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The dynamic and stochastic vehicle routing problem (DSVRP) can be modelled as a stochastic program (SP). In a two-stage
SP with recourse model, the first stage minimizes the a priori routing plan cost and the second stage minimizes the cost of
corrective actions, performed to deal with changes in the inputs. To deal with the problem, approaches based either on stochastic
modelling or on sampling can be applied. Sampling-based methods incorporate stochastic knowledge by generating scenarios set
on realizations drawn from distributions. In this paper we proposed a robust solution approach for the capacitated DSVRP based
on sampling strategies. We formulated the problem as a two-stage stochastic program model with recourse. In the first stage the a
priori routing plan cost is minimized, whereas in the second stage the average of higher moments for the recourse cost calculated
via a set of scenarios is minimized. The idea is to include higher moments in the second stage aiming to compute a robust a
priori routing plan that minimizes transportation costs while permitting small changes in the demands without changing solution
structure. Additionally, the approach allows managers to choose between optimality and robustness, that is, transportation costs
and reconfiguration. The computational results on a generic dynamic benchmark dataset show that the robust routing plan can
cover unmet demand while incurring little extra costs as compared to the preplanning. We observed that the plan of routes is more
robust; that is, not only the expected real cost, but also the increment within the planned cost is lower.

1. Introduction

The basic task in freight transport is to ship goods from
one location to another one, which are typically represented
by depots and geographically dispersed points, respectively.
Hence, a combinatorial optimization problem arises, which
is known as vehicle routing problem (VRP).The VRP aims to
determine a set of vehicle routes to perform transportation
requests with a given vehicle fleet at minimum cost, that
is, to decide which vehicle handles which customer order
in which sequence. In this kind of problem, one typically
assumes that the values of all inputs are known with certainty
and do not change. However, in today’s economy, one issue
needs to be integrated: customers desire more flexibility
and fast fulfillment of their orders. Besides that, the recent
developments in information technology permit a growing
amount of available data and both control of a vehicle

fleet and management of customer orders in real-time. This
context calls for real-time decision support in vehicle routing,
motivating a version of the VRP, the so-called dynamic and
stochastic vehicle routing problem.

TheDSVRP is a generalization of the VRP, where parts or
all necessary information regarding inputs is stochastic and
the true values become available at runtime only. Usually,
the dynamic and stochastic VRP is modelled either as
a Markov decision process or as a stochastic program [1].
An MDP consists of a finite set of states, a finite set of
actions, representing the nondeterministic choices, and a
transition function that given a state and an action pro-
vides the probability distribution over the successor states
[2]. Differently, SP determines a feasible solution for all
possible outcomes [3]. All stochastic program formulations
call for the determination of an a priori routing plan.
Based on DSVRP models, different solution methods have
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been developed to address the problem. Usually, solution
methods are classified into one of two families: stochastic
modelling or sampling. In stochasticmodelling approaches, the
stochastic knowledge is formally included into the problem
formulation, but they are highly technical in their formu-
lation and require to efficiently compute possibly complex
expected values. On the other hand, sampling has relative
simplicity and flexibility on distributional assumptions, while
its drawback is the massive generation of scenarios to
accurately reflect reality [4, 5]. These approaches sample
the probability distributions to generate scenarios that are
used to make decisions. Different authors have proposed
sampling-based approaches in the context of stochastic VRP,
for instance, the Multiple Scenario Approach (MSA) pro-
posed by Bent and Van Hentenryck [6] and Sample Average
Approximation (SAA) method applied in Verweij et al.
[7].

In this paper, we formulate the dynamic and stochastic
capacitated vehicle routing problem, where the demands are
stochastic and dynamic, as a two-stage stochastic program
model. Similar to the sampling-basedmethods, we also make
use of scenarios in the proposed robust solution approach.
However, different from MSA, the scenarios are generated
only once at the beginning of the planning stage and, different
from SAA, we do not minimize the average of the second
stage cost of a set of sample scenarios. The idea of the robust
approach is to address uncertainty using higher moments
calculated via scenarios, permitting the solution to be able
to adapt to situations when the real demand is greater than
expected. Our aim is to develop a solution approach such
that the routing plan is robust against small changes in the
inputs, that is, allowing to compensate for changes in the
input without losing structural properties and optimality. For
that, the remainder of the paper is organized as follows. Sec-
tion 2 provides a brief literature review dedicated to vehicle
routing problem, with an emphasis on the stochastic and
dynamic vehicle routing problem. In Section 3 the problem
formulation is described. This is followed in Section 4 by a
description of the robust solution approach. Computational
results are reported in Section 5, and, last, Section 6 concludes
with a summary and an outlook for future work.

2. Literature Review

The VRP is a generalization of the Traveling Salesman
Problem (TSP). The TSP is a well-studied problem, in which
the goal is to minimize the total distance traveled by the
salesman while visiting a group of cities and returning to the
first visited city. In this problem each city is visited exactly
once by the salesman.The vehicle routing problem, in its turn,
consists of designing a routing plan to attend to all customers
with a given vehicle fleet at minimum cost. Mathematically,
the VRP reads as follows.

