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Abstract. In this paper, a new variant of the nodal integral method (NIM) is proposed for the solution
of 2D diffusion equation. In NIM, the scheme is derived using Transverse Integration Process (TIP)
and analytical solutions of ODEs within nodes. This analytical pre-processing dramatically improve the
quality of the solution, which is the main distinguishing feature of NIM. However, in this new approach,
the TIP is performed at node center instead of node edge. Adapting this approach simplifies the scheme
and make it easier to solve. To test the capabilities of this newly developed scheme, some benchmark
problems using the diffusion equation are solved. It is found that the scheme is as accurate as traditional
NIM, and the scheme is relatively easy to solve. It can be said that a simplified scheme is developed
while retaining the accuracy of traditional NIM.

1 INTRODUCTION

With the advancement of computational power, researchers have started solving more complex prob-
lems for a better understanding of the physics behind the problems. To solve any problem, first model
equations are set up, which can accurately represent the system. Thereafter these model equations dis-
cretized over the domain of interest using numerical methods. A few popular numerical methods are the
finite difference method (FDM), finite element method (FEM), and finite volume method (FVM), and
many variants of these methods are available. However, all these methods are fine mesh methods, which
required very small mesh sizes to accurately emulate the results. With higher-order schemes, these meth-
ods can be used over coarser mesh as well [1]. Although higher-order schemes need less number of grid
points, their implementation is really difficult, and low order fine mesh schemes are more popular. Due
to use of fine mesh, these methods result in a large system of equations, which in turn results in huge
system matrices. Solving these big matrices is one of the major challenges in computational fluid dy-
namics. Even with such advancement in computational power, these methods need a substantial amount
of computational resources and time to give acceptable results.
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Alternately, there are few coarse mesh methods available [2, 3, 4, 5], and ‘Nodal Integral Method (NIM)’
is one of the preferred methods. In the 70s, NIM was first developed for the solution of the neutron diffu-
sion equation, and the accurate results encouraged its further development [6, 7]. When NIM is compared
with FDM, it was found that NIM needs four times less number of grid points for the same level of accu-
racy as provided by FDM [6, 7]. There is an analytical pre-processing involved in the development of the
NIM scheme, which drastically enhances the quality of results. In NIM, transverse integration process
(TIP) and analytical pre-processing are two distinguishing features [8]. The TIP reduces the PDEs into
a set of transverse averaged ODEs. Next, these sets of ODEs are solved analytically within a node. The
final form of the scheme is obtained using the analytical solution of these ODEs. However, there is one
constraint associated with NIM, the use of TIP restrict the scheme to regular geometries only. Some
schemes based on algebraic transformations are developed to handle irregular geometries, but they are
not as effective as traditional NIM [9].

In this paper, an alternate approach of Nodal Integral method for the diffusion equation is developed on
the same note as developed by Shober [10] in 1976, which is capable in handling irregular geometries.
One way to handel the irregular geometry is to couple the NIM with any of scheme which deals with
the irregular nodes at the boundary such as cut cell approach [11]. In earlier versions of NIM variables
are averaged at node edges, on the other hand in this newly proposed approach, variables are averaged
at node center. In this way, node edges are free from any constraint and can be approximated to fit the
geometries. This is the only key difference between traditional NIM and node averaged NIM (NANIM).
However, in this work the proposed scheme is not really implemented over irregular geometries, but is
expected to work well with them. Due to very simple development procedure this scheme can be imple-
mented in other branches of physics and engineering. As a proof of concept some diffusion benchmark
problems are solved and compared with the analytical solution.

