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Abstract. The optimal design of shell structures undergoing buckling phenomena is nowadays an open
problem, whose solution would provide interesting answers to both academy and industry. The main
difficulty is represented by the high computational cost required for optimising a full-scale structure
characterised by a relatively complex postbuckling behaviour. In this work, this topic is addressed by
proposing an isogeometric solid-shell model. The equilibrium path is evaluated through a multimodal
Koiter’s method. The resulting postbuckling analysis turns out to be efficient and accurate, as shown by
numerical examples.

1 INTRODUCTION

Composite shells are nowadays employed as primary structural elements in a very wide range of appli-
cations [1, 2]. Their success is mainly due to the high strength/weight ratio that is crucial for lightweight
structures. The failure of such elements often occurs because of buckling phenomena which make them
sensitive to material, geometrical and load imperfections [3]. Thousands of equilibrium path evaluations
can be required in order to detect the worst imperfection case in terms of failure load. The arc-length
nonlinear analysis is commonly used to reconstruct the equilibrium path of such structures. Although
this method easily provides the desired information for assigned data, it is too time consuming and in-
appropriate for an imperfection sensitivity analysis. Furthermore, if such an analysis is used within
optimisation strategies [4], its computational cost could become unfeasible. For these reasons, a great
amount of research has focused on developing reduced order models (ROMs) based on the finite element
(FE) implementation [5, 6, 7] of the Koiter theory of elastic stability [8]. This numerical strategy, known
as Koiter’s method (see [9] and references therein), is capable of furnishing, with an acceptable compu-
tational cost, an accurate prediction [3] of the limit load value and the initial post-critical behaviour for a
very large number of imperfections.

The ROM consists in approximating the unknown fields using the initial path tangent and restricted
number m of buckling modes associated to the first buckling loads and the corresponding quadratic cor-
rectives. In this way, the response of the structure is defined by a reduced system of nonlinear equations
where the unknowns are the load factor and m modal amplitudes and the coefficients correspond to 2nd,
3rd and 4th order energy variations. The most convenient aspect of the method is that the effects of
geometrical imperfections can be included a posteriori in the reduced system of the perfect structure
[1, 2].
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A solid-shell FE model [10] proves to be particularly convenient for the construction of the ROM, since
it allows us to avoid the use of finite rotations, typical of other exact or corotational shell models, which
make the evaluation of the high order strain energy variations complex and expensive. Although a large
number of locking free linear solid-shell elements are available, their behaviour is not sufficiently accu-
rate when modelling curved geometries and, as a consequence, a fine discretisation is required. On the
other hand, increasing the interpolation order drastically reduces the computational convenience of the
element because of the high number of DOFs and the time consuming integration and assembly of the
quantities [10].

An interesting alternative is given by the isogeometric analysis (IGA) [11] based on NURBS shape
functions. In contrast to Lagrangian functions, one of their feature is the possibility of elevating the
order of the interpolation with little change in the number of DOFs. The number of integration points
required for the numerical integration is also kept quite low because of the high continuity of the shape
functions [12, 13]. These aspects make IGA very attractive in particular in buckling problems, where
a highly continuous solution is often expected and the accurate representation of the geometry is an
important requirement for an accurate analysis [3].

Despite the many advantages, some difficulties have to be overcome. Although the use of very high order
shape functions eliminates interpolation lockings, the order elevation increases the computational effort.
Therefore, C1-quadratic and C2-cubic NURBS interpolations are often preferred, even though they ex-
hibit locking phenomena. The inter-element high continuity of the interpolation makes it no longer
possible to employ element-wise reduced integrations and strategies like Assumed Natural Strain (ANS)
[14] effectively. Conversely, a satisfactory cure for locking is represented by mixed formulations where
continuous stress shape functions [15] are assumed. In this case, the total number of DOFs increases
with respect to the initial displacement formulation and the static condensation of the stress variables
is no longer possible. An effective alternative is the use of displacement formulations with patch-wise
reduced integration rules [12] which have been shown to alleviate and, in same cases, eliminate lockings
in linear elastic problems [13]. However, it has been shown in [16] that Koiter’s method requires a mixed
formulation in order to avoid a locking phenomenon in the evaluation of the fourth-order coefficients
of the reduced system of equations [16]. This aspect can also be observed in path-following analyses
[16, 10] where displacement formulations lead to a slow convergence rate of the Newton scheme when
slender structures are analysed. This is due to the bad estimate of the stresses when evaluated using
extrapolated displacements. In the Koiter analysis this phenomenon is much more evident because the
equilibrium path is directly extrapolated using the ROM, and an equilibrium error is not corrected by an
iterative scheme, so affecting the accuracy of the method. On the contrary mixed formulations [17] avoid
this drawback because the stresses are directly extrapolated.

