th order BDF method, the unknownsun+1 ∈ V0 andpn+1 ∈ Q, with n + 1 ≥ k, are found

by solving the problem

(
1
δt

Dku
n+1 + un+1 · ∇un+1, v) + ν(∇un+1,∇v)− (pn+1,∇ · v) = 〈fn+1,v〉, (9a)

(q,∇ · un+1) = 0, (9b)

for all (v, q) ∈ V0 ×Q.
The backward Euler method will be used for first order pressure-correction methods in time,

whereas for second order methods we will consider both the Crank-Nicolson and the BDF2 schemes.
The BDF3 time integration scheme can be used for third order velocity-correction methods with appro-
priate extrapolations in order to reach a third order velocity-correction method. However, as we note
below, these methods become unstable in some cases and have not been considered in the numerical
experimentation.

2.3.2 Finite element discretization

Let Θh denote a finite element partition of the domainΩ of diameterh, from which we construct the
finite element spacesQh andVh,0, approximations toQ andV0, respectively. The former is made up
with continuous functions of degreekq and the other with continuous vector functions of degreekv

verifying the homogeneous Dirichlet boundary conditions. In the following, finite element functions
will be identified with a subscripth.
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The discrete problem is obtained by approximatingu andp. We assume thatun
h andpn

h are con-
structed using the standard finite element interpolation from the nodal values. These are solution of the
nonlinear algebraic system

M
1
δt

DkUn+1 + K(Un+1)Un+1 + GPn+1 = Fn+1, (10a)

DUn+1 = 0, (10b)

whereUn+1 andPn+1 are the arrays of nodal values forun+1
h andpn+1

h , respectively, obtained from
the monolithic system at the time stepn + 1. Let us recall the matrices needed for the fully discrete
problem. If we denote the node indexes with superscriptsa, b, the space indexes with subscriptsi, j, and
the standard shape function of nodea by Na, the components of the arrays involved in these equations
are:

Mab
ij = (Na, N b)δij (δij is the Kroneckerδ),

K(Un+θ)ab
ij = (Na,un+θ

h · ∇N b)δij +
1
2

(
Na, (∇ · un+θ

h )N b
)

δij + ν(∇Na,∇N b)δij ,

Gab
i = (Na, ∂iN

b),

Dab
j = (Na, ∂jN

b),

Fa
i = 〈Na, fi〉.

It is understood that all the arrays are matrices (exceptF, which is a vector) whose components are
obtained by grouping together the left indexes in the previous expressions (a and possiblyi) and the
right indexes (b and possiblyj). Likewise, system (10) needs to be modified to account for the Dirichlet
boundary conditions (matrixG can be replaced by−Dt when this is done). Observe also that we have
used the skew-symmetric form of the convective term, which yields the convective contribution to
matrixK(Un+θ) skew-symmetric.

2.3.3 A discrete pressure Poisson equation

At the continuous level the PPE is not an appropriate equation to be discretized as it has been com-
mented above. Here we propose a discrete pressure Poisson equation (DPPE) obtained in a matrix
setting from the fully discretized form of the classical incompressible Navier-Stokes equations, after
multiplying (10a) byδtDM−1 and invoking (10b) in the resulting equation. Replacing the discrete con-
tinuity equation (10b) by the DPPE, the equivalent monolithic scheme is

M
1
δt

DkUn+1 + K(Un+1)Un+1 + GPn+1 = Fn+1, (11a)

γkδtDM−1GPn+1 = γkδtDM−1(Fn+1 − K(Un+1)Un+1) + D(
k−1∑

i=0

αi
kUn−i), (11b)

for ak-th order BDF time discretization. The parametersγk andαi
k for i = 0, ..., k − 1 that define this

time discretization have been introduced in Section 2.3.1 fork = 1, 2 and 3. Note that matrixDM−1G
is a discrete version of the Laplacian operator. Thus, equation (11b) is a discretization of the Poisson
equation, although not in the most usual way.

Obviously, for the obtention of scheme (11) proposed herein,no extra regularity conditions are
required, a main difference in comparison to the continuous PPE (2b). This scheme, which has been
obtained after algebraic manipulation,is truly equivalent to the original monolithic discretized scheme
(10). Furthermore, boundary conditions arise naturally from the original scheme.
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2.3.4 Approximation of DM−1G

An straightforward implementation of (11) is not affordable in most cases. Implementation aspects
for this new scheme are studied later. But the critical point is the approximation to the discrete Laplace
operatorDM−1G, which is a dense matrix in general. It would be computationally expensive even using
a diagonal matrixM. At this point, a further approximation is introduced in order to avoid this system
matrix. As it is typically done for pressure-correction methods, we can approximate

DM−1G ≈ L, with componentsLab = −(∇Na,∇N b), (12)

where the matrixL is the standard approximation to the Laplace operator, only possible when continu-
ous pressure interpolations are employed. As for fractional step methods, this approximation introduces
wrong pressure boundary conditions (see [8]). Here we propose anenhancedapproximation

DM−1GPn+1 = LPn+1 + (DM−1G− L)Pn+1 ≈ LPn+1 + (DM−1G− L)P̃
n+1

p , (13)

whereP̃
n+1

p is an extrapolation ofPn+1 of orderp obtained from previous known values. This new
approximation couples space and time errors, yielding better accuracy. Using (13) in the DPPE we get

γkδtL(Pn+1 − P̃
n+1

p ) = γkδtDM−1(Fn+1 − K(Un+1)Un+1 −GP̃
n+1

p ) + D(
k−1∑

i=0

αi
kUn−k), (14)

which is more interesting than (11b) from a computational point of view. This new scheme is appropri-
ate in order to obtain pressure segregation methods. Fractional step-like and predictor corrector methods
can now be designed.

3 Velocity-correction methods based on a DPPE

3.1 Formulation of the schemes

Instead of obtaining a fractional-step-like method from the monolithic system (10), we start from sys-
tem (11), where the continuity equation has been replaced by the discrete pressure Poisson equation.
Furthermore, we consider a method where the extrapolated variable is the velocity instead of the pres-
sure. In a first step the pressure is obtained from the approximated DPPE (14) using an extrapolation of

orderq of the velocityUn+1, denoted bỹU
n+1

q . Once the pressure is computed,Un+1 is obtained from
the momentum equation. For ak-th order method using BDF, the split scheme read as follows:

γkδtDM−1GPn+1 = γkδtDM−1(Fn+1 − K(Ũ
n+1

q )Ũ
n+1

q ) + D(
k−1∑

i=0

αi
kUn−k), (15a)

M
1
δt

(DkUn+1) + K(Un+1)Un+1 + GPn+1 = Fn+1, (15b)

with q = k − 1. Invoking approximation (13) forDM−1G we obtain the following system:

γkδtL(Pn+1 − P̃
n+1

p ) = γkδtDM−1(Fn+1 − K(Ũ
n+1

q )Ũ
n+1

q −GP̃
n+1

p ) + D(
k−1∑

i=0

αi
kUn−k), (16a)

M
1
δt

(DkUn+1) + K(Un+1)Un+1 + GPn+1 = Fn+1, (16b)
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with q = p = k − 1. For instance, we can obtain a first order method (in time) takingk = 1 and
q = p = 0:

δtLPn+1 = δtDM−1Fn+1 + DUn,

M
1
δt

(Un+1 − Un) + K(Un+1)Un+1 + GPn+1 = Fn+1.