2 DEVELOPMENT OF THE SCHEME

Two dimensional steady state Diffusion equation is given as
’T 0°T
— — 1

After descritizing the domain, Transverse integration of Equation (1) is done by using the operator #
i.j

ij b j . . Con e . .
I T dx and S —+b,~ ; dy, where 2a; ; and 2b; ; are the dimension of node (i, ) in x and y direction

—dajj 2b; i
respectively, as s/hown in Figure (1) [8]. The space averaged equation with respect to variable x is given
as
1 [tai T 1 [tai 1 [taio’T
— —dx:—/ X, ——/ —dx 2
2a; /_a,,_, W 2aij)ay T 30, ~ai; OX? @
Now the R.H.S of Equation (2) is taken as a pseudo source term which is given as
1 [+aii 02T 1 [+aj 9°T
O dx=S(y) = f* — / 74 3
2611'7]' /a,;j 8y2 . (y> f 261,'71' —aj 8x2 * ( )
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where $*(y) is the pseudo-source term over a node (i, j) and f* is the averaged heat source. Now ex-
panding the pseudo-source term (RHS of Equation (3))by Legendre polynomial and truncating at zeroth
level we get the ordinary differential equation as,

PT v w0 <

aTl =5 -7 =5 “)
Similarly in y direction we get the second differential equation as,

azTy VX X o4

These ODE’s can also be solved analytically in the same manner as in NIM only the differnce in the
present approach is that now we will add the current term before solving it for 7" or 7°. For current let
us integrate Equation (4) and Equation (5) with respect to x and y, which is given as

o —x
a—y:Sxy+C1:J(y) (6)
ot -
== Sx+Dy =7 (x) (7

where J” (y) and J (x) are the currents average over x and y respectively, and C; and D are the integration
constants. Now Integrating Equation (6) and Equation (7) again, we get

X

2
T (y) =§%+C1y+cz (8)
_ _ x2
T (x) = SyE +Dix+ D, )

We will drive expression only for the Equation (8) and the other one can be proceed in an analogus man-
ner. Therefore for Equation (8) Boundary condition at node (i, j) is shown in Figure (1) and is given as

y=yj Tx:Tij and T =T

By applying boundary conditions and Eliminating integrating constants C; and C, from Equation (8) we
get

_ _ 1— _
T°0) =Tij+ 58,03 +71,00-)) (10)
Similarly applying the boundary condition at node (i, j — 1) and eliminating C; and C, form (8) we get

==X —x 1— -
T (y) :Ti,j+55?:/71()’1—)’)2“‘%/()’1'—)’) (11
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Figure 1: Stencil for Node averaged Nodal method

Operating the operator —— =T f Y7+ dy in Equation (10) and —-— ["' dy in Equation (11), we get the

equations in node average Varlables [10] which is given as

)’)’IYJ

=4 | R— —x =
Ti,yj = 8(6Ti,j + (=373 +Szj(YJ =Yji+1)) (v —¥j+1)) (12)

lel

6(6Tij—|—(—3j;j+§ij_1(yj_YJfl))(yj_yjfl)) (13)

Now eliminating the surface average term i.e. le f from Equation (12) and Equation (13) and solving for
J;-fj as

o 2Tf,yj n 2T ij—1 _S;C,jfl(}’j_)’j—l)2 Szj(YJ_yHl)z

b Oj-1=yir1)  Ojmr=yir1) 30— —yi+1) 301 —yi1)

Also following the same procedure

(14)

Changing index from j to j+ 1 we can get the expression for J* it

for Equation (9) in the x-direction one can easily get the similar expression for J) and J; 1
Constraint equation are required for the final formulation of the scheme [8]. The first constraint equation
is obtained by integrating Equation (1) by the operator

+ fx:+l fyw dydx that will lead to the relation between S)-C and S ; and that is,

4(xi1—x1) (V4 1-V5) ij ij

S48 =71 (15)

The other two constraint equation we will get by doing some approxiamtions in pseudo-source terms
[10] which gives us the following relations

- -

s 7o Uii=dij) (16)
o o (741 —x7)

_ _ (J; o —7)

Sy e Y LJ (17)
=1 (Vi1 —¥i)

Now putting the expressions of currents as given in Equation (14) from both directions in both the



