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1. INTRODUCTION 

1.1 Governing equation 

An electromagnetic cavity as discussed in this contribution will be a source-free domain  

enclosed by a perfect electric wall  and filled with a loss-free homogeneous isotropic linear 

dielectric medium. The time-harmonic electromagnetic fields in this domain will be solutions 

to the Maxwell’s equations (the complex phasor notation is adopted) [1],  
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where: E ( H ) complex amplitude of electric (magnetic) field intensity E (H); ε (), permittivity 

(permeability) of the medium; 2 T  , circular frequency; T, period; t, time;  

The essential boundary conditions on the perfect electric wall will be,      

( ) , 0 ( )a b   n E 0 n H                                              (2) 

where n is the unit vector normal to the surface . 

We will deal with time-harmonic electromagnetic fields directly in terms of either the 

electric field E or the magnetic field H. For this, it is necessary to derive from Maxwell’s 

equations, which involve both electric and magnetic fields, the governing differential equation 

involving only either field. Then, from Eq. (1c) and (1d), is produced the vector wave equation, 

1 2q p   U U 0                                                     (3) 

where: U, either E or H; if U = E, then q =  and p = ε; if U = H, then q = ε and p = . 

If the electric field E is solved by Eq. (3), then the magnetic field H will be induced by the 

Maxwell’s equation Eq. (1c). Alternatively, if the magnetic field H is solved by Eq. (3), then 

the electric field E will be induced by the Maxwell’s equation Eq. (1d). In this contribution the 

energy of the induced field will be an important quantity, which is computed by the equation,  
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1.2 Energy-orthogonal finite element formulation 

The functional equivalent to the source-free vector wave equation Eq. (3) and suitable 

natural boundary conditions will be [2, 3], 

     1 2F q p d


        U U U U U                                 (5) 

From Eq. (5), by considering the standard discretization by the finite element method, it will 

be produced the following matrix equation, 

1 2 ; exp( )q p i t     Ku Mu 0 u u                                         (6) 

where: K (M), global stiffness (mass) matrix (the structural notation is adopted); u , column 

matrix containing the complex amplitude of the nodal values of U (either E or H).. 

At element level,  

( ), ( )e T e

e
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If the matrix B is partitioned into mean and deviatoric components, 
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the matrix Eq. (7a) will be decomposed as addition of basic and higher order components, 

; ,e e e e T e e T
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In this case the element stiffness matrix is formulated in energy-orthogonal form [4]. The 

decomposition in Eq. (9) holds for the complete model,  

; ,e e

b h b b h he e
    K K K K K K K                                  (10) 

By considering Eq. (4), Eq. (7) and Eq. (10), the energy of the induced field at the discretized 

domain will be computed, and also will be its basic and higher order components,  

1 2 1 21 1
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b h b h b hE q E E E E q       u K u u K u      (11) 

For a standing-wave field the column matrix containing the amplitude of nodal values of U 

will be a real-values vector in Eq. (6). Then, from Eq. (11), the period-averaged energy of the 

induced field at the discretized domain and its basic and higher order components will be, 

1 2 1 21 1
( ) ( )4 4

; ,T T

b h b h b hE q E E E E q       u Ku u K u                      (12) 

1.3 Scope of research 

An electromagnetic cavity can support modes of free oscillation at an infinite number of 

discrete frequencies. These standing-wave fields and natural frequencies are solutions of the 

eigenproblem associated with the double-curl operator Eq. (3). As it is well known, if the above 
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operator is discretized with nodal finite elements then the eigenspectrum computed by Eq. (6) 

will be severely polluted with spurious eigenmodes, the spurious eigenvalues having the same 

order of magnitude as the physical eigenvalues and not easily distinguished from them. 

Enlightening discussions about the origin of the spurious eigenmodes, including references to 

relevant papers, can be found in some books, see references [5, 6]. Identifying the spurious 

eigenmodes by the energy-orthogonal formulation is the main objective of this contribution. 