In this work, we propose an isogeometric numerical formulation of Koiter’s theory for the analysis of
composite shells which exploits the advantages of a solid-shell model. A linear through-the-thickness
interpolation is considered for geometry and displacements. The nonlinear model is based on a Total-
Lagrangian formulation with the use of the Green-Lagrange strain measure. Inspired by the FE approach
proposed by Sze [10], the Green-Lagrange strains are linearised along the thickness direction. The model
is described by middle surface coordinates only, allowing us to interpolate geometry and displacements
using bivariate NURBS of generic order and continuity. Each control point has six DOFs and only
displacement DOFs are employed. Shear and membrane locking, which already occur in linear elastic
problems for low order NURBS, are even more evident in the nonlinear range. Different patch-wise
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reduced integration rules [12, 13], previously proposed for linear analysis, are investigated in stability
problems with the aim of eliminating interpolation lockings and increasing the computational efficiency
when C1-quadratic and C2-cubic NURBS are adopted. To obtain the mixed description of the problem,
required by the Koiter formulation, the Mixed Integration Point (MIP) strategy, recently proposed in
[18, 19] for finite element path-following analyses, is here extended to the proposed isogeometric Koiter
analysis. It consists in relaxing the constitutive equations at each integration point, making it possible to
rewrite the strain energy of the model in a pseudo Hellinger-Reissner form (see also [20]).

2 ISOGEOMETRIC SOLID-SHELL MODEL

An isogeometric solid-shell model for Koiter analysis of composite shells is derived in this section.
Geometry and displacement fields expressed in terms of quantities on the middle surface of the shell
are interpolated with NURBS function of generic order [11]. The model, based on Total Lagrangian
formulation and Green-Lagrange strain measure, is then derived. It extends the FE model proposed in
[10].

2.1 Shell kinematics

Convective curvilinear shell coordinates ξξξ = [ξ,η,ζ] with (ξ,η) representing middle surface coordinates
and ζ being the shell thickness coordinate are employed in this Total Lagrangian formulation. The
position of material points in the current configuration is given in terms of their position vector X(ξ,η,ζ)
in the reference configuration and the displacement state d(ξ,η,ζ).

x(ξ,η,ζ) = X(ξ,η,ζ)+d(ξ,η,ζ). (1)

The covariant basis vectors in the undeformed and deformed configuration are obtained from the corre-
sponding partial derivatives of the position vectors X and x, respectively

Gi = X,i , gi = x,i= Gi +d,i with i = 1,2,3 , (2)

where (),i denotes the partial derivative with respect to ith components of ξξξ. The contravariant basis
vectors follow from the dual basis condition: gi ·g j = Gi ·G j = δ

j
i and the metric coefficients are gi j =

gi · g j and Gi j = Gi ·G j with (i, j = 1,2,3). The motion of material points from the initial reference
configuration to the current configuration is described by the deformation map F : x→ X

F =
∂x
∂X

= gi⊗Gi (3)

and the Einstein convention of summing on repeated indexes is adopted from now on.

Using the deformation gradient in Eq.(3) and the metric tensor coefficients gi j and Gi j, the Green-
Lagrange strain tensor can be expressed as

E =
1
2
(
FT F− I

)
= Ēi j Gi⊗G j (4)

with
Ēi j =

1
2
(X,i ·d, j +d,i ·X, j +d,i ·d, j ) with i, j = 1,2,3 (5)
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where (·) means scalar product. Assuming a linear through-the-thickness interpolation the position vec-
tor is expressed as

X = X0[ξ,η]+ζXn[ξ,η] (6)

where
X0 =

1
2
(X[ξ,η,1]+X[ξ,η,−1]) , Xn =

1
2
(X[ξ,η,1]−X[ξ,η,−1])

with ζ = 1 and ζ =−1 identifying the top and the bottom surface of the shell respectively.

Similarly, the displacement field d = d0[ξ,η]+ ζdn[ξ,η] is described as a combination of the displace-
ments

d0 =
1
2
(d[ξ,η,1]+d[ξ,η,−1]) , dn =

1
2
(d[ξ,η,1]−d[ξ,η,−1]) .

The same convective coordinates ξξξ are used for expressing the interpolation of the discrete model.

2.2 The isogeometric solid-shell element

The numerical model is obtained interpolating the geometry and the displacement field using NURBS
shape functions.

X[ξξξ] = Nd [ξξξ]Xe, d[ξξξ] = Nd [ξξξ]de (7)

where de = [d0e,dne] and Xe = [X0e,Xne] collect the element control points for displacement and geom-
etry. The matrix Nd [ξξξ] collects the interpolation functions

Nd [ξξξ]≡
[
N[ξ,η],ζN[ξ,η]

]
(8)

where ζ ∈ [−1,+1] and N[ξ,η] are bivariate NURBS, functions of the middle surface coordinates only.