We can obtain second order accuracy in time withk = 2 andq = p = 1. In this case the system to be
solved is:

2
3
δtL(Pn+1 − Pn) =

2
3
δtDM−1(Fn+1 − K(Un)Un −GPn) + D(

4
3

Un − 1
3

Un−1), (18a)

M
1

2δt
(3Un+1 − 4Un + Un−1)+K(Un+1)Un+1 + GPn+1 = Fn+1. (18b)

Remark 1 An interesting feature of these methods is that the splitting error is related to the accuracy of
the velocity instead of the pressure (as it happens for pressure-correction methods). This is an advantage
because it is known from the convergence analysis of different pressure segregation methods that the
error estimates for the velocity are sharper than for the pressure.

Similarly, third order methods can be obtained withk = 3, that is a BDF3 time integration scheme,
andq = p = 2. Under approximation (13) the third order velocity-correction has the following form:

6
11

δtL(Pn+1 − P̃
n+1

2 ) =
6
11

δtDM−1(Fn+1 − K(Ũ
n+1

2 )Ũ
n+1

2 −GP̃
n+1

2 )

+ D(
18
11

Un − 9
11

Un−1 +
2
11

Un−2),

M
1

6δt
(11Un+1 − 18Un + 9Un−1 − 2Un−2) + K(Un+1)Un+1 + GPn+1 = Fn+1.

Unfortunately, numerical experimentation dictates that this method is only conditionally stable, as it
happens for third order pressure-correction methods.

Remark 2 Numerical experimentation dictates that VC methods areunconditionally stablefor q ≤ 1
(this is proved for some schemes in Section 7). The instabilities shown by higher order schemes seem to
be a common feature for different sorts of methods that segregate the calculation of the velocity and the
pressure. This behavior has been pointed out for pressure-correction methods in [16]. This misbehavior
is also commented in [9] and [11] for a different version of velocity-correction methods without any
definitive conclusion.

3.2 Equivalent stabilized monolithic formulation

As for pressure-correction methods in [3], we could rewrite this system in a monolithic format in order
to identify the perturbation terms introduced by the splitting. Taking the difference between (16b) after
being multiplied byδtDM−1 and (16a), we get the following equivalent system:

M
1
δt

DkUn+1 + K(Un+1)Un+1 + GPn+1 = Fn+1,

DUn+1 + βδtB(Pn+1 − P̃
n+1

p ) + δtDM−1(K(Un+1)Un+1 − K(Ũ
n+1

q )Ũ
n+1

q ) = 0,

whereB := DM−1G − L andβ = 1 if approximation (13) is used and0 otherwise. The perturbed
system obtained in this case is different to the one obtained for pressure-correction methods (see [3]),
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the main advantage being that the momentum equation is not perturbed anymore. This splitting is only

introducing a perturbation in the continuity equation. The termδtB(Pn+1− P̃
n+1

p ) (that also appears in
the classical pressure-correction scheme with approximation (12)) arises from approximation (13) and
is not an splitting error.

Remark 3 The only term due to the splitting isδtDM−1(K(Un+1)Un+1 − K(Ũ
n+1

q )Ũ
n+1

q ), which is
formally of orderO(δtq+1), q being the order of the velocity extrapolation.

3.3 An alternative form of velocity-correction methods

Instead of using approximation (13) we could decide to solve equation (11b) exactly. As noted above,
DM−1G is a cumbersome system matrix. Still, we could solve the equivalent system

M
1
δt

(Ũn+1 − Un) + K(Ũ
n+1

q )Ũ
n+1

q + GPn+1 = Fn+1, (21a)

DŨn+1 = 0. (21b)

We have used BDF1 for the sake of simplicity. The pressurePn+1 obtained from (21) is the same that
we obtain if we solve (15) (withk = 1). Taking the difference between (15b) and (21a) we get an
equation that allows us to recover the end-of-step velocity,

M
1
δt

(Un+1 − Ũn+1) + K(Un+1)Un+1 − K(Ũ
n+1

q )Ũ
n+1

q = 0. (22)

The final scheme (21)-(22) is an equivalent version of (15). However, in this version an intermediate
velocity Ũn+1 has been introduced.

A similar scheme obtained at the continuous level where it is the velocity the extrapolated variable
has been recently proposed in [10], where it has been originally called velocity-correction method.
However, from a computational point of view version (21)-(22) of the method is not as interesting as
(16), due to the fact that the pressure and the intermediate velocity are still coupled.

4 Predictor-corrector methods

4.1 Schemes with a single iterative loop

Straightforward from the monolithic scheme (11), where the mass conservation is imposed by the
DPPE, we can obtain a predictor-corrector method. Denoting by a superscripti the i-th iteration of
the scheme, the resulting predictor-corrector method is, fork = 1 and using a Picard linearization of
the convective term:

δtDM−1GPn+1,i+1 = δtDM−1(Fn+1 − K(Un+1,i)Un+1,i) + D(Un), (23a)

M
1
δt

(Un+1,i+1 − Un) + K(Un+1,i)Un+1,i+1 + GPn+1,i+1 = Fn+1, (23b)

or, when using approximation (13),

δtL(Pn+1,i+1 − Pn+1,i) = δtDM−1(Fn+1 − K(Un+1,i)Un+1,i −GPn+1,i) + D(Un), (24a)

M
1
δt

(Un+1,i+1 − Un) + K(Un+1,i)Un+1,i+1 + GPn+1,i+1 = Fn+1. (24b)
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These methods have to be properly initialized, that is to say, we have to start the process with a
splitting error at least of the same order as the scheme. Thus, for first order methods we could take

Un+1,0 = Ũ
n+1

q andPn+1,0 = P̃
n+1

p , with q = p = 0. However, it is better to useq = p = 1, starting
with a second order splitting error. This does not imply a significant additional computational cost and
improves the initial guess of the iterative process.

In this method all the terms are motivated from the monolithic version of the problem, a difference
with some predictor-corrector methods based on pressure-correction schemes (see [7]). Thus, from the
DPPE version of the monolithic problem a predictor-corrector scheme naturally arises, while it does
not occur so for the typical monolithic version.

The second order method using BDF2 is

2
3
δtL(Pn+1,i+1 − Pn+1,i) =

2
3
δtDM−1(Fn+1 − K(Un+1,i)(Un+1,i)−GPn+1,i)

+ D(
4
3

Un − 1
3

Un−1), (25a)

M
1

2δt
(3Un+1,i+1 − 4Un + Un−1) + K(Un+1,i)Un+1,i+1 + GPn+1,i+1 = Fn+1, (25b)

with the appropriate initializationsUn+1,0 = Ũ
n+1

q andPn+1,0 = P̃
n+1

p , with q = p = 1.
In these schemes velocity and pressure computations are uncoupled. The iterative loop to couple ve-

locity and pressure has been used also for a Picard linearization of the convective term in the momentum
equation, although there is the possibility to use nested loops. This alternative is studied later.

As for pressure-correction schemes, we can analogously obtain the perturbed monolithic version of
the predictor-corrector schemes (23) and (24). We have

M
1
δt

(Un+1,i+1 − Un) + K(Un+1,i+1)Un+1,i+1 + GPn+1 = Fn+1,

DUn+1,i+1 + δtβB(Pn+1,i+1 − Pn+1,i)

+ δtDM−1(K(Un+1,i)Un+1,i+1 − K(Un+1,i)Un+1,i) = 0.

whereβ = 1 when using approximation (13) andβ = 0 otherwise. The perturbation terms disappear
as the iterative procedure converges, tending to the solution of the monolithic system (10).

In [14] and [15] pressure-correction methods and their predictor-corrector counterparts have been
understood asincomplete block LU factorizationsof the monolithic matrix. Similarly, the previous
predictor-corrector method can be interpreted asa Block Gauss-Seidel iterative solver applied to the
monolithic matrix.

