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Abstract. The church of the monastery of Sant Cugat close to Barcelona is a medieval 

construction characterized by a complex structural behaviour stemming from the interaction 

among various structural elements built over different periods. Despite having survived for 

several centuries, such structures are often affected by slow irreversible deterioration 

mechanisms that can jeopardise their stability in the future. In order to identify such 

mechanisms at an early stage, and to better understand the cause of visible pathologies, a static 

structural health monitoring (SHM) system was installed in the church since 2017. Although 

this monitoring strategy, aimed at the continuous measurement of key slow-varying parameters, 

has been used successfully in the past to facilitate the diagnosis of this structural typology, the 

interpretation of data collected by such systems remains a challenging task. One of the main 

reasons for this is the fact that many monitored damage and deformation features are sensitive 

to changes caused by environmental conditions. To address this issue, this paper presents the 

application of a fully automated data analysis procedure to the records collected from the SHM 

system installed in the church of the monastery of Sant Cugat. The procedure consists of two 

parts. The first relies on the identification of models that comprehend an Auto-Regressive 

output and an eXogenous input (ARX) to represent the dynamics of each monitored response 

using suitable environmental parameters as predictors. The identified models are then used to 

estimate filtered evolution rates. The second part of the procedure involves classifying each 

monitored response into pre-defined evolution states based on outcomes from the first part. The 

main results from the application to the case of the church of the monastery of Sant Cugat are 

presented and the implications for the diagnosis of the structure are discussed. 
 

1 INTRODUCTION 

The monastery of Sant Cugat is located near Barcelona in Catalonia, Spain. The masonry 

structure at the site today consists of different parts built over different time-periods mostly 

from the mid-12th century to the 15th century. The monastery is composed of a cloister and a 

church, with the latter being the main focus of this study. The church exhibits several 

pathologies notably in the form of cracks and inclinations. Hypotheses have been developed 
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regarding the possible causes of these pathologies and an extensive restoration and 

strengthening campaign was even completed in 1996. However, the true cause of many 

pathologies, as well as the current evolutionary condition of possible deterioration mechanisms, 

remain unknown. Since identifying active mechanisms is crucial for a complete diagnosis of 

the church’s current structural condition, a long-term static structural health monitoring (SHM) 

system was installed in the structure in March 2017. 

The initial interpretation task in the case of static SHM involves the identification of either 

a stationary or an evolutionary condition from the recorded data of each monitored response. 

However, since monitored features are often sensitive to both damage and environmental 

changes, there usually exists no clear distinction between irreversible changes linked to active 

deterioration mechanisms and reversible ones caused by daily and seasonal environmental 

fluctuations. This, together with the complex interaction among structural elements, can make 

the interpretation of static SHM data very challenging in actual practice. 

Nevertheless, in spite of these difficulties, there exist many examples of successful 

applications of static SHM for the diagnosis of masonry heritage structures. Many of these have 

relied on directly fitting linear or periodic models to the recorded time series of the monitored 

responses. Others have explicitly taken measured environmental parameters such as 

temperature into consideration by using a simple linear model to predict and filter out the 

estimated change of the monitored structural response caused by environmental changes. 

Because the most common monitored structural responses in the case of masonry structures 

(cracks and inclinations) frequently show a predominantly linear dependence to the most 

influential monitored environmental parameter (temperature), the above-mentioned filtering 

method often leads to accurate estimates of underlying evolution rates. However, it is not very 

robust because the linear model is certainly an over-simplification of the true nature of the 

relationship. Notably, in the case of the relationship between temperature and structural 

parameters, a linear model is not able to consider effects caused by the thermal inertia of the 

material or by thermal gradients between interior and exterior temperature. 