Definition 1 (vehicle routing problem). Consider a set of vehi-
cles𝑉 and a fully connected graph𝐺 = (𝑁,𝐴), where𝑁 is the
set of vertices representing customer locations (0 is the depot
of vehicles) and 𝐴 is the set of arcs. With every arc (𝑖, 𝑗) 𝑖 ̸= 𝑗
is associated a nonnegative distance matrix 𝐶 = 𝑐𝑖𝑗. In some

contexts, 𝑐𝑖𝑗 can be interpreted as a travel cost or as a travel
time. Moreover, let 𝑥𝑖𝑗V be a binary variable taking the value 1
if arc (𝑖, 𝑗) is used by vehicle V and the value 0 otherwise.Then,
we call

min 𝐽𝑉 (𝑦) fl min∑
V∈𝑉

∑
𝑖∈𝐴

∑
𝑗∈𝐴

𝑐𝑖𝑗𝑥𝑖𝑗V (1)

s.t. ∑
V∈𝑉

∑
𝑗∈𝐴

𝑥𝑖𝑗V = 1 𝑖 ∈ {1, 2, 3, . . . , 𝑁} , (2)

𝐴∑
𝑗=1

𝑥0𝑗V ≤ V ∀V ∈ 𝑉, (3)

𝐴∑
𝑖=1

𝑥0𝑗V = 𝐴∑
𝑗=1

𝑥𝑗0V = 1 ∀V ∈ 𝑉, (4)

𝐴∑
𝑗=0

𝑥𝑖𝑗V − 𝐴∑
𝑗=0

𝑥𝑗𝑖V = 0 ∀V ∈ 𝑉,
𝑖 ∈ {1, 2, 3, . . . , 𝑁} ,

(5)

𝑥𝑖𝑗V ∈ {0, 1} ∀V ∈ 𝑉 (6)

the vehicle routing problem.

Within Definition 1, (2) assures that each client is visited
only once. Constraint (3) guarantees that V vehicles must
leave the depot. The initial and termination condition are
expressed by (4), insuring that the route starts and ends
at the depot. Constraint (5) ensures that the same vehicle
comes in and comes out for each one of its customers, and
(6) guarantees that all variables are binary. Beyond the VRP
classical formulation, a number of side constraints complicate
the problem. These could for instance be time constraints on
time windows or on capacities of the vehicles, which result in
the Vehicle Routing Problem with TimeWindows (VRPTW)
or the most studied version of the vehicle routing problem,
the capacitated vehicle routing problem (CVRP), respectively.
In the CVRP a nonnegative demand (𝑑𝑖 > 0) is attached
to each customer 𝑖 ∈ 𝑁 and the sum of demands of any
vehicle route may not exceed the vehicle capacity [8]. Thus,
the constraint as follows is included in Definition 1:

𝐴∑
𝑖=1

𝑑𝑖 𝐴∑
𝑗=0

𝑥𝑖𝑗V ≤ 𝐶 ∀V ∈ 𝑉. (7)

In contrast to the basic definition of the VRP, most real-
life applications have to be analyzed with regard to two
aspects: evolution and quality of information [9]. Evolution
of information refers to the fact that in some problems the
available information may change during runtime. Quality
of information indicates possible uncertainty on the available
data [5]. Based on these aspects, there are four classes of VRP
shown in Table 1.

In the static and deterministic class, all necessary data
is known in advance and time is not taken into account
explicitly. Hence, no updates of routing plans are required.
These conditions apply, for example, for the classical VRP;
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Table 1: Taxonomy of vehicle routing problems by information evolution and quality.

Information quality
Deterministic input Stochastic input

Information evolution Input known beforehand Static and deterministic Static and stochastic
Input unknown beforehand Dynamic and deterministic Dynamic and stochastic

compare Definition 1. In the static and stochastic setting,
a part of the data is modelled as random variable and
respective realizations are only revealed during the execution
of the plan. The routes are designed before starting the
execution of the plan and only minor changes are allowed
afterwards. Applications in this class do not require any
technological support. The three most studied respective
cases are stochastic customers, where a customer needs to be
serviced with a given probability [10, 11]; stochastic times, in
which either service or travel times are modelled by random
variables [8, 12]; and stochastic demands [13, 14]. The most
studied problem in this class is the CVRP with stochastic
demands (VRPSD). In comparison to capacitated VRP, the
difference is that for the CVRPSD the demand is a random
variable 𝑑𝑛 : Ω𝑛 → R+0 . The dynamic and deterministic
class, also called online or real-time [15], is characterized
by parts or all the inputs being unknown and revealed
dynamically during the design or execution of the routing
plans. In this setting, no stochastic information about the
future is known; for example, the location of a customer
may be unknown until that customer request is serviced
[16]. For these problems, vehicle routes are defined in an
ongoing fashion, requiring technological support for real-
time communication between the vehicles and the decision-
maker (e.g., using mobile phones and global positioning
systems) [5]. The problem is solved on an event driven
basis, that is, once an information becomes available at
time instant 𝑡. Hence, in this category, the set of known
customer locations, that is, the nodes of the graph 𝐺, are
a time varying function 𝑁(𝑡). For practical dynamic and
deterministic VRP (DDVRP) applications with time-critical
decisions, the task of evaluating every possible decision
at each time step is extremely challenging; compare, for
example, [17]. The most prominent applications in this class
are the dynamic dial-a-ride problems, where customers have
immediate (online) requests, which occur when they desire
to be collected as soon as possible [15]. Last, in the dynamic
and stochastic setting, parts or all inputs are unknown and
revealed dynamically during the execution of the routes.
However, in contrast with the latter problem, the difference
is that, in addition to efficiently handling dynamic events,
stochastic knowledge about the revealed data is available.The
integration of stochastic information can increase the look-
ahead capability, reliability, and robustness of an optimization
system [15]. In this class, the Capacitated Dynamic and
Stochastic Vehicle Routing Problem (CDSVRP) is the most
studied one. Considering the latter class, we obtain the
following generalization.