A third order predictor-corrector method could also be considered using BDF3 as time integration
scheme. Furthermore, in order to start with a third order splitting error, the methods have to be initialized
with second order extrapolations (q = p = 2). In this case the instability of the third order VC method
is overcome by the iterative process.

The convergence of these methods towards the monolithic system is verified in Section 8 using
numerical experimentation.

4.2 Schemes with nested iterative loops

Instead of treating the nonlinearity with the same loop as for the coupling of variables, we could design
a scheme using nested loops, an outer loop for the coupling and an inner loop for the nonlinearity. For
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the BDF1 time integration scheme with approximation (13), this new system could be written as

δtL(Pn+1,i+1 − Pn+1,i) = δtDM−1(Fn+1 − K(Un+1,i)Un+1,i −GPn+1,i) + D(Un),

M
1
δt

(Un+1,i+1 − Un) + K(Un+1,i+1)Un+1,i+1 + GPn+1,i+1 = Fn+1,

where the superscripti denotes thei-th iteration of the outer loop. The momentum equation has not
been linearized yet .

Similarly, using BDF2 for the time integration we would have the scheme

2
3
δtL(Pn+1,i+1 − Pn+1,i) =

2
3
δtDM−1(Fn+1 − K(Un+1,i)Un+1,i −GPn+1,i)

+ D(
4
3

Un − 1
3

Un−1),

M
1

2δt
(3Un+1,i+1 − 4Un+Un−1) + K(Un+1,i+1)Un+1,i+1 + GPn+1,i+1 = Fn+1.

These predictor-corrector schemes could seem more expensive than the methods introduced in the
previous section. However, a faster convergence could make them interesting.

IdentifyingPn+1,i asP̃
n+1

p , andUn+1,i asŨ
n+1

q , the system to be solved at each iteration is equiv-
alent to the split method (18) proposed here taking as approximation for the unknown variables the
solution of the previous outer iteration.

5 Stabilized velocity-correction methods

In this section we consider the stabilization of the previous methods using the Orthogonal Subgrid Scale
(OSS) finite element method described in detail in [4].

Let us formulate the OSS formulation for problem (9a)-(9b). The idea is to add a least-squares form
of the component of the convective and pressure gradient terms orthogonal to the velocity finite element
space without boundary conditions. LetPh be theL2 projection onto this space. The term to be added
to the discrete variational form of the problem is

(P⊥
h (un+1

h · ∇vn+1
h +∇qn+1

h ), τP⊥
h (un+1

h · ∇un+1
h +∇pn+1

h ))

= (un+1
h · ∇vn+1

h +∇qn+1
h , τP⊥

h (un+1
h · ∇un+1

h +∇pn+1
h )), (29)

whereτ is the stabilization parameter on which the formulation depends, that we compute as

τ =

(
c1

ν

h2
+ c2

|un+1
h |
h

)−1

, (30)

wherec1 and c2 are algorithmic constants. Both in (29) and in (30) the advection velocityun+1
h is

assumed to be known. It can be taken as a value computed in a previous iteration within an iterative
loop or as an extrapolation from velocity values at previous time steps. Note that in (30) the Euclidean
norm of this velocity appears, and thereforeτ needs to be computed at each integration point.

Adding (29) to the discrete counterpart of (9a)-(9b) leads to the following stabilized problem: find
un+1

h ∈ Vh,0 andpn+1
h ∈ Qh such that

(
1
δt

Dku
n+1
h + un+1

h · ∇un+1
h , vh) + ν(∇un+1

h ,∇vh)− (pn+1
h ,∇ · vh)

+ (un+1
h · ∇vn+1

h , τP⊥
h (un+1

h · ∇un+1
h +∇pn+1

h )) = 〈fn+1, vh〉, (31a)

(qh,∇ · un+1
h ) + (∇qn+1

h , τP⊥
h (un+1

h · ∇un+1
h +∇pn+1

h )) = 0, (31b)

11



for all (vh, qh) ∈ Vh,0 × Qh. Our objective in the remaining of this section is to extend the previous
velocity-correction methods to include the OSS stabilization we have just described.

5.1 Matrix version of the stabilized monolithic system

We start writing the orthogonal projection of the convective and pressure gradient terms as

P⊥
h (un+1

h · ∇un+1
h +∇pn+1

h ) = un+1
h · ∇un+1

h +∇pn+1
h − yn+1

h ,

whereyn+1 is the projection of these terms onto the finite element space, that is,

(yn+1
h , vh) = (un+1

h · ∇un+1
h +∇pn+1

h ,vh) ∀vh ∈ Vh. (32)

From these expressions it is easily checked that the discrete variational problem (31) together with the
projection equation (32) lead to the nonlinear algebraic system

M
1
δt

(
Un+1 − Un

)
+ K(Un+1)Un+1 + GPn+1

+Suu(Un+1)Un+1 + Sup(Un+1)Pn+1 − Suy(Un+1)Yn+1 = Fn+1, (33a)

DUn+1 + SppPn+1 + Spu(Un+1)Un+1 − SpyYn+1 = 0, (33b)

MYn+1 − C(Un+1)Un+1 −GPn+1 = 0, (33c)

whereY is an array with the unknown nodal values ofy. We have adopted a BDF1 scheme in time in
order to simplify the exposition. Extension to other time integration schemes is straightforward. In the
notation used above, we have introduced the new stabilization matrices:

Suu(Un+1)ab
ij = (τun+1

h · ∇Na, un+1
h · ∇N b)δij ,

Sup(Un+1)ab
i = (τun+1

h · ∇Na, ∂iN
b),

Suy(Un+1)ab
ij = (τun+1

h · ∇Na, N b)δij ,

Spp
ab = (τ∇Na,∇N b),

Spu(Un+1)ab
j = (τ∂jN

a,un+1
h · ∇N b),

Spy
ab
j = (τ∂jN

a, N b),

C(Un+1)ab
ij = (Na, un+1

h · ∇N b)δij .

An alternative version of the orthogonal projection terms has been used in [7]. The projection term
is split in two least squares parts, after neglecting cross terms. In this case, there are two projection
arrays to be introduced, one term for the projection of the pressure gradient and the other associated to
the convective term:

P⊥
h (un+1

h · ∇un+1
h ) = un+1

h · ∇un+1
h − yn+1

h , (34)

P⊥
h (∇pn+1

h ) = ∇pn+1
h − zn+1

h , (35)

whereyn+1
h andzn+1

h are the solution of

(yn+1
h , vh) = (un+1

h · ∇un+1
h , vh) ∀vh ∈ Vh, (36)

(zn+1
h , vh) = (∇pn+1

h , vh) ∀vh ∈ Vh. (37)
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This approximation slightly simplifies the final stabilized system, which now is

M
1
δt

(
Un+1 − Un

)
+ K(Un+1)Un+1 + GPn+1

+Suu(Un+1)Un+1 − Suy(Un+1)Yn+1 = Fn+1, (38a)

DUn+1 + SppPn+1 − SpyZn+1 = 0, (38b)

MYn+1 − C(Un+1)Un+1 = 0, (38c)

MZn+1 −GPn+1 = 0. (38d)

Stabilized pressure-correction and predictor-corrector systems from systems (33) and (38) have
been obtained in [7]. Theenhancedstability properties of these methods has been fully discussed in
[3].