Dynamic linear regression models that comprehend an Auto-Regressive output and an 

eXogenous input (ARX) appear to be an appealing alternative since they can account for more 

of the dynamics of relationships between environmental and structural parameters. As their 

name suggests, these black box models can exploit a large number of observations to 

reconstruct linear dependencies of monitored responses on their own rate of change, on the rate 

of change of selected predictors and on the present value of predictors. The first step of such a 

filtering procedure involves selecting which measured environmental variables will be used as 

predictors in the ARX model. Before the parameters of ARX models can be estimated, it is also 

very important to define the number of past response and predictor samples that will be used to 

describe the system. These are referred to as the model orders. Although there exist some 

examples of successful applications of ARX models to filter out environmental effects from 

dynamic SHM data [1,2], the application to static SHM data has been very limited [3]. As a 

result, there is very little guidance available on how to select appropriate model orders and there 

is a clear lack of tools for the interpretation of results from the identified ARX models. 

In order to address this issue, a fully automated data analysis procedure incorporating ARX 

models has recently been proposed [4]. The entire process includes a method to select optimal 

model orders from a pre-defined range as well as a procedure to classify each monitored 



N. Makoond, L. Pelà, C. Molins and P. Roca 

 

3 

 

 

response according to their estimated evolutionary state. This paper presents the application of 

this fully automated procedure for the diagnosis of the church of the monastery of Sant Cugat. 

Firstly, the SHM system currently installed in the monastery is briefly described. Some 

methods that attempt to filter out environmental effects from monitored responses are then 

described. The classification procedure that utilises results from all the filtering methods is then 

presented. Finally, the estimated evolutionary conditions and their corresponding rates are 

presented before discussing their implications for the diagnosis of the structure.  

2 STRUCTURAL HEALTH MONITORING SYSTEM 

The SHM system installed in the church of the monastery of Sant Cugat consists of 14 

crackmeters, 2 inclinometers, 3 thermistors and 3 humidity sensors, as shown in Figure 1. The 

cracks and inclinations to be monitored were chosen following a comprehensive damage survey 

and analysis. Of the 22 sensors, only 3 were placed on the exterior of the structure. Crackmeter 

FS 3-15 was fixed on the exterior wall of the central nave adjacent to the cimborio while the 

temperature and humidity sensors, TEMP-2.4 and HUMI-2.4, were installed on the exterior 

wall of the bell tower facing the cimborio (see Figure 1). Most of the sensors have been installed 

since March 2017. The two crackmeters placed on cracks beneath the rose window (FS-3.19 

and FS-3.20) were installed in December 2017 and the one placed in the lintel of the main 

entrance (FS-3.21) was installed in April 2018. All the methods presented in this paper make 

use of data collected up to 02/02/2020. This constitutes 2.9 years of data for most sensors, 2.1 

years for FS-3.19 and FS-3.20 and 1.8 years for FS-3.21. 

 

Figure 1: Plan view showing layout of the SHM system installed in Sant Cugat monastery. 
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3 METHODS FILTERING OUT EFFECT OF TEMPERATURE 

The simplest analysis methods that have been applied to static SHM data consist of 

estimating underlying evolution rates by directly fitting the time series of each monitored 

structural response to a linear or to a nonlinear periodic model. Although there exist several 

successful examples of such applications, particularly when long monitoring periods are 

available, estimates from these types of analyses can easily be biased by underlying trends or 

irregular changes in environmental parameters. 

Many of the shortcomings of the above-mentioned methods can be addressed by taking 

advantage of environmental parameters monitored on site to better characterise their effect on 

monitored responses. As such, the SHM system installed in the monastery of Sant Cugat 

included sensors to measure two of the most relevant environmental parameters, i.e. 

temperature and relative humidity (see Figure 1). Although the methods presented in this 

section can be applied to any monitored environmental parameter, only the effect of temperature 

will be discussed in the case of Sant Cugat because a preliminary evaluation clearly revealed 

that the monitored responses are generally significantly more strongly correlated to temperature 

than to relative humidity. 