Definition 2 (capacitated dynamic and stochastic vehicle
routing problem). Suppose the setting of the capacitated

VRP is to be givenwith𝑁 = 𝑁(𝑡), where𝑁 : R → N is the set
of vertices or customer locations known at time 𝑡. If costs 𝑐𝑖𝑗
are fixed for all (𝑖, 𝑗) ∈ 𝐴 and demands are random variables𝑑𝑛 : Ω𝑛 → R+0 for all 𝑛 ∈ 𝑁 with sampling space Ω𝑛, then
(1), (2), (3), (4), (5), and (6) are referred to as Capacitated
Dynamic and Stochastic Vehicle Routing Problem.

Traditionally, dynamic and stochastic VRP are formu-
lated asMarkov decision processes [18–20] or as stochastic pro-
grams [21]. Bothmethodologiesmodel the uncertain problem
data as random variables that follow a known distribution.
The goal is to optimize a risk measure (such as the expected
value, the variance, or the conditional value-at-risk of some
cost function), subject to the satisfaction of side constraints
[3, 22]. The most widely applied and studied stochastic
program models are two-stage programs [23]. In two-stage
stochastic programming, the variables are partitioned into
two sets [24]. The first-stage variables are decided before the
realization of the uncertain parameters, while the second-
stage or recourse variables are determined once the stochastic
parameters are revealed [25]. However, there are many
situations where one is faced with problems where decisions
should be made sequentially at certain periods of time based
on information available at each time period. Suchmultistage
stochastic programming problems [1, 26] can be viewed as an
extension of two-stage programming to a multistage setting
[23]. In two-stage stochastic programming, one typically dis-
tinguishes between chance constrained programming (CCP)
[27–29] and Stochastic Programming with Recourse (SPR)
[30]. In chance constrained programming, one can guarantee
that the probability of route failure is less than a prespecified
threshold. On the other hand, SPR implies minimizing the
routing plan costs together with the costs of the recourse
policy. A recourse policy describes what actions to take in
order to repair the solution after a failure. For the capacitated
DSVRP, three recourse policies are commonly used: detour
to depot [31–33], preventive restocking [21, 34, 35], and reop-
timization [24, 36–39]. In detour to depot, the vehicle returns
to depot to restock when capacity is attained or exceeded.
The vehicle restarts servicing along the planned route to that
customer where route failure had occurred. In preventive
restocking, an en route replenishment can be performed
before a route fails. It may be less costly to travel to the depot
to restock from the current location than to wait for a route
failure at a location further away from the depot. In reopti-
mization, after failure or after each customer is served and
its demand becomes known, the portion of a route that has
not been served is reoptimized. A decision is taken regarding
which customer will be visited next, either as part of the
regular routing or on the way to replenishment at the depot.
As stated in [30], for other DSVRP formulations, the recourse
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policy does not involve routing decisions. Instead a penalty
for late/early arrivals or the extra time cost of the driver can be
part of the expected cost when time windows and/or stochas-
tic service time are taken into consideration [12, 40, 41].

Several methods based on the formulation described
above have been proposed to address the dynamic nature
of routing problems. Dynamic methods can be divided into
two categories: nonanticipative [42–44], which only react to
updates in the problem data, and anticipative, which take
into account knowledge on the dynamically revealed infor-
mation to anticipate the future. Nonanticipative methods
are designed for DDVRP. Conversely, anticipative methods
often make better decisions by using stochastic information
available in the form of probability distributions. Anticipative
methods are further classified into one of two families:
stochastic modelling [45–47] or sampling [17]. Ritzinger et
al. [48] classify these two families in preprocessed decisions
approaches and online decisions approaches, respectively.The
authors argue that preprocessed decisions approaches consider
all states (e.g., all possible stochastic input realizations) in
advance and value each state according to its performance.
Such approaches perform the evaluation of the states before
the vehicle starts the tour and enables an accurate decision
making based on these values during the plan execution
phase. On the other hand, online decisions approaches cal-
culate solutions either by applying online algorithms or,
if computational time allows it, by recomputing the base
sequence, at predefined states (e.g., an event arises).

Verweij et al. [7] classify sampling-based approaches in
two main groups: interior and exterior sampling methods.
In interior, sampling is performed inside a chosen algorithm
with new samples generated in the process of interactions,
like, for instance, in Multiple Scenario Approach (MSA) pro-
posed by Bent and Van Hentenryck [6].Themethod starts by
initializing the pool of scenarios with realization of problem
random variables based on the currently known information.
If/when an event occurs, the MSA updates the scenario
pool and thus optimizes each scenario to compensate for
deviations from the plan, by solving the respective static
and deterministic problem in order to determine the next
action [15]. As new information is revealed, some scenarios
might become obsolete and are removed from the pool,
leaving space for new ones [17]. Event defines the time step
and may, for example, be the disclosure of a real value of
some input or a vehicle breakdown. A distinctive feature of
sampling-based algorithms is that the next customer to visit
is selected based on the whole scenario pool by means of
a decision process [5]. The most common algorithms used
to reach a decision are online expectation (Algorithm E)
[27, 49, 50], consensus (Algorithm C) [17, 25, 49], and regret
(AlgorithmR) [27–29].These algorithms use the same offline
optimization algorithm [48]. Algorithm E [25] is a stochastic
algorithm that optimizes expectation values. It consists in
evaluating the cost of visiting each customer first by forcing
its visit in all scenarios and performing a complete search
[17]. Algorithm C was introduced in [49] and selects the
customer appearing first with the highest frequency among
scenarios. Last, Algorithm R [27] approximates Algorithm E
and avoids the reoptimization of all scenarios. The advantage

