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INTRODUCTION



 Governing equations based on incompressible and irrotational flow

HYDRODYNAMICS GOVERNING EQUATIONS
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𝜑: velocity potential 𝒗𝜑 = 𝛻𝜑

ξ : Free Surface elevation



HYDRODYNAMICS GOVERNING EQUATIONS

 Taylor series expansion carried out to free surface boundary condition 

around z=0 to approximate the condition on 𝑧 = ξ.

 Taylor series expansion carried out to body boundary condition around SB
0

to approximate the condition on SB.

 Perturbed solution:

Velocity potential: 𝜑 = ϵ1𝜑1 + ϵ2𝜑2 + ϵ3𝜑3 +⋯

Free surface elevation: ξ = ϵ1ξ1 + ϵ2ξ2 + ϵ3ξ3 +⋯

Body position: 𝑿 = 𝜖1𝑿1 + 𝜖2𝑿2 + 𝜖3𝑿3…

Body velocity: 𝑽 = 𝜖1𝑽1 + 𝜖2𝑽2 + 𝜖3𝑽3…

 Decomposition solution: total =incident + diff-rad

𝜑i = 𝜓i + 𝜙i; ξ𝑖 = ζi + 𝜂i



 Up to second-order wave diffraction-radiation problem

 Governing equations (summing up first and second order equations):

HYDRODYNAMICS GOVERNING EQUATIONS
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NUMERICAL MODEL

 Wave diffraction-radiation solver:

 Potential flow equation(Laplace): solved by FEM

 Free surface boundary condition:

 Combined kinematic and dynamic conditions:
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 Fourth order compact Padé scheme:
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 Absorption condition: 𝑃𝑓𝑠 𝒙, 𝑡 = 𝜅 𝒙 𝜌
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 Radiation condition: 𝜙𝒏
𝑅 𝑛+1 = −

𝜙𝑛−1−𝜙𝑛

𝑐𝛥𝑡

 Body dynamics solver
 𝐌 𝐗𝑡𝑡+  𝐊 𝐗 = 𝐅

Temporal integrator: Newmark’s scheme



 Elastic catenary: quasistatic model including stiffness

 Reference: Jonkman, J.M. Dynamic modelling and loads analysis of 

an offshore floating wind turbine, Technical report NREL/TP-500-

41958; November 2007

 Dynamic cable

 Mathematical model:

 Cable with negligible bending and torsional stiffness.
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 Numerical model:
 Solved using FEM:

 Includes Morison Forces

 Reference: Gutiérrez-Romero, J.E., Serván-Camas, B., García-Espinosa, J. and 

Zamora-Parra, B. Non-linear dynamic analysis of the response of moored floating 

structures. Marine Structures 2016; 49:116-137.

MOORING MODELS



 Embedded loops 

algorithm

 Three loops:
 Time loop

 Solver loop

Solve diffraction-radiation.

 Body dynamics loop

 Solve body movements

 Mooring solver:
 Non-linear

 Jacobian matrix is updated 

within the Solver loop 

 Linear within the body 

dynamics loop.

COUPLING SEEKEPING AND MOORING



VALIDATION



HIPRWIND MODEL DESCRIPTION

 HiPRWind main particulars:



EXPERIMENTAL SETUP

 Facility particulars



NUMERICAL SETUP

 Model geometry and mesh:

 Number of tetrahedral elements: 567363

 Number of triangular elements: 51398



MODEL CALIBRATION

 Decay tests using 

elastic lines:
FEM

WAD

AM/SI

MO

Applied at CG

Surge linear damping: 𝐁𝟏𝟏[KN/(m/s)] 75 70

Heave added mass: 𝐀𝟑𝟑 [t] 1200 1000

Heave linear damping: 

𝐁𝟑𝟑[KN/(m/s)]
1100 110

Applied at the 

center of each 

heave plate base

Heave linear damping: 

𝐁𝟑𝟑[KN/(m/s)]
76 50

Heave quadratic damping: 

𝐁𝟑𝟑
𝟐 [KN/(m/s)2]

805 600

Natural periods

Surge Heave Pitch

70s 19s 26s



ANALYSIS ON BICHROMATIC WAVES

 Bichromatic test matrix



ANALYSIS ON BICHROMATIC WAVES

 Bichromatic test results

Case 1 Case 2

Case 3 Case 4



ANALYSIS ON BICHROMATIC WAVES

 Bichromatic test results

Case 5 Case 6

Case 7 Case 8



ANALYSIS ON BICHROMATIC WAVES

 Bichromatic test results

Case 9 Case 10

Case 11 Case 12



ANALYSIS ON BICHROMATIC WAVES

 Bichromatic test results

Case 13 Case 14

Case 15 Case 16



ANALYSIS ON BICHROMATIC WAVES

 Irregular test 1: Hs=2.5m, TP=16s



ANALYSIS ON BICHROMATIC WAVES

 Irregular test 1: Hs=2.5m, TP=16s



ANALYSIS ON BICHROMATIC WAVES

 Irregular test 2: Hs=4.0m, TP=13s



ANALYSIS ON BICHROMATIC WAVES

 Irregular test 1: Hs=4.0m, TP=13s



 A time-domain up to second-order wave diffraction-radiation solver 

based on FEM has been presented.

 Two mooring models have been coupled with the diff-rad solver.

 The proposed methodology has been validated against 

experiments carried out for the HiPRWind semi-submersible 

platform.

 Test in bichromatic waves: 

 No large differences between the elastic catenary and dynamic cable model.

 Fair agreement between numerical and experimental (better in the higher 

frequency range).

 Test in bichromatic waves: 

 Good movements phase agreement.

 Some movement deviation, mostly in the low frequency.

 Numerical mooring loads follow the trend of the experimental measurements.

SUMMARY AND CONCLUSIONS
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