3.1 Preliminary evaluation of correlation 

Before identifying the parameters of any model to represent the dependence of a structural 

response on environmental parameters, it is important to identify which environmental 

parameters are more suitable to be used as predictors in the model. This can be achieved by 

computing the Pearson correlation coefficient (R) between measured environmental and 

structural parameters [4]. This coefficient can vary between -1 and +1 with absolute values 

closer to unity indicating a stronger linear correlation. The sign of the coefficient reveals the 

type of correlation. A negative sign implies that an increase of a parameter leads to a decrease 

of the other and vice-versa.  

The R-values between temperature and each structural response monitored in the monastery 

of Sant Cugat are shown in Figure 2. For each response, the preliminary evaluation of 

correlation was carried out with exterior temperatures recorded by the thermistor placed outside 

the structure, as well as with interior temperatures recorded by the nearest thermistor placed 

inside the structure. 

 
Figure 2: Correlation coefficients of monitored structural parameters with temperature computed over the 

entire monitoring period. 

Both inclinometers have a strong negative correlation with temperature. This indicates that 
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both the bell tower and the pillar at the southwest corner of the cimborio tend to incline towards 

the south when temperatures increase. 

As expected, most monitored crack widths exhibit a negative correlation with temperature. 

This is the expected behaviour since increasing temperatures cause materials to expand thus 

reducing crack widths and vice versa. However, four of the monitored cracks show a positive 

correlation with temperature. It is possible that the unexpected thermal response of some of 

these cracks is linked to the structural intervention that was completed in 1996 [5]. This activity 

involved inserting several tie rods in the southern part of the church, as shown in Figure 3. If 

these elements were actively working, an increase in temperature would cause an expansion of 

the tie rod and a subsequent loss in tension, which could induce the opening of cracks. This 

type of response has been observed previously in a masonry tower as reported in [6]. 

         

Figure 3: Structural interventions completed in 1996 in the southern part of the church, with the position of 

some sensors monitoring cracks which exhibit a positive correlation with temperature. 

In addition to the insertion of tie rods, the structural intervention of 1995-1996 also involved 
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consolidation with a heavily reinforced concrete overlay of the gothic vaults of the fourth and 

lateral aisle on the side of the bell tower (see Figure 3). The expansion of the reinforcement 

during increasing temperatures can exert a force on the concrete and subsequently on the 

masonry. This effect can also contribute to the positive correlation observed between 

temperatures and the crack widths monitored by FS-1.2, FS-2.6 and FS-2.7. 

3.2 Filtering environmental effects through linear models 

The simplest method to characterise explicitly the direct effect of temperature uses a linear 

model between measurements of temperature and each structural parameter, as shown in Figure 

4. Since only a single predictor can be used for such a model, only the interior or exterior 

temperature is used for each response depending on which one has the greatest correlation 

coefficient. 

Due to the simplicity of this model, it can be said that effects caused by structural 

mechanisms of interest are less likely to influence the identified models if data from only a 

single seasonal cycle is used for the estimation of model parameters. When this practice is 

carried out, the first year of monitoring is usually used for the estimation of model parameters, 

and is referred to as the estimation phase. However, it can be argued that using data from the 

entire monitoring period would allow the model to better capture the changing nature of the 

relationship in some cases. Therefore, as recommended in [4], both operations listed below 

were carried out for each response variable and the results from both methods were compared: 

1. Linear filter (i): Linear regression between selected predictor and response variable, 

using data from the entire monitoring period. 

2. Linear filter (ii): Linear regression between selected predictor and response variable, 

using data only from the first complete year of monitoring (estimation phase). 

 

Figure 4: Examples of linear regression between monitored structural parameters and temperature over the 

entire monitoring period. 

Once the regression procedure has been completed, measured values of each predictor can 

be substituted into the identified linear models to simulate changes of the structural parameter 

that have been caused by changes in temperature. Actual measurements of the structural 

response are then filtered by simply subtracting the simulated temperature effect, as shown in 

Figure 5. Estimates of the underlying evolution rates (ERlin(i) and ERlin(ii)) can then be obtained 

by carrying out a regression of the filtered residuals. 