of sampling-based algorithm is its (relative) simplicity and
flexibility on distributional assumptions, and its requirement
to solve static and deterministic problems only. Therefore
this approach has virtually been adapted to any problem
[17]. On the contrary, in exterior sampling approach the true
problem is approximated by Sample Average Approximation
(SAA) problem [7]. In the SAA method, the expected value
of the objective function is approximated by a sample average
estimate obtained from a random sample. The resulting SAA
problem is solved for different samples in order to obtain
a set of candidate solutions, once the sample is generated,
the SAA problem becomes a deterministic optimization and
can be solved by an appropriate algorithm [51]. Then, these
candidate solutions are tested on a larger sample and the best
solution for that sample is chosen [7].

In this work, we formulate the dynamic and stochastic
capacitated vehicle routing problem as a two-stage stochastic
program with recourse, using a detour to depot as the cor-
rective action. Based on this formulation we propose a robust
solution approach. Such approach also tries to optimize the
corresponding deterministic expected value cost, like in SAA
method. However, our approach uses only one sample of
scenario and permits a wider deviation in the cost for the
scenarios in the sample, aiming to accommodate changes in
the customers’ demands.

Figure 1 presents some papers classified according to how
the dynamic VRP is modelled and what type of solution
methods is used to deal with the problem.

3. Problem Definition

In this paper, we concentrate on the capacitated dynamic and
stochastic vehicle routing problem according to Definition 2.
Our aim, however, is to compute a robust solution, which
minimizes the real and not the planned costs. As this opti-
mization problem is designed and used for the a priori plan-
ning only, it needs to be extended accordingly. To this end,
we formulate the problem as a two-stage stochastic program
with recourse, where the real costs are split into two stages:

𝐽𝑉 (𝑦) fl ∑
V∈𝑉

∑
𝑖∈𝐴

∑
𝑗∈𝐴

𝑐𝑖𝑗𝑥𝑖𝑗V + 𝐹 (𝑦) . (8)

The first stage represents the planned cost, that is, the cost
of the a priori routing plan calculated using the stochastic
knowledge. Meanwhile, the second stage corresponds to
the cost of corrective actions. It means the additional costs
for performing detours to the depot. A vehicle needs to go
to the depot to be refilled if its capacity is attained before
planned time. Then, either the same vehicle or a new vehicle
attends to the remaining customers. Unfortunately, we can
evaluate (8) only a posteriori, that is, upon completion when
all real demands are revealed, or via stochastic analysis. In
both cases, the focus relies on analyzing the costs. Here,
we will focus on a structural property, that is, for example,
length and sequence within a routing plan and also number
of routes. More precisely, we want the computed solution
to retain its structure despite possible deviations from the
plan induced by real information. To anticipate the costs
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Figure 1: Papers dealing with dynamic vehicle routing problem.

and the spread of costs of the latter, we propose to utilize an𝐿1-norm-like cost functional.

Problem 3. Suppose a set of vehicles 𝑉 with restricted
capacity 𝐶 > 0 each and a fully connected graph 𝐺 = (𝑁,𝐴),
where𝑁 is the set of vertices representing customer locations
(0 is the depot of vehicles) and𝐴 is the set of arcs with |𝑁| = 𝑛
and |𝐴| = 𝑎, are given. Costs 𝑐𝑖𝑗 are fixed for all (𝑖, 𝑗) ∈ 𝐴 and
demands are random variables 𝑑𝑛 : Ω𝑛 → R+0 for all 𝑛 ∈ 𝑁
with sampling spaceΩ𝑛.Moreover, let𝑥𝑖𝑗V be a binary variable
taking the value 1 if arc (𝑖, 𝑗) is used by vehicle V and the value
0 otherwise. Given a set of 𝑠 scenarios,
𝑆
fl {𝑠𝑗 = (𝑑1 (𝑗) , . . . , 𝑑𝑛 (𝑗) , 𝑐1, . . . , 𝑐𝑎) | 𝑗 = 0, . . . , 𝑠} , (9)

where 𝑠0 is the nominal scenario and a measure 𝐹 : 𝐺 × 𝑆 →
R+0 of the second stage costs, we want to compute a set of
closed subgraphs 𝑦 ⊂ 𝐺minimizing

min 𝐽𝑉 (𝑦)
fl

{{{
∑
V∈𝑉

∑
𝑖∈𝐴

∑
𝑗∈𝐴

𝑐𝑖𝑗𝑥𝑖𝑗V + 𝜔∑
𝑠∈𝑆

𝐹 (𝑥, 𝑠) − 𝐹 (𝑥, 𝑠0)𝑠 − 1
}}}

(10)

s.t. ∑
V∈𝑉

∑
𝑗∈𝐴

𝑥𝑖𝑗V = 1 𝑖 ∈ {1, 2, 3, . . . , 𝑁} , (11)

∑
V∈𝑉

𝐴∑
𝑗=1

𝑥0𝑗V ≤ V ∀V ∈ 𝑉, (12)

𝐴∑
𝑖=1

𝑥0𝑗V = 𝐴∑
𝑗=1

𝑥𝑗0V = 1 ∀V ∈ 𝑉, (13)

𝐴∑
𝑗=0

𝑥𝑖𝑗V − 𝐴∑
𝑗=0

𝑥𝑖𝑗V = 0 ∀V ∈ 𝑉, (14)

𝑖 ∈ {1, 2, 3, . . . , 𝑁} , (15)

𝐴∑
𝑖=1

𝑑𝑖 𝐴∑
𝑗=0

𝑥𝑖𝑗V ≤ 𝐶 ∀V ∈ 𝑉, (16)

𝑥𝑖𝑗V ∈ {0, 1} ∀V ∈ 𝑉. (17)

The latter is called Robust Dynamic and Stochastic Capaci-
tated Vehicle Routing Problem (RDSCVRP).