5.2 Stabilized velocity-correction system

Again, we can obtain a DPPE from the stabilized monolithic system (33) (or alternatively (38)). Instead
of (11b) what we now obtain, fork = 1, is:

(
δtDM−1G− Spp

)
Pn+1 =δtDM−1

(
Fn+1 − K(Un+1)Un+1 − Suu(Un+1)Un+1

−Sup(Un+1)Pn+1 + Suy(Un+1)Yn+1
)

+ DUn

+ Spu(Un+1)Un+1 − SpyYn+1. (39)

We need to make some further approximations in order to obtain a computationally appealing sta-
bilized velocity-correction system. As in Section 3, the velocity in the right hand side of (39) is ex-
trapolated. Now, this extrapolation is needed not only for the viscous and convective term, but also
for the stabilization terms associated to the momentum and continuity equations. Further, we need to
extrapolate the projection arrayY. It has been shown in [1] and [6] that by treating the projection term
explicitly for the monolithic system even better stability results are obtained. In Section 8 the orthog-
onal projection has been treated explicitly for velocity-correction methods. For VC predictor-corrector
schemes, this projection is treated implicitly due to the fact that its computation is inside the external
loop. In the worst case, the error induced by these extrapolations is of orderO(τδt). If we assume that
τ ≤ Cδt, we do not spoil the accuracy for first and second order methods.

For the momentum equation no assumptions are required. Thus, the stabilized version of system
(15) is

(
δtDM−1G− Spp

)
Pn+1 = δtDM−1

(
Fn+1 − K(Ũ

n+1

q )Ũ
n+1

q − Suu(Ũ
n+1

q )Ũ
n+1

q

−Sup(Ũ
n+1

q )P̃
n+1

p + Suy(Ũ
n+1

q )Yn
)

+ DUn

+Spu(Ũ
n+1

q )Ũ
n+1

q − SpyYn,

M
1
δt

(
Un+1 − Un

)
+ K(Un+1)Un+1 + GPn+1

+Suu(Un+1)Un+1 + Sup(Un+1)Pn+1 − Suy(Un+1)Yn = Fn+1,

MYn+1 − C(Un+1)Un+1 −GPn+1 = 0,

where we have adopted a BDF1 time integration scheme.
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Alternatively, when the starting stabilized formulation is (38), the VC system is

(
δtDM−1G− Spp

)
Pn+1 = δtDM−1

(
Fn+1 − K(Ũ

n+1

q )Ũ
n+1

q − Suu(Ũ
n+1

q )Ũ
n+1

q

+Suy(Ũ
n+1

q )Yn
)

+ DUn − SpyZn,

M
1
δt

(
Un+1 − Un

)
+ K(Un+1)Un+1 + GPn+1

+Suu(Un+1)Un+1 − Suy(Un+1)Yn = Fn+1,

MYn+1 − C(Un+1)Un+1 = 0,

MZn+1 −GPn+1 = 0.

At this point, approximation (13) can be applied in order to avoid dealing withDM−1G.

5.3 Stabilized predictor-corrector scheme

As shown in Section 4, the monolithic system solution can be obtained using a predictor-corrector
method, interpreted as a block Gauss-Seidel iterative procedure. Using similar arguments to those
used for the velocity-correction method presented above, we can easily get an stabilized version of
the predictor-corrector system (23), which now is

(
δtDM−1G− Spp

)
Pn+1,i+1 = δtDM−1

(
Fn+1 − K(Un+1,i)Un+1,i − Suu(Un+1,i)Un+1,i

−Sup(Un+1,i)Pn+1,i + Suy(Un+1,i)Yn+1,i
)

+ DUn

+Spu(Un+1,i)Un+1,i − SpyYn+1,i,

M
1
δt

(
Un+1,i+1 − Un

)
+ K(Un+1,i)Un+1,i+1 + GPn+1,i+1

+Suu(Un+1,i)Un+1,i+1 + Sup(Un+1,i)Pn+1,i+1 − Suy(Un+1,i)Yn+1,i = Fn+1,

MYn+1,i+1 − C(Un+1,i+1)Un+1,i+1 −GPn+1,i+1 = 0.

In this case we do not need any approximation when treating the monolithic system. Alternatively,
a predictor-corrector scheme starting from (38) can be easily obtained. A stabilized version of the
predictor-corrector methods with inner and outer iteration loops (as in Section 4) is straightforward.

6 Implementation aspects

At this point we discuss how to treat non-homogeneous boundary conditions when using velocity-
correction methods. For the sake of clarity we use a BDF1 time integration scheme and neglect the
stabilization terms.

Let us introduce some new notation. Given an arrayX̃ with all the nodal values of an unknownx,
we split this array in two parts,X associated to free nodes andXd associated to the nodes belonging to
the Dirichlet boundary for the velocity, that is,

X̃ = [X, Xd]
T .

Furthermore, for every matrix̃A =
[
Ã

ab
]
, a andb being nodes of the mesh, we define the block

A =
[
Aab

]
, wherea andb are free nodes, andAd =

[
Aab

]
, wherea is a free node andb a fixed node.

In all cases, fixed or free is understood with respect to the velocity unknown.
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The discrete momentum equation for non-homogeneous Dirichlet boundary conditions reads:

M
1
δt

Un+1 + K( ˜Un+1)Un+1 + GPn+1

= Fn+1 −Md
1
δt

(Un+1
d − Un

d )− Kd(
˜Un+1)Un+1

d + M
1
δt

Un

=: F+
n+1, (43)

whereF+ accounts for the force terms together with Dirichlet boundary conditions and the last term
comes from the time integration.

On the other hand, with the notation introduced above, we can rewrite the discrete continuity equa-
tion as

DUn+1 = −DdUn+1
d . (44)

Multiplying (43) by δtM−1G and invoking (44) we get

δtDM−1GPn+1 = DM−1
(

Fn+1
+ − K(Ũ

n+1

q )Ũ
n+1

q

)
+ DdUn+1

d + DUn, (45)

where we have extrapolatedUn+1 in order to obtain the system to be solved for the velocity-correction
system. At this point, we are able to use approximation (13).

In order to solve system (43)-(45), we introduce an auxiliary nodal arrayXn+1, obtained from the
following system:

MXn+1 = Fn+1
+ − K(Ũ

n+1

q )Ũ
n+1

q .

This array allows us to write equation (45) as

δtDM−1GPn+1 = DXn+1 + DdUn+1
d + DUn.

We summarize the implementation of this velocity-correction method in a compact manner in Box
1, both with approximation (13) (β = 1) and without this approximation (β = 0). A simple fixed point
method has been used to linearize the convective term.

The Laplacian approximation makes the method computationally more flexible and has been used
in all the numerical tests of Section 8.

The implementation of the rest of predictor-corrector methods presented is straightforward, as well
as the implementation of their stabilized versions.

Remark 4 We end this section with a comment about the system matrixDM−1G. This matrix is dense
when a consistent matrixM is used. The obtention of this matrix is only computationally feasible when
using a diagonal matrixM. However, for iterative solvers where the system matrix is not explicitly
required and only matrix-vector multiplications are needed,DM−1G can be treated without any extra
approximation. Each matrix-vector product implies to solve a linear system with matrixM. We stress
the fact thatno artificial boundary conditions are introducedin this case.

7 Stability of velocity-correction methods

In this section we present a complete set of stability results for the original DPPE velocity-correction
schemes proposed in this paper. We analyze this approach using BDF1 and Crank-Nicolson time inte-
gration schemes. For simplicity in the exposition we will identify the methods as BDF1-Uq-Pp, q being

15



Box 1. Velocity-Correction Algorithm

• Solve MXn+1 = Fn+1
+ − K(Ũ

n+1

q )Ũ
n+1

q − βGP̃
n+1

p .