2. DISPERSION ANALYSIS 

A physical cavity eigenmode can be represented by the superposition of plane harmonic 

waves travelling in several directions [7]. For these fundamental wave solutions, by a dispersion 

analysis, the behavior of the energy of the induced field will be researched in an unbounded 

domain discretized by a regular mesh of twenty-nodes hexahedral finite elements [8]. The 

elements have brick geometry. The nodal lattice formed by the finite elements assemblage has 

four nodes per unit cell, one vertex node and three mid-side nodes, Fig. 1. Different meshes 

with the same element volume can be selected by the aspect ratio parameter, 0 < γ ≤ 1, and the 

distortion-Z parameter,  > 0.  

 

Figure 1: Electromagnetic domain discretized by a regular mesh of twenty-nodes hexahedral finite elements and 

unit cell with four nodes. Wave normal and polarization vectors. 

For plane harmonic waves, 

ˆ( )exp( ), ; ( ) exp( )i t A ik    U u r r u r a n r                              (13) 

where: ũ, complex amplitude of the field U (either E or H); A, wave amplitude; n(, ), wave 

normal; â, polarization vector; k = 2π/λ = ω/v, wave number; , wavelength;  v = (ε)-1/2, phase 

speed of the continuum; , azimuthal angle, 0 ≤ ϕ ≤ 180º; θ, polar angle, 0 ≤ θ ≤ 180º, Fig. 1. 

Two different polarizations â · n = 0 will be considered: T-waves and H-waves, Fig. 1, 
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For a plane harmonic wave Eq. (13), the density of period-averaged energy of the induced 

field can be computed by the equation [1],  

1 2 21
0 4

E q v A                                                          (15) 

2.1 Characteristic equations 

The characteristic equations can be found assuming harmonic waves Eq. (13) with different 

amplitudes in each node of the unit cell, 

ˆ exp( ), 1, ,4jA ik j  u a n r                                            (16) 

Inserting the solutions Eq. (16) into Eq. (6), the characteristic equation for each node of the 

unit cell is yielded by equilibrium of nodal forces into the direction of polarization [9], 

1 2ˆ ˆ 0K Mq p    F a F a                                                  (17) 

where: FK, nodal force associate to the global stiffness matrix; FM, nodal force associate to the 

global mass matrix. 

By considering Eq. (17) for each node of the unit cell, a homogeneous system of four 

algebraic equations is formed for the unknown amplitudes, 

2( ( , , , , ) ( , , , , ))m m           a b A 0 ZA 0                         (18) 

2 ( ) , (2 ) ( )m bk b a b v b                                       (19) 

where: m, dimensionless wave number, 0 < m < 1; b, half of the element size; ϖ, dimensionless 

frequency of the discretized domain.  

In this procedure, the global stiffness and mass matrices have been expressed in the form,  

0 3 0(2 ) ( ), (2 ) ( )b a b b K K M M                                      (20) 

2.2 Dispersion equations 

The system of homogeneous algebraic equations given in Eq. (18) has a non-trivial solution 

only if the matrix Z is singular; that is, det [Z] = 0. Then it is yielded the following polynomial 

equation which is called the characteristic frequency equation for the plane wave propagation, 

4 2

40
( , , , , ) 0, 1

r

rr
c m c    


                                          (21) 

By computing the zeros of Eq. (21) in closed form, as functions of its coefficients, the four 

dispersion equations are then yielded,  

( , , , , ), 1, ,4k k m k                                                (22) 

Substituting Eq. (22) into Eq. (18), the wave amplitudes corresponding to the nodes of the 

unit cell are yielded for each dispersion equation. The range of dimensionless wave number 

values where each dispersion equation represents the propagation of electromagnetic waves in 

the discretized medium will be called the physical branch of the dispersion equation. In order 

to determine the physical branches the following constraint conditions are imposed, 
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1 , , ,1; ( , , , , ) 0, 2,3,4 ( ), ( ) 0 ( )jA A m j a m b                        (23) 

In molecular physics, condition Eq. (23a) is called the restriction of the lattice spectrum to 

the acoustical branch [10]. The preliminary constraint condition dim [N(Z)] = 1 over the 

dimension of the null space of matrix Z must be imposed in order to Eq. (23a) would be a 

meaningful constraint condition. The constraint condition Eq. (23b) imposes that both the phase 

velocity and the group velocity have the same sign. In this research, only the first physical 

branch will be selected for the analysis. 