A significant advantage of this method is that it enables the assessment of how well each 

linear model can predict the relationship between temperature and every structural parameter. 

If we assume that residuals are normally distributed when no significant structural mechanism 

is present, a prediction interval representing a specific level of confidence can be obtained based 
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on the standard error of the estimate (σe), computed using the differences between predicted 

and measured values. Figure 5 shows the plot of the 95% prediction interval. 

 
Figure 5: Filtering of temperature effect based on identified general linear trend and estimation of evolution 

of INC-1.3 from filtered residuals. 

3.3 Filtering environmental effects using ARX models 

It is clear that the relationship between temperature and structural parameters can often be 

sufficiently well represented by a linear model. However, it can fail to do so in many cases 

since it cannot account for certain effects influencing the system it aims to describe, such as 

those due to thermal inertia or caused by thermal gradients. Auto-Regressive models 

incorporating an eXogenous input (ARX) are better equipped to deal with such effects because 

they utilise measured values of past responses together with those of past and current or delayed 

predictors to describe the dynamics of a system. In this case, only measurements collected 

during an estimation phase are used to estimate the parameters of the models. As was the case 

for Linear filter (ii), this estimation phase should span a full year to capture most of the 

reversible components caused by environmental effects during a complete seasonal cycle. The 

identified models are then used together with data collected over the entire monitoring period 

(simulation phase) to simulate responses based on measured predictors. 

For each structural response monitored in the monastery of Sant Cugat, a single-input single 

output (SISO) ARX model was first employed using the same predictor as was used for the 

linear filters. Multiple-input single output (MISO) ARX models incorporating both interior and 

exterior temperatures as predictors were then implemented to allow the model to consider 

effects caused by thermal gradients. The complete procedure incorporating ARX models that 

was used for the analysis of data from the static SHM system is described in [4] and will not be 

reiterated in this article. Besides the measurements of the response and of selected predictors, 

the only other required input to the procedure is the range of model orders to be tested. 

The final quality of ARX models depend strongly on the model orders which define the 

number of past response and predictor samples used to describe the system. Although the 

procedure described in [4] suffers from the disadvantage of being more computationally 

expensive than using fixed model orders, if an adequate range is defined, it ensures an optimal 
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choice of model orders for each response based on the characteristics of the data itself. This in 

turn ensures that a sufficiently accurate ARX model will be obtained. Several ranges were tested 

as part of this research and for medieval masonry structures such as the church of the monastery 

of Sant Cugat, it is recommended to set the lower limit of the range to one corresponding to at 

least 4 days while it is recommended to set an upper limit corresponding to at least 10 days [4]. 

Naturally, the final range selected is largely dependent on the computational expense that can 

be spared. For the case study forming part of this research, a range corresponding to a duration 

from 5 to 25 days was specified for the SISO ARX models, and one corresponding to a duration 

from 4 to 10 days was specified for the MISO ARX models. 

Once the effect of measured environmental parameters has been simulated with ARX 

models, the filtered evolution rate (ERSISO-ARX or ERMISO-ARX) of each response can be 

computed in the same way as it was with the linear filters described in Section 3.2. 

Several error metrics were used to assess the accuracy of the different models used to 

characterise the relationship between temperature and monitored responses. However, the 

standard error of the estimate (σe) is probably the one that is most easily interpreted since it is 

a measure of the dispersion of simulated values from measured ones expressed in the same units 

as the measurements. Figure 6 shows the values of σe for each monitored response using all the 

filtering procedures applied. 

 
Figure 6: Standard error of the estimate (σe) computed from residuals between measured and simulated 

responses using different models over estimation phase. 

It is clear to see that the ARX models are better suited to model the environmental variation 

since their residuals have a smaller dispersion than those of the linear models for 13 out of 16 

monitored responses. Moreover, the added benefit of using both interior and exterior 

temperature as predictors is also apparent since the MISO models outperform the SISO ones 

for 10 of these 13 responses even if they have lower model orders. 