• Add X̃
n+1

=
[
Xn+1; 0

]T +
[
Un; Un+1

d

]T
.

IF β = 0:

• Solve δtDM−1GPn+1 = D̃X̃
n+1

.

ELSE:

• Solve δtLPn+1 = D̃X̃
n+1

+ δtLP̃
n+1

p .

END IF

• SetUn+1,0 = Un andi = 0.

DO UNTIL CONVERGENCE:

• Solve
[

1
δtM + K(Un+1,i)

]
Un+1,i+1 = Fn+1

+ −GPn+1.

• Seti ← i + 1.

END DO
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the order of the velocity extrapolation andp the order of the pressure extrapolation. Similarly, for the
Crank-Nicolson scheme we will use CN-Uq-Pp. The parametersq andp will take the values 0 and 1 for
BDF1 andp = q = 1 for Crank-Nicolson.

Let us start introducing some additional notation. IfX, Y are arrays,{Xn}n=0,1,...,N is a sequence
of arrays ofN + 1 terms andA a symmetric positive semi-definite matrix, we define

(X, Y)A := X · AY,

‖X‖A := (X · AX)1/2,

‖Y‖−A := sup
X6=0

Y · X
‖X‖A

(hereA is assumed to be positive definite),

{Xn} ∈ `∞(A) ⇐⇒ ‖Xn‖A ≤ C < ∞ ∀n = 0, 1, ..., N,

{Xn} ∈ `p(A) ⇐⇒
N∑

n=0

δt‖Xn‖p
A ≤ C < ∞, 1 ≤ p < ∞.

Here and in the following,C denotes a positive constant, not necessarily the same at different appear-
ances. Moreover, we denote byN = [T/δt].

A remark is needed whenA = K. This matrix is not symmetric, but it has the contribution from the
convective term, which is skew-symmetric, and the contribution from the viscous term,Kvisc, which is
symmetric and positive definite. We will simply writeU · K(U)U = U · KviscU ≡ ‖U‖2

K.
These definitions will allow us to express our stability results in a compact manner.
For obtaining stability bounds in this section the basic assumption in all the cases will be that

Assumption 1 The force vector{Fn}n=0,1,...,N satisfies

N∑

n=0

δt‖Fn‖2
M ≤ C < ∞, (46)

for all δt > 0.

This bound for{Fn}, corresponding to requiringf ∈ L2(0, T ; L2(Ω)) for the continuous problem,
will be used in the following. Apart from this,no other regularity assumptions will be required.

7.1 Stability of methods using BDF1

The first scheme to be studied is the simplest BDF1-U0-P0, together with the scheme BDF1-U0without
pressure extrapolation, that is to say, without making use of approximation (13). As before, we will
distinguish both possibilities according to the parameterβ, and we will denote the resulting methods
by BDF1-U0-(P0). For these methods we will obtain the following stability results:

Stability of BDF1-U0-(P0):

{Un} ∈ `∞(M) ∩ `2(K), {
√

δt M−1K(Un)Un} ∈ `2(M), {
√

δt Pn} ∈ `2(βB)

Recall that matrixB is defined asB = DM−1G − L. This estimate is optimal for the velocity. The
stability for the pressure is certainly not optimal (see Remark 5 below), but the important point is that we
will obtain it without relying on the classical inf-sup condition for the velocity-pressure interpolation.
Observe also that this stability is lost whenβ = 0.
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In the previous estimate we have also displayed the additional control we have on the norm of the
viscous plus convective terms.

First, let us write the scheme to be analyzed as

δt[βL + (1− β)DM−1G]Pn+1 = δtDM−1Fn+1 + DUn, (47a)

M
1
δt

(Un+1 − Un) + K(Un+1)Un+1 + GPn+1 = Fn+1, (47b)

where, as before,β = 1 using approximation (13) andβ = 0 otherwise. Instead of analyzing (47)
we will work with the equivalent form of this method, introducing an intermediate velocity, as for
pressure-correction methods. In this new format we have

M
1
δt

(Ũn+1 − Un) + GPn+1 = Fn+1, (48a)

DŨn+1 + δtβBPn+1 = 0, (48b)

M
1
δt

(Un+1 − Ũn+1) + K(Un+1)Un+1 = 0. (48c)

Thus, the intermediate velocity we have introduced is not divergence-free when approximation (13) is
used (β = 1). Whenβ = 0 the second term in the left-hand-side of (48b) disappears together with the
stability results associated to the norm‖ · ‖βB.

The stability bounds for the BDF1-U0-P0 and BDF1-U0 methods are summarized in the next the-
orem.

Theorem 1 Under Assumption 1, the following stability estimates hold for the BDF1-U0-(P0) method:

max
0≤n≤N

{‖Un‖2
M}+

N∑

n=1

δt{‖Un‖2
K + ‖

√
δt M−1K(Un)Un‖2

M + ‖
√

δt Pn‖2
βB} ≤ C,

for all δt > 0.

Proof. Taking the inner product of (48a) with2δtŨn+1 and using the identity

(2a, a− b) := a2 − b2 + (a− b)2,

we get

‖Ũn+1‖2
M − ‖Un‖2

M + ‖Ũn+1 − Un‖2
M + 2δtŨn+1 ·GPn+1 = 2δtŨn+1 · Fn+1. (49)

On the other hand, (48c) can be reordered in order to obtain

Un+1 + δtM−1K(Un+1)Un+1 = Ũn+1. (50)

Squaring both terms of this equation with the inner product(·, ·)M it is found that

‖Un+1‖2
M + 2δt‖Un+1‖2

K + ‖δtM−1K(Un+1)Un+1‖2
M = ‖Ũn+1‖2

M. (51)

Multiplying (50) by2δtFn+1 we get

2δtUn+1 · Fn+1 − 2δtŨn+1 · Fn+1 + 2δt2M−1K(Un+1)Un+1 · Fn+1 = 0. (52)
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Adding up (49), (51) and subtracting (52) we obtain

‖Un+1‖2
M − ‖Un‖2

M + ‖Ũn+1 − Un‖2
M + 2δt‖Un+1‖2

K + ‖δtM−1K(Un+1)Un+1‖2
M

+ 2δtŨn+1 ·GPn+1 = 2δtUn+1 · Fn+1 + 2δt2M−1K(Un+1)Un+1 · Fn+1

≤ δt‖Fn+1‖2
−K + δt‖Un+1‖2

K + 2δt2‖M−1Fn+1‖2
M +

1
2
‖δtM−1K(Un+1)Un+1‖2

M. (53)

From (48b) we can bound the term involving the pressure, obtaining

2δtŨn+1 ·GPn+1 = −2δtPn+1 · DŨn+1 = 2δt2‖Pn+1‖2
βB. (54)

Replacing (50) in (49), and summing fromn = 0 to n = N − 1 (or up to any arbitrary time level), we
find that

‖UN‖2
M +

N∑

n=1

‖Ũn − Un−1‖2
M +

N∑

n=1

δt‖Un‖2
K +

N∑

n=1

δt‖
√

δt M−1K(Un)Un‖2
M

+
N∑

n=1

δt‖
√

δtPn‖2
βB ≤ C. (55)

This proofs the Theorem.
The stability analysis of the method BDF1-U0-P1 follows in a straightforward way. Obviously,

this method only makes sense if approximation (13) is used (β = 1, with the previous notation). The
stability results we are going to obtain are:

Stability of BDF1-U0-P1:

{Un} ∈ `∞(M) ∩ `2(K), {
√

δt M−1K(Un)Un} ∈ `2(M),
{δtPn} ∈ `∞(B), {

√
δt δPn} ∈ `2(B)

Observe that the pressure stability now is weaker than for the BDF1-U0-P0 method, where the
pressure was extrapolated only up to zero order. Control in`∞(B) is obtained only for{δtPn}, whereas
the optimal would be{

√
δtPn} if δt = O(h2) (see Remark 5 below). In general, a better approximation

for the pressure implies less stability (which has to be found either from the use of stabilization methods
or by invoking an inf-sup condition).