2.3 Energy of the induced field  

From Eq. (11), Eq. (19b) and Eq. (20a) the density of period-averaged energy of the induced 

field will be computed 

1
1 2 2 01

2
0
Im[ exp( 2 )]Im[ exp( 2 )]TE q v i i d        u F                       (24) 

where: τ = t/T, 0 ≤ τ ≤ 1, dimensionless time; 0 0 exp( 2 )i  F F , column matrix of forces at 

the nodes of the unit cell.   

The energy density Eq. (24) is partitioned as addition of basic and higher order components. 

Each one of these energy components is then partitioned at the unit cell as addition of the 

component associated with the vertex node and the one associated with the mid-side nodes, 

; ,V M V M

b h b b b h h hE E E E E E E E E                                     (25) 

Then, the percentages of basic and higher order energy can be defined 

( , , , , ) ( ) , ( ) , ( )V V M M

b b b b b be m E E a e E E b e E E c                    (26) 

( , , , , ) ( ) , ( ), ( )V V M M

h h h h h he m E E a e E E b e E E c                     (27) 

The energy decomposition as addition of vertex and mid-side components has been already 

used by the author in the context of the structural modal analysis [11].  

From Eq. (24) and Eq. (15), the percentage of energy error associated with the spatial 

discretization can be computed, 

0( , , , , ) 1Pe m E E                                                     (28) 

A mapping between percentage of energy error Eq. (28) and higher order energy Eq. (27a) 

can be also computed, 

( , , , , )P P he e e                                                         (29) 

2.4 Numerical research 

For the wave polarizations selected in Eq. (14), the indicators Eq. (26) to Eq. (28) are 

computed versus dimensionless wave number for different meshes and directions of wave 

propagation. Four meshes will be selected, Fig. 1: Q1, square section (γ = 1,  = 1); Q2, 

rectangular section with aspect ratio 1:2 (γ = 1/√2,  = 1); Q3, Z-distorted with aspect ratio 2:1 

(γ = 1,  = 21/3); Q4, Z-distorted with aspect ratio 1:2 (γ = 1,  = 1/21/3). 
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The dispersion analysis is numerically carried out by a step of π/36 for the azimuthal and 

polar angles, and a step of 1/10000 for the dimensionless wave number. For the mesh Q1 and 

T-waves, the indicators Eq. (27a) and Eq. (29) are plotted in Fig. 2 for three directions of wave 

propagation with the same azimuthal angle. The percentages of vertex and mid-side basic 

energy, Eq. (26b) and Eq. (26c), and the percentages of vertex and mid-side higher order energy, 

Eq. (27b) and Eq. (27c), are also plotted in Fig. 3.  

It is displayed in Fig. 2 how the percentage of higher order energy vanishes as dimensionless 

wave number goes to zero; that is, as the mesh is refined and in the limit of long waves. It is 

also displayed how the percentage of energy error vanishes as the percentage of higher order 

energy goes to zero. Then, it is inferred that the percentage of energy error vanishes as 

dimensionless wave number goes to zero.  

It can be concluded that, given the mesh, in the limit of long wavelength, although the energy 

density of the induced field does not vanish, its higher order component does vanish. Similarly, 

given the wavelength, as the solution converges on account of mesh refinement, the energy 

density is increasingly dominated by its basic component. The above behavior of the higher 

order energy as dimensionless wave number goes to zero is a consequence that the induced field 

inside each element becomes uniform.   

 

Figure 2: Percentage of higher order energy versus dimensionless wave number and percentage of energy error 

versus percentage of higher order energy. 