4 AUTOMATED CLASSIFICATION PROCEDURE 

Although using SISO and MISO ARX models to filter out the effect of environmental 

parameters can greatly improve the accuracy of the estimated filtered evolution rates, it is still 

important to consider the uncertainties and errors associated to modelling the effect of 

temperature. As a result, the interpretation of results can still be challenging. Utilising the 

automated classification procedure elaborated in [4] can greatly facilitate this task. This multi-

step classification procedure involves 5 tests.  

All of these tests rely on comparisons between the estimated filtered evolution rate computed 
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using the most sophisticated ARX model employed (ERARX) and the standard error of the 

estimate computed over the estimation phase from residuals associated to the same model (σe-

ARX). Note that in the case of the analysis carried out for the SHM data collected in the 

monastery of Sant Cugat, the most sophisticated ARX models employed refers to the MISO 

models. Some tests also consider the normality of the residuals, the magnitude of daily 

fluctuations and results from all the procedures described in Section 3. A detailed description 

of each test is not given here but can be found in [4]. 

Based on the outcomes of the tests, each response is classified in one of the following 5 

categories. 

1. Stationary: Responses showing a clear stationary trend outside reversible variations 

caused by environmental parameters. 

2. Evolutionary: Responses showing a clear evolutionary trend outside reversible 

variations caused by environmental parameters. 

3. Apparently stationary: Responses showing a stationary trend but for which there is 

still a relatively large uncertainty associated to the estimation of the trend. 

4. Apparently evolutionary: Responses showing an evolutionary trend but for which 

there is still a relatively large uncertainty associated to the estimation of the trend. 

5. Inconclusive: Monitored parameters for which no clear conclusion can be made on 

its evolutionary state from the available monitoring data alone. 

5 RESULTS AND DISCUSSION 

The estimated filtered evolution rates from all the methods described in Sections 3.2 and 3.3 

are summarised in Table 1, together with the evolution state estimated from the classification 

procedure presented in Section 4. 

Table 1: Comparison of estimated evolution rates for monitored structural parameters of Sant Cugat 

monastery from methods filtering out the simulated effect of measured environmental parameters. 

Sensor Units 

Estimate of annual evolution rate [unit/year] 

Estimated condition Linear filter 

(i) 

Linear filter 

(ii) 

SISO ARX 

filter 

MISO ARX 

filter 

FS-1.1 mm 0.102 0.102 0.100 0.100 App. Evolutionary 

FS-1.2 mm 0.003 0.003 0.003 0.003 App. Evolutionary 

INC-1.3 ° -0.003 -0.003 -0.003 -0.003 Evolutionary 

FS-2.5 mm 0.029 0.029 0.025 0.026 Evolutionary 

FS-2.6 mm 0.001 0.001 0.000 0.001 App. Stationary 

FS-2.7 mm 0.001 0.001 0.001 0.001 Stationary 

INC-2.8 ° -0.006 -0.006 -0.007 -0.007 Evolutionary 

FS-2.11 mm 0.068 0.067 0.072 0.070 App. Evolutionary 

FS-3.15 mm 0.002 0.001 0.001 0.000 Inconclusive 

FS-3.13 mm -0.003 -0.002 -0.004 -0.009 App. Evolutionary 

FS-3.14 mm -0.013 -0.014 -0.013 -0.014 Inconclusive 

FS-3.17 mm -0.041 -0.042 -0.042 -0.047 App. Evolutionary 

FS-3.18 mm 0.001 0.001 -0.002 0.002 App. Stationary 

FS-3.19 mm -0.060 -0.063 -0.081 -0.060 App. Evolutionary 

FS-3.20 mm -0.023 -0.017 -0.040 -0.014 Inconclusive 

FS-3.21 mm 0.138 0.135 0.170 0.126 App. Evolutionary 
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The results reveal that 3 of the monitored responses are experiencing significant evolutionary 

trends outside of cyclic seasonal fluctuations: the southward inclination of the bell tower (INC-

1.3) and of the pillar in the southwest corner of the cimborio (INC-2.8) and the opening of the 

crack in the Sacristy (FS-2.5). The estimated evolution rates from all methods are in very good 

agreement for these responses. Given the nature of the observed trends and the relative position 

of the sensors capturing these movements, it is highly likely that the 3 trends identified as 

evolutionary are being caused by the same deterioration mechanism linked to an outward 

leaning of the bell tower towards the south (see Figure 8). 