Now the scheme reads as follows:

δtL(Pn+1 − Pn) = δtDM−1(Fn+1 −GPn) + DUn, (56a)

M
1
δt

(Un+1 − Un) + K(Un+1)Un+1 + GPn+1 = Fn+1. (56b)

As above, we will work with an equivalent form of this method, introducing a intermediate velocity:

M
1
δt

(Ũn+1 − Un) + GPn+1 = Fn+1, (57a)

DŨn+1 + δtB(Pn+1 − Pn) = 0, (57b)

M
1
δt

(Un+1 − Ũn+1) + K(Un+1)Un+1 = 0. (57c)

Theorem 2 Under Assumption 1, the following stability estimates hold for the BDF1-U0-P1 method

max
0≤n≤N

{‖Un‖2
M + ‖δtPn‖2

B}+
N∑

n=1

δt{‖Un‖2
K + ‖

√
δt M−1K(Un)Un‖2

M + ‖
√

δt δPn‖2
B} ≤ C,

for all δt > 0.
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Proof. The only place where the analysis of this method differs from the previous one is in (54),
which now has to be replaced by

2δtŨn+1 ·GPn+1 = −2δtPn+1 · DŨn+1 = δt2(‖Pn+1‖2
B − ‖Pn‖2

B + ‖δPn+1‖2
B). (58)

Then, we obtain

‖UN‖2
M +

N∑

n=1

‖Ũn − Un−1‖2
M +

N∑

n=1

δt‖Un‖2
K +

N∑

n=1

δt‖δtM−1K(Un)Un‖2
M

+ ‖δtPN‖2
B +

N∑

n=1

δt‖
√

δtδPn‖2
B ≤ C. (59)

instead of (55).
Now we will obtain stability results for the BDF1-U1-P0 method. If approximation (13) is not used,

the stability results presented in the following for the pressure disappear. Thus, we will concentrate only
in the caseβ = 1. The results are:

Stability of BDF1-U1-P0:

{Un} ∈ `∞(M) ∩ `2(K), {δtM−1K(Un)Un} ∈ `∞(M), {
√

δt Pn} ∈ `2(B)

This method reads as follows:

δtLPn+1 = δtDM−1(Fn+1 − K(Un)Un) + DUn, (60a)

M
1
δt

(Un+1 − Un) + K(Un+1)Un+1 + GPn+1 = Fn+1. (60b)

The equivalent version that will be analyzed is

M
1
δt

(Ũn+1 − Un) + K(Un)Un + GPn+1 = Fn+1, (61a)

DŨn+1 + δtBPn+1 = 0, (61b)

M
1
δt

(Un+1 − Ũn+1) + K(Un+1)Un+1 − K(Un)Un = 0. (61c)

taking at the first time stepU0 = 0, that is to say, at the first time step the first order method BDF1-U0-
P0 is used.

Theorem 3 Under Assumption 1, the following stability estimates hold for the BDF1-U1-P0 method:

max
0≤n≤N

{‖Un‖2
M + ‖δtM−1K(Un)Un‖2

M}}+
N∑

n=1

δt{‖Un‖2
K + ‖

√
δt Pn‖2

B} ≤ C,

for all δt > 0.

Proof. After multiplying (61a) by2δtŨn+1 we get

‖Ũn+1‖2
M − ‖Un‖2

M + ‖Ũn+1 − Un‖2
M + 2δtŨn+1K(Un)Un

+ 2δtŨn+1 ·GPn+1 = 2δtŨn+1 · Fn+1. (62)
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We can reorder (61c) in the form:

Un+1 + δtM−1K(Un+1)Un+1 = Ũn+1 + δtM−1K(Un)Un. (63)

After squaring (63) with the inner product(·, ·)M, we have

‖Un+1‖2
M + 2δt‖Un+1‖2

K + ‖δtM−1K(Un+1)Un+1‖2
M

= ‖Ũn+1‖2
M + 2δtŨn+1 · K(Un)Un + ‖δtM−1K(Un)Un‖2

M. (64)

On the other hand, multiplying (63) by2δtFn+1, we get

2δtUn+1 · Fn+1 + 2δt2M−1K(Un+1)Un+1 · Fn+1

− 2δt2M−1K(Un)Un · Fn+1 = 2δtŨn+1 · Fn+1. (65)

Finally, the term involving the pressure in (62) is bounded using (54). From (62), (64), (65) and (54) we
have

‖Un+1‖2
M − ‖Un‖2

M + ‖Ũn+1 − Un‖2
M + 2δt‖Un+1‖2

K + ‖δtM−1K(Un+1)Un+1‖2
M

− ‖δtM−1K(Un)Un‖2
M + 2δt‖

√
δt Pn+1‖2

B

= 2δtUn+1 · Fn+1 + 2δt2M−1K(Un+1)Un+1 · Fn+1 − 2δt2M−1K(Un)Un · Fn+1

≤ δt‖Fn+1‖2
−K + δt‖Un+1‖2

K + 4αδt‖M−1Fn+1‖2
M +

δt

2α
‖δtM−1K(Un+1)Un+1‖2

M

+
δt

2α
‖δtM−1K(Un)Un‖2

M, (66)

beingα := 2max{1, δt}. Summing up fromn = 0 to n = N − 1 (or to an arbitrary time level), we
obtain

‖UN‖2
M +

N∑

n=1

‖Ũn − Un−1‖2
M +

N∑

n=1

δt‖Un‖2
K + ‖δtM−1K(UN )UN‖2

M

+
N∑

n=1

δt‖
√

δtPn‖2
B ≤ C +

N∑

n=1

δt

α
‖δtM−1K(Un)Un‖2

M. (67)

The proof of the stability results required is finished after using the discrete Gronwall inequality (see
[12]) in (55). We stress the fact thatδt/α < 1. Therefore, the discrete Gronwall lemma can be applied
without any restriction over the time step size.

The BDF1-U1-P1 scheme is originally written as

δtL(Pn+1 − Pn) = δtDM−1(Fn+1 −M−1K(Un)Un −GPn) + DUn, (68a)

M
1
δt

(Un+1 − Un) + K(Un+1)Un+1 + GPn+1 = Fn+1, (68b)

but can also be written as

M
1
δt

(Ũn+1 − Un) + K(Un)Un + GPn+1 = Fn+1, (69a)

DŨn+1 + δtB(Pn+1 − Pn) = 0, (69b)

M
1
δt

(Un+1 − Ũn+1) + K(Un+1)Un+1 − K(Un)Un = 0. (69c)
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The stability analysis of this method differs from the previous one just in the pressure term to be
bounded. Using (58) instead of (50) it is easily obtained that:

Stability of BDF1-U1-P1:

{Un} ∈ `∞(M) ∩ `2(K), {δtM−1K(Un)Un} ∈ `∞(M),
{δtPn} ∈ `∞(B), {

√
δt δPn} ∈ `2(B)

7.2 Stability of methods using the Crank-Nicolson time integration

The Crank-Nicolson time integration scheme will be the last to be analyzed. We only present the sta-
bility results of the CN-U1-P1 method, since in order to maintain the second order accuracy of the
Crank-Nicolson scheme the velocity and the pressure need to be extrapolated to first order. Again, we
will consider that approximation (13) is used; otherwise, the pressure bounds presented next disappear.
This method reads as follows:

δtL(Pn+1 − Pn) = δtDM−1(Fn+1 − K(Un−1/2)Un−1/2 −GPn) + D(Un), (70a)

M
1
δt

(Un+1 − Un) + K(Un+1/2)Un+1/2 + GPn+1 = Fn+1, (70b)

and its equivalent form to be analyzed is:

M
1
δt

(Ũn+1 − Un) + K(Un−1/2)Un−1/2 + GPn+1 = Fn+1, (71a)

DŨn+1 + δtBPn+1 = 0, (71b)

M
1
δt

(Un+1 − Ũn+1) + K(Un+1/2)Un+1/2 − K(Un−1/2)Un−1/2 = 0. (71c)

At the first time step, we adopt the first order BDF1-U0-P0 for simplicity. It does not affect the overall
second order accuracy of the method. In the following setting this initialization is equivalent to take
U−1/2 = 0. The stability results we prove here are:

Stability of CN-U1-P1:

{Un} ∈ `∞(M) ∩ `2(K), {δtM−1K(Un−1/2)Un−1/2} ∈ `∞(M),
{δtPn} ∈ `∞(B), {

√
δt δPn} ∈ `2(B)

These results are summarized in the following theorem.

Theorem 4 Under Assumption 1, the following stability estimates hold for the CN-U1-P1 method

max
0≤n≤N

{‖Un‖2
M + ‖δtM−1K(Un−1/2)Un−1/2‖2

M + ‖δtPn‖2
B}

+
N∑

n=1

δt{‖Un‖2
K + ‖

√
δt δPn‖2

B} ≤ C,

for all δt > 0.

Proof. Following the same steps as for the proof of the stability estimates for the BDF1-U1-P0
method and bounding the pressure term in the momentum equation as for the BDF1-U0-P1 method, we
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find that:

‖Un+1‖2
M − ‖Un‖2

M + ‖Ũn+1 − Un‖2
M + 2δt‖Un+1/2‖2

K + ‖δtM−1K(Un+1/2)Un+1/2‖2
M

− ‖δtM−1K(Un−1/2)Un−1/2‖2
M + 2δt‖

√
δt Pn+1‖2

B + δt2(‖Pn+1‖2
B − ‖Pn‖2

B + ‖δPn+1‖2
B)

= 2δtUn+1 · Fn+1 + 2δt2M−1K(Un+1)Un+1 · Fn+1 − 2δt2M−1K(Un)Un · Fn+1

≤ δt‖Fn+1‖2
−K + δt‖Un+1‖2

K + 4αδt‖M−1Fn+1‖2
M +

δt

2α
‖δtM−1K(Un+1/2)Un+1/2‖2

M

+
δt

2α
‖δtM−1K(Un−1/2)Un−1/2‖2

M, (72)

with the expression of the positive constantα defined in the previous theorem. Summing up fromn = 0
to n = N − 1 (or up to any arbitrary time level), we get

‖UN‖2
M +

N∑

n=1

‖Ũn − Un−1‖2
M + ‖δtPN‖2

B + +
N∑

n=1

δt‖Un‖2
K + ‖δtM−1K(UN−1/2)UN−1/2‖2

M

+
N∑

n=1

δt‖
√

δtPn+1‖2
B ≤ C +

N∑

n=1

δt

α
‖M−1K(Un−1/2)Un−1/2‖2

M. (73)

Again, as pointed out in the previous theorem, the discrete Gronwall lemma can be applied for any time
step size. This concludes the proof.

Remark 5 We can easily see from the previous stability bounds that the inherent pressure stability of
velocity-correction methods seems insufficient. We only have some pressure stability under approxima-
tion (13). And even in this case, the stability is under the norm associated toB (a difference between
discrete Laplacians that tends to zero withh). Thus, their behavior is different from pressure-correction
methods, which have astrongerinherent pressure stability (see [3, 5]). For a first order splitting error,
using pressure-correction methods with approximation (13) we have control over the whole pressure
gradient‖

√
δt∇pn+1

h ‖0. For velocity-correction methods, the bound for the projection of the pressure
gradient onto the finite element space (weighted with

√
δt) does not appear. Nevertheless, we can re-

cover the control over the whole gradient by using the stability provided by the momentum equation
(proved in the following theorem). Summarizing, even though the stability bounds of the VC methods
seem weaker, we also have stability over the whole pressure gradient (under approximation (13)).

Let us introduce some notation. We will need some projections of∇pn+1
h with respect to theL2-

inner product

π1 : projection ontoVh,0,
π2 : projection onto(Vh,0)⊥ ∩ Vh,
π3 : projection onto(Vh)⊥,

and we will denoteπij := πi + πj andπh = π12.

Theorem 5 Under Assumption 1 and assuming a quasi-uniform finite element partition, the following
stability estimate holds for the BDF1-U0-Pp method

N∑

n=1

δt‖hπn
1‖2

0 ≤ C. (74)
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For the BDF1-U1-Pp and CN-U1-Pp, it holds
N∑

n=1

δt‖hπn
1‖0 ≤ C, (75)

beingp = 0 or 1. These bounds hold for allδt > 0.

Proof. Let us write inequalities (48a), (61a) and (71a) in an appropriate format in order to analyze
the different methods together. We use the following variational form

1
δt

(ũn+1
h − un

h, vh) + γν(∇un+δ−1
h ,∇vh) + γ(un+δ−1

h · ∇un+δ−1
h ,vh)

+ (∇pn+1
h , vh) = 〈fn+δ, vh〉, (76)

which must hold for all test functionsvh ∈ Vh,0 and whereδ = 1 for the BDF1 scheme andδ = 1/2
for the CN scheme. Furthermore,γ = 0 for the BDF1-U0-Pp andγ = 1 for the rest of methods. Taking
πn+1

1 as test function in (76) and using the standard inverse estimate (see [2])

‖πn
1‖1 ≤ Cinv

h
‖πn

1‖0, (77)

valid for quasi-uniform finite element partitions, we have

‖πn+1
1 ‖2

0 ≤‖fn+δ‖−1
Cinv

h
‖πn+1

1 ‖0 +
1

2δt
‖ũn+1

h − un
h‖0‖πn+1

1 ‖0

+ γ(Na‖ũn+δ−1
h ‖1 + Nc‖ũn+δ−1

h ‖2
1)

Cinv

h
‖πn+1

1 ‖0, (78)

whereNa andNc are the norms of the viscous and convective terms, respectively, that is tp say, we
have used the inequalities

ν(∇u,∇v) ≤ Na‖u‖1‖v‖1,

(u · ∇u, v) ≤ Nc‖u‖2
1‖v‖1,

valid for any functionsu, v ∈ H1
0(Ω), where‖ · ‖1 is the norm of this space. Likewise,‖ · ‖−1 denotes

the norm inH−1(Ω).
We can easily get the bounds stated in the theorem from inequality (78) bounding the right hand

side terms using inequalities (55), (67) and (73).

8 Numerical tests

In this section we present some numerical results to test the velocity-correction schemes introduced in
this paper. In all cases we use approximation (13). We compare the behavior of these methods with
the stabilized monolithic, pressure-correction and predictor-corrector systems studied in [3] and [5].
The results shown along this section are obtained with the stabilized versions of the methods using
OSS. This has allowed us to use equal velocity-pressure interpolation. In particular, we have taken
kq = kv = 1, with the notation of Section 2. Both for pressure and velocity-correction methods only
second order splitting error methods have been analyzed, due to their clear superiority in comparison
to first order methods (see [5]) without significant additional computational cost. The only possible
reason that would (hardly) justify pressure-correction methods with a first order splitting error is their
inherent stability. However, this inherent stability is weaker in the case of velocity-correction methods,
as stressed in Remark 5. In any case, the introduction of consistent stabilization techniques, such as
OSS, makes this stability unnecessary, improving the accuracy.