Nevertheless, the higher order energy density vanishes as a cancellation at the unit cell of 

the component associated with the vertex node and the one associated with the mid-side nodes, 

which do not vanish but are equal and opposite in sign. A sign characteristic is also satisfied by 

the vertex and mid-side components of the basic energy density, Fig. 3. The numerical research 

reveals that the sign characteristic and the convergence values of these energy components do 

not depend on the direction of wave propagation, direction of wave polarization, and mesh 

parameters. These characteristic signs and limit values are, 

0 ( ), 0 ( ), 0 ( ), 0 ( )V M V M

b b h he a e b e c e d                            (30) 

0 0 0 0
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Figure 3: Vertex and mid-side components of the basic and higher order energy versus dimensionless wave 

number. 

A discrete averaged relationship between the percentage higher order energy, the percentage 

energy error and the dimensionless wave number is investigated. Two reference values of the 

percentage higher order energy are selected. Then, by Eq. (27a) and Eq. (29), the related 

reference values of dimensionless wave number and percentage energy error are computed, 

1 1 1 1 1

2 2 2 2 21

0.05 ( , , , ), ( , , , ) ( )
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h P P
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   

   
                   (32) 

The mean value of each reference dimensionless wave number, and the rms value of each 

reference percentage energy error are computed on the range of propagation angles, 

2 2

2
1 1

1,2 1,2 1,2 1,2
0 0 0 0

( , ) ( ) ( , ) ( )RMS

P Pm m d d a e e d d b
   

 
                     (33) 

Consistent with the discrete analysis carried out, the integrals in Eq. (33) are numerically 

computed. The results are displayed in Table 1 for the meshes and wave polarizations selected.  
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Table 1: Mean values of the reference dimensionless wave numbers and rms values of the reference percentage 

energy errors computed on the range of azimuthal and polar angles. 

  
1m  

1

RMS

Pe  2m  
2

RMS

Pe  

MESH Q1 T 

H 

0.1249 

0.1250 

0.001206 

0.001022 

0.1791 

0.1795 

0.005342 

0.004454 

MESH Q2 T 

H 

0.1217 

0.1218 

0.001223 

0.001317 

0.1745 

0.1748 

0.005481 

0.006427 

MESH Q3 T 

H 

0.1079 

0.1082 

0.002067 

0.000912 

0.1544 

0.1553 

0.011792 

0.003876 

MESH Q4 T 

H 

0.1361 

0.1362 

0.001404 

0.001100 

0.1952 

0.1956 

0.006749 

0.004801 

Averaged values  0.1227 0.001281 0.1760 0.006115 

Mesh-averaged values are also displayed. It is verified that the first reference value of 

percentage higher order energy, Eq. (32a), roughly correspond, in an averaged sense, to eight 

elements per wavelength; on the other hand, the second reference value, Eq. (32b), would 

correspond to six elements per wavelength. It is also verified that for the second reference value 

the mesh-averaged rms energy error is around one half per cent. 

3. CAVITY EIGENMODES 

The standing-wave fields and natural frequencies in an electromagnetic cavity discretized 

by a finite element mesh will be the solution of the eigenproblem associated to Eq. (6), which 

is suitably expressed in wave number form, 

2 2 2, ; 1, ,j j j j jk k j N   Ku Mu 0                                  (34) 

The eigenproblem Eq. (34) is solved by the LAPACK routine DSPCVX [12]. From Eq. (12), 

for each eigenmode computed, both the basic component and higher order component of the 

period-averaged energy of the induced field will be computed in percentage form,  

, ,; 1, , ( ), ; 1, , ( )j b j j j h j jEB E E j N a EH E E j N b                (35) 

Then, both the basic energy and higher order energy will be expressed as addition of the 

component associated with the vertex nodes and the one associated with the mid-side nodes, 

; 1, , ( ), ; 1, , ( )j j j j j jEB EBv EBm j N a EH EHv EHm j N b         (36) 