In comparison to (8), the additional term in (10) accounts
for the spread of the solutions and can be interpreted as
the steepness of the cost functional with respect to input
changes. Using the parameter 𝜔, we combine two objectives
into a scalar one. If 𝜔 is chosen large, then the additional
term favors routing plans, which do not induce higher costs
if inputs change. Hence, despite input changes, the plan is
still structurally optimal; that is, the number of routes as well
as the routing sequences remain unchanged. The weight 𝜔
represents the parameter of choice for managers to modify
the importance of the two aspects in the cost functional
(10): optimality and robustness. Note that here we do not
characterize a certain tolerable bound on the disturbances,
which would lead to a worst case estimate. Instead, we
let the optimization mechanism decide, which (modified)
minimum is robust in a structural sense. For this reason,
we will not state explicit bounds on tolerable disturbances,
and if disturbances are too large, they will be handled by
replanning or extra tours. Comparing undisturbed optimal
solutions 𝑥⋆ and 𝑥⋆ for 𝐽𝑉 and 𝐽𝑉, see Figure 2, we know that𝐽𝑉(𝑥⋆) ≥ 𝐽𝑉(𝑥⋆), and typically this inequality is strict; that is,
the robust solution corresponds to increased total cost. Yet,
we expect that the solution 𝑥⋆ of (1) has to be modified to𝑥⋆. Our aim is not to develop a systematic way of designing
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Figure 2: Exemplary of cost development regarding strategy 𝑥.
𝐽𝑉(𝑥) such that the corresponding solution 𝑥⋆ improves the
performance measures; that is, 𝐽𝑉(𝑥⋆) > 𝐽𝑉(𝑥⋆).

The computed solution will typically exhibit higher
planned costs than the one of the capacitated vehicle routing
problem in Definition 1. Upon implementation, however,
our numerical results, compare Section 5, indicate that the
second stage costs (8) will be lower. Thus, these two aspects,
robustness and optimality, represent trade-offs for routing
solutions and must be balanced in accordance with the goals
of the company.

4. Robust Solution Approach

For the problem described before we develop a robust
solution approach. The proposed approach includes 4 stages:
distribution fitting, generation of scenarios, definition of a static
and deterministic CVRP, and optimization. In the distribution
fitting stage we fit a probability distribution function (PDF)
to customer demand data by using historical demand data.
Thereafter, in the generation of scenarios stage we use this
PDF to generate 𝑆 scenarios. Each scenario represents a
potential state of the uncertain demand for every customer.
For the scenario 0 (nominal scenario) it is assumed that all𝑁 customers’ demands are equal to the expected value of
the probability distribution (𝑑𝑛(0) = 𝐸[𝑑𝑛]). The other sce-
narios are constructed by sampling the demand probability
distribution usingMonte Carlo simulation. Note that, instead
of using the existing customer demand scenarios (historical
data), we generate new scenarios. We choose this because,
in some situations, using historical data as a scenario may
be impractical. For example, a new company may not have
enough data for generating a bigger number of scenarios.

In the third stage, a static and deterministic instance of
the capacitated DSVRP is set by using equation

𝑑𝑛 = 𝑑𝑛 (0) + 𝜔∑
𝑠∈𝑆

𝑑𝑛 (𝑗) − 𝑑𝑛 (0)𝑠 − 1 ∀𝑛 ∈ 𝑁. (18)

This equation is formulated using the robust cost function
(10). Every customer demand (𝑑𝑛) is calculated by a linear
combination of the 𝑆 scenarios with the weight 𝜔, which
increased the deviation from the expected value (𝑑𝑛(0)),
allowing creating worse case instances. Hence, it is possible
to decide how conservative a solutions can be. A numerical
example with 𝑁 = 3 and 𝑆 = 4 is presented in Table 2.
The instance set in this stage is then used in the optimization

Table 2: Numerical example.

Customer 𝑠0 𝑠1 𝑠2 𝑠3 𝑑𝑛
1 40 38 43 35 39
2 40 47 41 40 42
3 40 28 35 43 35

stage. Since a capacitated DSVRP is set, we can make use
of the efficient well established heuristics in the literature to
solve the robust problem. In the numerical example case, the
instance is 𝑑1 = 39, 𝑑2 = 42, and 𝑑3 = 35.

In the fourth and last stage we solve the instance defined
in the previous stage. For that we use three heuristics:
Clarke Wright savings, 2-opt Local Search, and Simulated
Annealing. Using ClarkeWright [52] savings parallel version,
we generate an initial plan of routes. Then, we apply a 2-opt
Local Search [53] to remove crossing of links in a route, while
preserving the orientation of the routes, which reduces the
travel times. Given the result of the improvement heuristic,
we utilize Simulated Annealing (SA) [54] to further improve
the result. We use a different mechanism for neighborhood
generation in the SA, called 1-interchangemechanism. In this
mechanism, instead of restricting the interchanges between
two stations to a single route, a neighbor 𝑆𝑛 of a solution 𝑆 is
generated by inserting/exchanging one station into/between
different routes 𝑅𝑖 and 𝑅𝑗. Thus, we have two different
operations: (1, 0) and (0, 1) to extract a customer from a
route 𝑅𝑖 and insert it in a route 𝑅𝑗 and (1, 1) to swap
customers between their initial routes 𝑅𝑖 and 𝑅𝑗. The result
obtained after this optimization stage is a plan of routes.
This plan of routes is robust concerning certain deviations in
demands.