Nadeem Ahmed, Niteen Kumar and Suneet Singh

Equations (16) and (17) we get

XY XY XY e e e
T 2T Tijn S;C'l Sii S;C,j-H

@ hj—1 = iJ
R L T (9
e o TP, 2T TR, S, 8. S
Y i—1,j i,j i+1,j i—1,j i) i+1,j
Szj _fiij_ "2 + ) + 6 _7+ 6 (19)
Now putting §; ; and Sl{ ; in Equation (15) we get the final equation for Node average temperature
— 1 — _ _ _ — — ey
T, = ﬂ(zs,.fj +280; = Sij1 = Sije1 = Sio1;—Sip1;—6Fi)) 00,

1 — — p— =
+Z(T;Ci1,j + T?Jyrl,j + T?jfl + Tiyjﬂ)

Now we have three equations and three unknowns, we can solve this by any of the standard numerical
solvers.

3 RESULTS AND DISCUSSION

Based on the numerical scheme developed in the previous section standard problem has been numerically
solved and compared with their analytical solutions. Since unknown dependent variable is averaged over
the space for comparison the analytical solution should also be averaged over the nodal dimension to
get the best match. As the grid is refined the averaged value tends towards the point value. The solved
problems are compared with the analytical solution.

Numerical verification

Problem 1:

Problem is taken from [12] which is to find the solution of Poisson’s equation A>2T'=-2 in square with
boundary conditions 7(0,y) =0, T(L,y) =0, T(x,0) =0, T(x,L) = 0.The analytical solution of the

above equation is,
3217 1 . (NTX mmy
Tlxy) = T )y mn(mz—i—nz)Sln(T)cos( L )

m,n,odd

Where 'n’ is the no. of nodes in x-direction and ‘m’ is no. of nodes in y-direction.
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Steady state temperature
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Figure 2: Steady state contour of Temperature(7) with x —y coordinate of the plate for n = 20,m =
20,L1 = 1m,L2 = 1m, (continuous line represents numerical result and dotted line represents analytical
result).

Problem 2:

Problem is taken from [12] to Solve for the steady state temperature distribution in square plate (0 <
x < L); (0 <y< L), whose all sides are kept at zero temperature and there is volumetric heat source
in the plate given as sin(%). Thus solve Poisson equation AT = —sin(Z*) with boundary condition
T =0(x=0,x=L,y=0,y=L) and compare with the analytical solution.

The analytical solution is given as
L\ . /mx Ty cosh(m)—17 .  /my
T(X7y) = <?)sm(f> {1C0Sh(L) + [smh(n) Slnh(f)

It is clear from Figure (3) that the numerical result is exactly matching with each other the reason behind
this the shape function that is derived from the solution of differential equation of averaged temperature
in one dimension in a node is quadratic in nature and that is close to the trigonometric variation of
analytical solution.
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Steady state temperature
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Figure 3: Steady state contour of Temperature(7) with x —y coordinate of the plate for n = 20,m =
20,L1 = 1m,L2 = 1m, (continuous line represents numerical result and dotted line represents analytical

result).

4 CONCLUSIONS

- A new approach of nodal method is developed which deals with the node averaged variable instead
of surface averaged variable as done in traditional NIM. The accuracy of the purposed algorithm
is almost simillar to the traditional NIM. Two dimensional diffusion equation is taken for the
formulation of the scheme and the iterative method is used for the numerical solution. Some
benchmark problems of diffusion equation are solved to check the applicability of the scheme and
compared the numerical results with the analytical solution and it is found that this scheme hold
the same accuracy in coarser grid as in traditional NIM.

- The scheme can easily be extended for further fluid flow problem such as convection-diffusion
equation, Burgers’ equation and Navier-Stokes equation. On the other hand one can easily couple
this scheme with other scheme which deals with the cell centroids such as cut cell approach and
the limitation of NIM can be overcome.
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