In order to identify the physical eigenmodes, in this contribution it is proposed to select only 

those eigenmodes for which the basic energy component of the induced field prevails over the 

higher order energy component. Additionally, the vertex and mid-side energy components must 

fulfill the sign characteristic deduced for these energy components by the dispersion analysis 

carried out for the fundamental solution of plane harmonic waves, Eq. (30). Then, it will be 

proposed as candidates for physical eigenmodes those finite element eigenmodes for which, 

j jEB EH                                                           (37a) 
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0 ( ), 0 ( ), 0 ( ), 0 ( )j j j jEBv i EBm ii EHv iii EHm iv               (37b) 

In order to test the proposed criterion, the eigenspectrum of a rectangular cavity is analyzed. 

The geometry of the cavity, discretized with a coarse mesh of twenty-nodes hexahedral finite 

elements, is illustrated in Fig. 4. The cavity discretized by a fine mesh, obtained by dividing 

each element of the coarse mesh into eight elements, will be also analyzed.  

The eigenproblem Eq. (34) is solved for the electric field (U = E) by applying the boundary 

condition Eq. (2a). The eigenmodes up to N = 238 are computed with the coarse mesh, being 

the modal wave number versus the number of mode displayed in a stick diagram, Fig. 4. The 

eigenmodes up to N = 1200 are computed with the fine mesh. 

Next, the percentage energy components versus the number of mode are computed, and the 

finite element eigenmodes fulfilling the criterion Eq. (37a) are listed in Table 2, for the coarse 

mesh, and Table 3, for the fine mesh. All of these eigenmodes also fulfill the criterion Eq. (37b). 

In both cases, they will be called the filtered eigenmodes up to Nf = 25.  

 

Figure 4: Rectangular cavity. Dimensions: a = 0.0075 m; b = 0.0050 m; c = 0.01 m. Stick diagram of modal 

wave number versus number of mode computed with a coarse mesh. 

The filtered eigenmodes computed with the coarse mesh and the ones computed with the 

fine mesh are compared one-to-one by the modal assurance criterion [13],  

2

( )( )

T

c

T T

c c f

f

f

MAC



 

u u

u u u u
                                                       (38) 

The vectors in Eq. (38) are obtained by computing each modal field at the nodes of the fine 

mesh. The results are displayed in Table 2. A value of MAC close to 1 suggests that the two 

vectors are well correlated and they are numerical approximations of the same modal field. 

b 

c 

Y 

Z 

X 

a 

Number of mode 

MODAL WAVE NUMBER 



Francisco J. Brito 

10 
 

Table 2: Rectangular cavity discretized by twenty-nodes hexahedral finite elements. Filtered eigenmodes versus 

number of mode computed with the coarse mesh. 