Since the western wall of the sacristy is intrinsically tied to the bell tower, the opening trend 

observed there could be an indication that the outward rotation of the bell tower is starting from 

a considerably low point of the structure. These observations are consistent with the 

construction history of the structure since most of it was built in the 14th century but the bell 

tower was only completed in the 18th century, when an arch joining the then incomplete tower 

and the cimborio was dismantled. It seems that the addition of this part of the structure is having 

an effect even today. Since the bell tower has a total height of approximately 40 m, the estimated 

evolutionary trend of 0.003°/year corresponds to an outward leaning of approximately 2 cm 

every 10 years assuming rigid block motion. In fact, recent topographic and laser scan surveys 

of the bell tower’s geometry reveal that its southern and eastern walls have inclinations of up 

to 1.5% with a net displacement of 52 cm from the vertical position at the top of the main body 

of the tower. This strengthens the findings from the SHM analysis and suggests that a structural 

intervention addressing this mechanism could be required in the future. 

 

Figure 7: Observed inclination trends and location of reinforced concrete cover added in 1995-1996. 

Another observation that can be made is that the monitored crack across the vault on the 

lateral aisle (FS-2.7) appears to be stationary outside seasonal fluctuations. This can probably 

be partially attributed to the flexibility of vaults as structural members, giving them an increased 

ability to deform without suffering irreversible damage in comparison to stiffer members. 

However, this could also be linked to some of the strengthening measures implemented during 
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the restoration campaign completed in 1996. The monitored crack goes through the arch 

immediately west of the sensor location. This arch was strengthened with 4 hollow metallic 

bars that were injected with cement grout. In addition, all gothic vaults of the lateral and fourth 

aisle west of this arch were stiffened considerably with a reinforced concrete cover, as shown 

in Figure 7. In fact, it is interesting to note that strengthening measures were carried out during 

the same campaign in the vicinity of the other 2 monitored cracks classified as apparently 

stationary (FS-2.6 and FS-3.18). 

It is also worth mentioning that the greatest estimated crack opening rates are associated to 

two vertical cracks in the western wall: one in the fourth aisle (FS-1.1) and one above the main 

entrance (FS-3.21). Although the opening trend is clearer for the crack in the fourth aisle, the 

magnitude of cyclic variations experienced by both cracks are relatively large. As such, a longer 

monitoring period will provide an improved understanding of the actual extent of the underlying 

trends.  

6 CONCLUSIONS 

The application of the analysis method described in this paper has demonstrated the 

suitability of using dynamic linear regression models that comprehend an Auto-Regressive 

output and an eXogenous input (ARX) for filtering out the environmental effect from responses 

monitored in static structural health monitoring (SHM) systems. Moreover, it is clear that the 

fully automated robust analysis methodology employed can help facilitate the task of 

interpreting data collected by static SHM systems for the diagnosis of masonry heritage 

structures and avoid misinterpretation. 

With respect to the church of the monastery of Sant Cugat, the outcomes of the analysis 

reveal that some parts of the structure are being affected by an ongoing deterioration mechanism 

linked to the outward leaning of the bell tower towards the south. Although there is evidence 

that some of the strengthening measures completed in 1996 could have reduced the effects 

related to some mechanisms in localised parts of the structure, it is clear that the measures have 

not been successful in completely containing the outward leaning of the bell tower and its 

related impacts. 
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