5. Computational Results

5.1. Benchmark Dataset. In the literature, some authors
based their computational experiments on adaptations of
the Solomon [55] instances for static routing, compare,
for example, [6, 56, 57], and others developed their own
benchmark dataset [58, 59]. Since no dynamic benchmark
dataset for stochastic and dynamic CVRP with stochastic
demands was available in the literature, we developed a set
of test problems to evaluate the proposed solution approach.
The code details as well as the datasets are available [60].

We generated five benchmark test problems (𝑞 ∈1, 2, 3, 4, 5). They consist of fully connected graphs with(𝑁 ∈ 20, 40, 60, 80, 100) nodes. Considering that the graph
is symmetric, a number of arcs was generated equal to 𝐴 =𝑁⋅(𝑁−1)/2.The instances exhibit only capacity restrictions.
Following [36, 39, 61], we considered for all test problems the
demand to be uniformly distributed 𝑑TP𝑞 ,𝑖 ∼ 𝑈(30, 70) for
all customers. Since in our problem customer demands are
known as stochastic variables, it is assumed that historical
demand data is available. We adopted that each customer
requests an amount of a specific good per day and that there
exist demand data for all customers from the last 100 working
days. Therefore, we generated 100 values of demand for each
customer.
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5.2. Performance Measures. After developing the dynamic
benchmark dataset, we applied the proposed solution
approach to the dataset using a total of 𝑆 = 10 scenarios. We
applied the robust solution approach for 𝜔 ∈ {0, 1, 2, 3, 4, 5}
to every test problem and solved it to optimality, with the
maximum CPU time set to one hour. It is important to
highlight that we do not want either to define a set of
values for 𝜔 or an upper bound on it. We want to analyze
how solutions designed for different 𝜔 perform. For each
value of 𝜔, we computed a plan of routes minimizing (10)
and therefore obtained six plans of routes, which represent
different degrees of robustness. It is important to highlight
that when we choose𝜔 = 0we are using the nominal solution
of the corresponding deterministic model. To compare these
solutions, we introduced five performance measures, which
will be elaborated in detail below: reliability of a plan of routes𝑃plan(failure), probability of route failure 𝑃route(failure), extra
cost𝐸 of the robust plan, expected real cost of a plan of routes,
and the difference Δ𝐷 between planned cost and expected
real cost as well as its increment.

Note that the first stage of the proposed solution approach
is to fit a probability distribution in the customer demand
data. To render the approach realistic, we included the fitting
for the dynamic benchmark dataset. For that, we assumed
that we do not know the PDF used to generate the instances
(𝑑TP𝑞 ,𝑖). After the fitting, we obtained a PDF for all customer
demand 𝑑Fit𝑞 ,𝑖, which is similar to 𝑑TP𝑞 ,𝑖.

5.2.1. Reliability of a Plan of Routes. The reliability of a plan of
routes is defined as the probability that the plan of routes did
not suffer a failure. In the context of our Problem 3, a failure
occurred when the capacity of a vehicle is exceeded, that is,

∑
𝑘∈{2,...,|𝑥V|−1}

𝑑𝑥V(𝑘) > 𝐶, (19)

for at least one route V ∈ 𝑉. Thus, it needed to return
to the depot in order to attend the remaining customers.
Reliability was estimated by Monte Carlo simulation with𝑀 = 1000 trials using the probability distributions that
model the demands of the customers (𝑑Fit𝑞 ,𝑖). Using (19), we
could define the indicator function

𝜒 (𝑚) = {{{
1, if (20) holds for some V ∈ 𝑉
0, else. (20)

This allows us to approximate the probability of failure via

𝑃plan (failure) fl ∑𝑀𝑚=1 𝜒 (𝑚)
𝑀 . (21)

5.2.2. Probability of Route Failure. The number of routes in
the plan of routes, which suffered a failure, that is,

𝜂 fl ♯{V ∈ 𝑉 | ∑
𝑘∈{2,...,|𝑥V|−1}

𝑑𝑥V(𝑘) (0) > 𝐶} , (22)

was introduced to compare plans of routes that have same
reliability. Again, we applied Monte Carlo simulation with

𝑀 = 1000 trials and utilized the 𝜂 to calculate the amount
of routes that suffered a failure in each routing plan; that is,

𝑃route (failure) fl ∑𝑀𝑚=1 𝜂 (𝑚)
𝑀 ⋅ ♯𝑉 . (23)

5.2.3. Extra Cost of the Robust Plan of Routes. Extra cost of the
robust plan of routes is defined as the additional cost we incur
if we apply the robust solution approach from Problem 3
instead of solving the CVRP as defined inDefinition 1. Hence,
if 𝑥1 is a minimizer for the CVRP according to Definition 1
and 𝑥2 is a minimizer of Problem 3, then the extra costs are
given by

𝐸 fl 𝐽𝑉 (𝑥2) − 𝐽𝑉 (𝑥1) . (24)

It is also called the price of robustness [62] and corresponds
to the cost payed to allow for certain deviations within the
stochastic variables.