 # Mode k (1/m) EBv EBm EHv EHm EH MAC 

1 105 523.656 -0.301581   1.238362 -0.600855   0.664073 0.063219   0.999998   

2 128 702.559 -0.301585   1.238366 -0.600863   0.664082 0.063219   0.999998   

3 140 755.228 -0.301582   1.238363 -0.600856   0.664075 0.063219   0.999998   

4 142 756.037 -0.264028   1.114828 -0.505274   0.654475 0.149201   0.999934   

5 151 817.970 -0.288886   1.195458 -0.585411   0.678839 0.093428   0.999742   

6 152 817.973 -0.287146   1.193724 -0.582670   0.676092 0.093421   0.999845   

7 164 889.384 -0.258701   1.110326 -0.510642   0.659017 0.148374   0.999935   

8 166 896.017 -0.269178   1.119171 -0.500207   0.650214 0.150007   0.999934   

9 180 982.921 -0.250449   1.073023 -0.506796   0.684222 0.177426   0.998011   

10 182 983.095 -0.243600   1.068137 -0.495990   0.671453 0.175463   0.999006   

11 191 1037.937 -0.218956   0.940963 -0.357948   0.635941 0.277993   0.999306   

12 195 1048.358 -0.262577   1.113602 -0.506729   0.655704 0.148975   0.999935   

13 196 1049.266 -0.219756   0.997226 -0.428023   0.650552 0.222529   0.999785   

14 201 1094.242 -0.254156   1.076589 -0.500390   0.677957 0.177567   0.997273   

15 202 1094.422 -0.244366   1.068158 -0.485129   0.661336 0.176208   0.998448   

16 207 1138.866 -0.210109   0.935891 -0.366873   0.641091 0.274218   0.999311   

17 218 1212.300 -0.191519   0.889439 -0.356819   0.658900 0.302080   0.991145   

18 219 1213.442 -0.180202   0.884583 -0.336376   0.631995 0.295620   0.995577   

19 220 1222.539 -0.209347   0.957612 -0.428218   0.679952 0.251735   0.992513   

20 221 1222.857 -0.204404   0.956049 -0.420437   0.668792 0.248355   0.993283   

21 226 1269.318 -0.168569   0.843836 -0.308263   0.632995 0.324732   0.998710   

22 230 1297.300 -0.271049   1.120747 -0.498545   0.648847 0.150302   0.999935   

23 232 1304.462 -0.225701   0.944846 -0.351583   0.632437 0.280855   0.999304   

24 234 1326.567 -0.269841   1.119730 -0.499587   0.649698 0.150111   0.999935   

25 237 1349.659 -0.161820   0.707853 -0.183605   0.637572 0.453967   0.995034   

From Table 2 and Table 3, it is verified that the vertex and mid-side energy components of 

the filtered eigenmodes versus the number of mode have values in accordance with the ones 

exhibit by these energy components for the fundamental solution of plane harmonic waves 

versus dimensionless wave number, Fig. 3 and Eq. (31). It must be remarked how the mid-side 

higher order energy component preserves values close to Eq. (31d) as the number of mode 

increases, both for the filtered eigenmodes computed with the coarse mesh and the ones 

computed with the fine mesh, in accordance with the characteristic averaged behavior of this 

energy component versus dimensionless wave number inferred from Fig. 3.  

The exact wave numbers can be computed by the equation [1], 

     
2 2 2

mnpk m a n b p c                                           (39) 

where: for TM eigenmodes, m = 1, 2, 3,  ; n = 1, 2, 3,  ; p = 0, 1, 2,  ; for TE eigenmodes, 

m = 0, 1, 2,  ;  n = 0, 1, 2,  ; p = 1, 2, 3,  ; m = n = 0 excepted. 

By Eq. (39), the exact wave numbers up to Ne = 25 are computed and listed in the Table 4. 

From Table 3 and Table 4, it can be verified that the filtered eigenmodes computed with the 

fine mesh are a high precision approximation of the exact eigenmodes; then, they will be 

physical eigenmodes precisely captured. The set of physical eigenmodes displayed in Table 3 
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has an upper limit of higher order energy around the second reference value Eq. (32b), which 

roughly corresponds to six elements per wavelength, Table 1.  

Table 3: Rectangular cavity discretized by twenty-nodes hexahedral finite elements. Filtered eigenmodes versus 

number of mode computed with the fine mesh. 

 # Mode k (1/m) EBv EBm EHv EHm EH 

1 670 523.602       -0.325187        1.308900       -0.649818        0.666105 0.016287 

2 783 702.486       -0.325188        1.308900       -0.649818        0.666105 0.016287 

3 819 755.150       -0.325187        1.308900       -0.649818        0.666105 0.016287 

4 820 755.202       -0.314793        1.274683       -0.623591        0.663700 0.040110 

5 858 817.893       -0.322269        1.297931       -0.646678        0.671016 0.024338 

6 859 817.893       -0.322064        1.297726       -0.646351        0.670689 0.024338 

7 891 888.627       -0.313276        1.273208       -0.625110        0.665177 0.040068 

8 901 894.810       -0.316248        1.276098       -0.622136        0.662286 0.040150 