The numerical examples presented in this section are the same as in [5]. Likewise, very similar
comments apply.
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Figure 1: Convergence test

8.1 Convergence test

The first example we consider is a simple convergence test whose goal is to check numerically the rate
of convergence in time for some of the numerical methods described.

The computational domain is the unit square, discretized using a uniform triangular mesh of 11×11
nodal points (200 triangles). The boundary and initial conditions and the force term are prescribed
so that the analytic solution isu = (y,−x) sin(πt/10) exp(t/25) and p = 0. Note that the exact
solution belongs to the finite element space, and thus the only source of numerical error is the time
approximation.

Results are shown in Figure 1. The errorE is measured in thè2 norm of the sequence
{un − u(tn)}. It is seen that all the methods show the expected rate of convergence. This is particu-
larly relevant for the predictor-corrector schemes, whose error is affected by the convergence tolerance
adopted in the iterative loop of each time step.

8.2 Flow in a cavity

In this second example we solve the classical cavity flow problem at a Reynolds numberRe = 100.
The computational domain is the unit square, discretized using a mesh of 21×21 nodal points (400
triangles). The velocity is fixed to zero everywhere except on the top boundary, where it is prescribed
to (1,0).

Even though the solution in this simple example is stationary, we obtain it by stepping in time.
The goal of this test is precisely to check the properties of the schemes proposed for the long-term
time integration of stationary solutions (very often difficult to obtain in a stationary calculation) and,
particularly, their numerical dissipation. The time step employed isδt = 1.

Figure 2 shows the evolution towards the steady state case for velocity-correction methods com-
pared with the monolithic one. We take a VC method with a second order splitting error (p = q = 1). It
is observed that the VC methods reach the steady state case slower than the monolithic system, which
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Figure 2: Evolution towards the steady-state for the cavity flow problem using monolithic and velocity-
correction schemes

is more dissipative.
The VC predictor-corrector method, as expected, follows very closely the plot of the monolithic

system. Furthermore, when the residual reaches the tolerance of the predictor-corrector loop, the plots
of the VC predictor-corrector methods detaches from the monolithic one, tending slower to the steady
state case, as it could be expected.

On the other hand, the use of the consistent or lumped mass matrix seems that does not affect
essentially the results obtained.

In Figure 3, the velocity-correction method is compared to its dual pressure-correction method.
The original fractional step method with, for simplicity, BDF1 for the time integration and ap-th order
pressure extrapolation is (see [5] for details):

M
1
δt

(Ũ
n+1 − Un) + K(Ũ

n+1
)Ũ

n+1
+ GP̃

n+1

p = Fn+1,

δtL(Pn+1 − P̃
n

p ) = δtDŨ
n+1

,

M
1
δt

(Un+1 − Ũ
n+1

) + G(Pn+1 − P̃
n+1

p ) = 0,

whereas the associated predictor-corrector method using a single loop is:

M
1
δt

(Un+1,i+1 − Un) + K(Un+1,i)Un+1,i+1 + GPn+1,i = Fn+1,

δtL(Pn+1,i+1 − Pn+1,i) = D(Un+1,i+1).

These two methods are the predictor-corrector counterparts of the velocity-correction methods given by
(16) (withk = 1) and (24).

The asymptotic behavior of both methods displayed in Figure 3 is very similar. However, their
predictor-corrector versions give very different plots. Pressure-correction predictor-corrector methods
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Figure 3: Evolution towards the steady-state for the cavity flow problem using velocity and pressure-
correction schemes

have a weird behavior when tending to the steady state case. For VC predictor-corrector methods better
convergence is attained. In Figure 3,Md stands for the diagonal mass matrix obtained from a nodal
quadrature.

Concerning the convergence of the methods, in Figures 4, 5 and 6 we plot the number of itera-
tion performed versus time step in order to compare velocity and pressure-correction methods (with a
maximum of 10 iterations allowed). These iterations deal with the non linearity of the convective term
for velocity and pressure-correction methods as well as with the convergence to the monolithic system
for predictor-corrector schemes. For this specific test, velocity-correction schemes reach convergence
slightly faster than pressure-correction schemes in all cases. Due to the fact that both pressure-correction
and velocity-correction methods have a very similar computational cost per iteration (in both cases we
have to solve a Poisson equation for the pressure and a momentum equation for the velocity) and the
CPU time used by both methods is proportional to the number of iterations, VC turns out to be cheaper
for this particular example.

8.3 Flow over a cylinder

The last example is also a classical benchmark, namely, the flow over a cylinder. The computational
domain isΩ̄ = [0, 16] × [0, 8] \ D, with the cylinderD of diameter 1 and centered at(4, 4). The
velocity atx = 0 is prescribed to(1, 0), whereas aty = 0 andy = 8 the y-velocity component is
prescribed to 0 and thex-component is left free. The outflow (where both thex- andy-components are
free) isx = 16. The Reynolds number is 100, based on the cylinder diameter and the prescribed inflow
velocity. The finite element mesh employed consists of 3604 linear triangles, with 1902 nodal points.
This example has been used in [5] to analyze pressure-correction methods in time. Here we try to show
the same case with VC methods. Only second order schemes have been considered.

The evolution of they-velocity component at the control point located at (6,4) is shown in Figure 7.
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Figure 4: Number of iterations per time step using different velocity and pressure-correction schemes

 0

 2

 4

 6

 8

 10

 12

 5  10  15  20  25  30  35  40  45  50

ite
ra

tio
ns

time

Pressure Correction Predictor C. tol 1e-4
Velocity Correction Predictor C. tol 1e-4

Figure 5: Number of iterations per time step using different velocity and pressure-correction schemes
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Figure 6: Number of iterations per time step using different velocity and pressure-correction schemes

The time step size used in all the cases isδt = 0.05. A maximum of only 5 iterations has been permitted.
Similar results to those of the pressure-correction methods have been obtained (see [5]). Again, the
predictor-corrector method lays between the monolithic and velocity-correction method.

9 Conclusions

The new kind of velocity-correction methods presented in this paper and obtained at the discrete level
from a pressure Poisson equation are appropriate methods for the simulation of flow problems, avoiding
the problems that arise when using a pressure Poisson equation obtained at the continuous level. This
requires a finite element approximation toH2(Ω), which is avoided by our purely algebraic approach.

The velocity-correction methods proposed herein have a behavior similar to the widely used
pressure-correction methods. Moreover, in both cases we observe that third order methods (in time)
become conditionally stable. This is a somehow surprising result, because the perturbation introduced
by the splitting is different in both cases.

In all the cases considered, it seems that the inherent pressure stability of velocity-correction
schemes is weaker than the one of pressure-correction methods. Whereas for first order pressure-
correction methods a stability bound for the pressure gradient can be obtained (under some mild as-
sumptions), only part of this term is controlled using velocity-correction methods. Nevertheless, we can
recover control over the rest of the pressure gradient from the momentum equation.

A nice feature of the DPPE monolithic system is the fact that velocity-correction predictor-corrector
schemes arise naturally. We have compared these schemes to predictor-corrector schemes motivated
from pressure-correction methods. Numerical experimentation shows that these new methods exhibit a
similar or, in most cases, better behavior.
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Figure 7: Temporal evolution of they-velocity component at the control point
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