5.2.4. Expected Real Cost of a Plan of Routes. A solution
to the optimization problems from Definition 1 or Problem
3 corresponds to planned costs. However, as the problem
is dynamic and the proposed solution is deterministic, we
only know the real costs when all vehicles finish serving the
customers on their routes, that is, when all the dynamic inputs
are revealed. Similar to reliability and probability of route
failure, we utilizeMonte Carlo simulation and 𝜂. Hence, these
realizations allow us to deduct how many times a failure
occurs, and therefore a recourse function needs to be applied,
revealing the expected real costs 𝐽𝑉(𝑥) according to (8). A
failure occurs in the position 𝑘 when the capacity of a vehicle
exceeded (19), and a recourse function is defined as a detour
to the depot.Thus, the cost of the second stage 𝐹(𝑥) (8) is the
sum of detours to the depot; that is,

𝐹 (𝑥) fl 2∑
𝑟∈𝑘

𝑐𝑥V(𝑟)0. (25)

5.2.5. Difference between Planned Cost and Expected Real
Cost. To assess the solutions, we also computed the difference
between the planned cost and the expected real cost:

Δ𝐷 fl 𝐽𝑉 (𝑥) − 𝐽𝑉 (𝑥) . (26)

This difference shows how realistic the plans calculated by the
robust solution approach are.

5.2.6. Increment. This performance measure extends the
previous one and shows the distance from the planned to the
expected real cost:

𝐼 fl Δ𝐷𝐽𝑉 (𝑥) . (27)

5.3. Results andAnalysis. Fromour results given in Table 3we
observed that for TP1, TP2, and TP3 the probability of plan
to fail 𝑃(failure) is lower using a higher 𝜔. For TP4, TP5, and
TP6, however, the probability of routing plan to fail remained
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Table 3: Results for the test problems considering the weight 𝑤.
Test problem 𝑤 𝑃plan (failure) Number of routes 𝑃routes(failure) Planned cost Extra cost Expected real cost Δ𝐷 𝐼 CPU

TP1

0 (mean) 0.87 4 0.37 1471 - 1817 346 1.23 8976
1 0.79 5 0.30 1634 1.11 1810 176 1.10 8999
2 0.77 5 0.28 1634 1.11 1807 173 1.10 9133
3 0.76 5 0.25 1643 1.11 1720 77 1.04 9567
8 0.59 5 0.19 1700 1.12 1879 163 1.09 9822
10 0.52 5 0.10 1772 1.20 1901 129 1.07 10790

TP2

0 (mean) 0.98 8 0.42 2592 - 3250 658 1.25 20509
1 0.98 9 0.40 2747 1.05 3257 510 1.18 20902
2 0.90 9 0.39 2747 1.05 3221 474 1.17 21112
3 0.70 9 0.35 2769 1.06 3155 386 1.13 21678
8 0.68 10 0.27 2807 1.08 3467 660 1.23 22487
10 0.65 10 0.25 2861 1.08 3441 580 1.21 22756

TP3

0 (mean) 0.99 12 0.44 3690 - 4969 1279 1.34 38234
1 0.99 14 0.42 3944 1.06 4965 1021 1.25 39877
2 0.90 14 0.38 3952 1.06 4960 1008 1.25 43234
3 0.89 14 0.33 3941 1.06 4875 934 1.23 43654
8 0.88 14 0.30 3998 1.07 5023 1025 1.25 44877
10 0.80 16 0.24 24184 1.32 5268 18499 1.75 51001

TP4

0 (mean) 1.00 16 0.46 4882 - 6757 1875 1.38 51667
1 1.00 18 0.46 5232 1.07 6754 1522 1.29 57100
2 1.00 18 0.40 5294 1.07 6753 1459 1.27 57212
3 1.00 18 0.42 5294 1.07 6739 1445 1.27 57302
8 1.00 18 0.35 5351 1.09 6702 1351 1.25 5804
10 1.00 19 0.23 5415 1.10 6675 1260 1.23 62200

TP5

0 (mean) 1.00 20 0.46 6057 - 8402 2345 1.38 72865
1 1.00 22 0.40 6278 1.03 8401 2124 1.33 76965
2 1.00 22 0.40 6296 1.03 8395 2099 1.33 77102
3 1.00 22 0.41 6278 1.03 8390 2112 1.33 77000
8 1.00 22 0.37 6329 1.04 8370 2041 1.32 77590
10 1.00 23 0.33 6354 1.04 8372 2018 1.31 85786

TP6

0 (mean) 1.00 24 0.47 7253 - 10002 2749 1.37 100856
1 1.00 26 0.42 7436 1.02 9987 2551 1.34 114502
2 1.00 26 0.40 7543 1.03 9980 2437 1.32 115121
3 1.00 26 0.40 7514 1.03 9912 2398 1.31 115031
8 1.00 26 0.37 7550 1.04 10020 2470 1.32 115672
10 1.00 28 0.38 7585 1.05 10140 2555 1.33 120876

unchanged for all 𝜔. This performance measure does not
consider howmany routes within the routing plan failed. For
that, we evaluate the routing plans regarding performance
measure probability of route failure. Thus, the routing plans
with same probability of plan failure can also be compared.
For instance, in TP5, the routing plan obtained using 𝜔 =1 and 𝜔 = 10 have the same probability of plan failure.
However, for𝜔 = 1, these failures occur on 40% of the routes;
on the other hand for 𝜔 = 10 this amount decreases to 33%.
A lower probability of failure or higher reliability of a routing
plan comes associated with a price, as mentioned before, the
extra cost (price of robustness). Under the price of robustness
we accept a suboptimal solution (higher cost) in order to
ensure that the solution ismore robust, and it remains feasible

and near optimal when the data changes [62]. Hence, for all
test problems a growth in the 𝜔 causes an increase in the
extra cost.This cost is no higher than 32%. Actually, for all test
problems, the extra cost varied between 3% and 11%. Only for𝜔 = 10 in Test Problems 1 and 3 the extra cost was higher
than this range.