9 960 982.400       -0.313053        1.265031       -0.627935        0.675958 0.048022 

10 961 982.405       -0.309634        1.261730       -0.622538        0.670442 0.047904 

11 992 1031.824       -0.301090        1.222696       -0.578753        0.657148 0.078394 

12 1003 1047.272       -0.314380        1.274282       -0.624004        0.664102 0.040098 

13 1004 1047.313       -0.301581        1.238362       -0.600855        0.664073 0.063219 

14 1033 1093.373       -0.313640        1.265613       -0.625269        0.673295 0.048026 

15 1034 1093.378       -0.310619        1.262677       -0.620499        0.668441 0.047942 

16 1054 1133.133       -0.298207        1.219982       -0.581636        0.659861 0.078224 

17 1104 1208.038       -0.298804        1.212731       -0.588082        0.674155 0.086073 

18 1105 1208.077       -0.293441        1.207771       -0.579662        0.665331 0.085670 

19 1115 1221.320       -0.301915        1.230845       -0.607645        0.678715 0.071070 

20 1116 1221.329       -0.298212        1.227317       -0.601891        0.672787 0.070896 

21 1145 1261.441       -0.283715        1.183584       -0.561299        0.661431 0.100132 

22 1172 1295.442       -0.316758        1.276594       -0.621629        0.661793 0.040164 

23 1174 1295.952       -0.303236        1.224715       -0.576616        0.655136 0.078520 

24 1198 1324.739       -0.316432        1.276277       -0.621953        0.662108 0.040155 

25 1199 1326.526       -0.283779        1.154325       -0.518735        0.648188 0.129454 

Table 4: Rectangular cavity. Exact TE and TM wave numbers with respect to the Z axis. 

kmnp (1/m) Mode kmnp (1/m) Mode kmnp (1/m) Mode kmnp (1/m) Mode 

523.599 TE101 888.577 TE012 1047.197 TE202 TM210 1221.232 TE212 TM212 

702.481 TE011 894.726 TE201 1093.306 TE211 TM211 1260.993 TE203 

755.145 TE102 TM110 982.358 TE112 TM112 1132.717 TE013 1295.312 TE021 TE301 

817.887 TE111 TM111 1031.370 TE103 1207.687 TE113 TM113 1324.612 TE104 TM120 

The numerical research has revealed that a spurious eigenmode is characterized by its 

induced field having a small percentage of basic energy, lower than about ten per cent; 

therefore, the induced field at the element will be far from a uniform field, on the contrary, it 

will fluctuate around a small mean value. Moreover, a spurious eigenmode generally does not 

fulfill the sign characteristic Eq. (37b). The above remarks about the spurious eigenmodes are 

non-dependent on the mesh refinement. Also, it has been verified that both the number of 

spurious eigenmodes computed before the first physical eigenmode and the number of spurious 

eigenmodes computed between the first physical eigenmode and the last one increase as the 

mesh is refined, see Table 2 and Table 3. As conclusion, it has been corroborated that the 
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spurious eigenmodes are numerical solutions of the eigenproblem that do not converge to any 

physical solution as the mesh is refined [14]. Finally, it must be remarked that by the criterion 

Eq. (37a) non-spurious eigenmodes could be rejected, but such eigenmodes would be so far 

from convergence that they could be described as imprecisely captured  (spurious in a different 

meaning of the word). 

4. CONCLUSIONS 

For an electromagnetic domain discretized by energy-orthogonal twenty-nodes hexahedral 

finite elements by a dispersion analysis the behavior of the induced field energy has been 

researched for the fundamental solution of plane harmonic waves. Based on this analysis, for 

the finite element computation of the cavity eigenspectrum, it has been proposed: 

- A criterion based on the energy behavior to efficiently identify the physical 

eigenmodes between a myriad of spurious eigenmodes. 

- The use of a correlation between the percentage of higher order energy and the number 

of elements per wavelength in order to verify, by this energy percentage, if the physical 

eigenmodes computed have the high precision required for applications. 
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