For all test problems the expected real cost was higher
than the planned cost. This indicates that detours to depot
were applied in all routing plans of all test problems to meet
the real demands. It also means that at the end (after second
stage; cf. (10)) we have more routes than planned (in the first
stage; cf. (10)). For instance, for TP1 and 𝜔 = 8, the plan of
routes is composed of 5 routes; see Figure 3. However, when
we use this plan to attend to the same customers, but now
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Figure 3: Plan of routes for Test Problem 2 (𝜔 = 2).
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Figure 4: Plan of routes for Test Problem 2 after revealing the real
values for the demands (𝜔 = 2).

assuming the real values for the demands, we have 6 routes;
see Figure 4. Hence, one route has failed, and therefore more
routes are required to attend to the same clients. For example,
the customer 12 was included in the route {0-6-5-1-12-0}
(Figure 3); however, when the real demands are revealed the
total demand of this route is higher than expected. Thus,
a vehicle needs to attend to customer 12 in only one route
(4). It can be observed that the expected real cost behaved
differently for different test problems. For TP1, TP3, and TP6
the expected real cost decreased from 𝜔 = 0 to 𝜔 = 3 and
increased from 𝜔 = 8 to 𝜔 = 10. For TP4 such cost decreased
from 𝜔 = 0 to 𝜔 = 10. Any pattern in the behaviour could be
noticed for TP2. The behaviour of the performance measure
difference between planned cost and expected real cost (Δ𝐷) is
similar to the expected real cost. For TP1, TP2, TP3, and TP6
the lowest Δ occurs when 𝜔 = 3. The increment also behaves
like the expected real cost andΔ𝐷.This performancemeasure
presents how much percent of the expected cost the real cost
represents. For instance, for TP6 and 𝜔 = 8 the real cost
represents 1.32% of the expected cost; that is, after revealing
the real demand values we had an increment of 0.32% in
the expected cost. The increment is higher for TP6 and TP5
compared to TP1, TP2, TP3, and TP4. The latter is due to the
higher probability of failure; that is, we require more routes
to attend to a bigger number of customers, which induces

more recourse functions when the real demands are revealed,
which in turn increases the real cost. We can then infer
that for almost all test problems the routing plan designed
with 𝜔 = 3 is the most robust; that is, the routing plan
handles better changes in the demands. Most of the solution
calculated for 𝜔 = 3 needed less detours to depot to deal
with the real values of the demands compared to the other
solutions in each test problem. Since the solutions calculated
for 𝜔 = 10 did not always present the best performance over
all solutions, one may also conjecture that a higher degree of
robustness may not pay off.

Comparing CPU time for the same instance, we see that
increases on 𝜔 cause growth on CPU time. Yet, comparing
CPU time for different instances, we detect that more cus-
tomers represent higher CPU time. However, the maximum
CPU time was not reached.

6. Conclusion

In this paper we proposed a robust solution approach for the
dynamic and stochastic CVRP, where demands are uncertain
and dynamic based on sampling strategies. We formulate
the problem as a two-stage stochastic program model with
recourse. A detour to the depot was defined as corrective
action.The two-stagemodel is a newmodel, in which the first
stage minimizes the a priori routing plan cost whereas in the
second stage minimizes the average of higher moments for
the recourse cost calculated via a set of scenarios. Different
from the other sampling-basedmethods for theDSCVRP, the
proposed solution approach permits deciding between opti-
mality and robustness and computes an a priori robust plan
of routes, which allows for small changes in demands without
changing solution structure and losing optimality. Using the
robust approach, the capacitated dynamic and stochasticVRP
is reduced to capacitated static and deterministic VRP, which
allows using simple algorithms. The results show that the
proposed approach provides significant improvements over
the deterministic approach. It is evident that the proposed
idea provides a robust plan of routes. That is, for some 𝜔, the
reliability increased and the probability of route failure, extra
cost, and expected real cost decreased. The robust solutions
are not associated with a high price of robustness; that is,
for 𝜔 ∈ {0, 1, 2, 3, 8, 10} the extra costs are less than 32% of
the optimal cost. Additionally, it is worth mentioning that
the proposed solution approach provides the lowest expected
real cost, that is, the real cost we must pay after a working
day. We like to note that for some situations it is better to
choose robustness over optimality, that is, it is better to apply
the proposed robust solution approach over the deterministic
approach, to be safe against a worse case realization of
the uncertainty. Although the proposed approach comes
out with advantages, it still has some limitations. First, we
need to have historical data about the uncertain input to
be able to fit a probability distribution. Second, we have to
assume information about the probability distributions of
the uncertain parameters; that is, the underlying demand
probability distributions must be known. In the future, we
will extend our approach to other types of uncertainties, such
as stochastic and dynamic travel times. Moreover, we plan to
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identify different set screws such as the robustness parameter𝜔, which allows for a simplified decision support.
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