Adopting a Voigt notation, the Green-Lagrange covariant strain components in Eq.(5) are collected in
vector Ē = [Ēξξ, Ēηη,2Ēξη, Ēζζ,2Ēηζ,2Ēξζ]

T , that, exploiting Eq.(7), becomes

Ē =

(
L [ξξξ]+

1
2

Q [ξξξ,de]

)
de, (9)

where L [ξξξ] ≡ Q [ξξξ,Xe] and Q expression can be found in [21]. By truncation, the linearised covariant
strains

Ē≈

ē[ξ,η]+ζ χ̄[ξ,η]
Ēζζ[ξ,η]
γ̄[ξ,η]

 (10)

where

ē[ξ,η]≡

 Ēξξ[ξ,η,0]
Ēηη[ξ,η,0]
2Ēξη[ξ,η,0]

 χ̄[ξ,η]≡

 Ēξξ,ζ [ξ,η,0]
Ēηη,ζ [ξ,η,0]
2Ēξη,ζ [ξ,η,0]

 γ̄[ξ,η]≡
[

2Ēηζ[ξ,η,0]
2Ēξζ[ξ,η,0]

]

are collected in the vector of generalized covariant strains ε̄[ξ,η] ≡
[
ē, Ēζζ, χ̄, γ̄

]T . In order to sim-
plify the notation, the dependence of the quantities on ξ,η will be omitted from now on, when clear.
The generalised stress components, once the kinematic model is assumed, are automatically given by
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assuring the invariance of the internal work. By collecting the contravariant stress components S̄ ≡
[S̄ξξ, S̄ηη, S̄ξη, S̄ζζ, S̄ηζ, S̄ξζ]

T , the work conjugate variables with ε̄ are obtained by

W =
∫

V
S̄T ĒdV =

∫
Ω

(
N̄ T

ē+M̄ T
χ̄+ s̄ζζĒζζ + T̄ T

γ̄

)
=

∫
Ω

σ̄
T

ε̄dΩ (11)

where, from now on,
∫

Ω
(...)Ω = 2

∫ ξi+1
ξi

∫
ηi+1
ηi

(...)det(J[ξ,η,0])dξdη and J denotes the Jacobian matrix
J[ξ,η,ζ] = [G1, G2, G3]

T .

The generalized contravariant stresses σ̄≡
[
N̄ , s̄ζζ,M̄ , T̄

]T
in Eq.(11) are then

N̄ ≡ 1
2

∫ 1

−1
σ̄pdζ M̄ ≡ 1

2

∫ 1

−1
ζσ̄pdζ s̄ζζ ≡

1
2

∫ 1

−1
S̄ζζdζ T̄ ≡ 1

2

∫ 1

−1
τ̄dζ (12)

with

σ̄p =

 S̄ξξ

S̄ηη

S̄ξη

 τ̄ =

[
S̄ξζ

S̄ηζ

]
.

2.3 The mapping to the physical domain

The relation between the contravariant stresses and covariant strains in tensor notation and the corre-
sponding Cartesian ones is

E = J−1ĒJ−T and S = JT S̄J, (13)

that in Voigt notation can be written as

E = TEĒ and S = TSS̄ (14)

with TS = T−T
E . The explicit expression of TE can be found elsewhere [21].

2.4 Modified generalized constitutive matrix

The homogenization technique proposed in [10] is employed. A modified generalized constitutive matrix
Cε is derived by integrating the constitutive law of each lamina and assuming a constant with ζ stress
Sζζ through the layers in order to eliminate thickness locking. In this way an accurate prediction of the
global behavior in terms of stresses and displacements is obtained.

The thickness locking free generalized constitutive law in the global reference system is

σ[ξ,η] = Cεε[ξ,η]. (15)

Alternatively, the constitutive matrix can be expressed as a function of lamination parameters that is
useful in optimisation problems, as shown in [2].

3 KOITER IGA

The standard Koiter approach, described in detail in[3], is now briefly recalled and the steps of the
algorithms are particularised to IGA using the MIP strategy and the patch-wise integration.
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3.1 The nonlinear model and the numerical integration

We consider a slender hyperelastic structure subject to conservative loads p[λ] proportionally increasing
with the amplifier factor λ. The equilibrium is expressed by the virtual work equation

Φ[u]′ δu−λp̂δu = 0 , u ∈U , δu ∈ T (16)

where u ∈U is the field of configuration variables, Φ[u] denotes the strain energy, T is the tangent space
of U at u and a prime is used to express the Frechèt derivative with respect to u. We assume that U
will be a linear manifold so that its tangent space T will be independent of u. When a mixed format is
adopted the configuration variables u collect both displacement and stress fields.

The displacement based IGA formulation previously presented allows us to express the strain energy of
the element as a sum of element contributions Φ[u]≡ ∑e Φe[de]

Φe[de]≡
∫

Ωe

(
1
2

ε
T Cεε

)
dΩe (17)

where Ωe is the element domain and a numerical integration is usually adopted.

3.1.1 Patch-wise reduced integrations

Recently, patch-wise integration rules, which take into account the inter-element high continuity of the
displacement interpolation have been proposed [13, 12] and applied to linear elastic problems. The d-
dimensional target space, that is the space for the integration of the strain energy (as well as the stiffness
matrix), of order p and regularity r, labelled as S p

r , is exactly integrated by a number of ≈ ((p− r)/2)d

integration points per element, distributed over the patch. For the full integration, p is twice the order of
the splines and r is the continuity order minus one

The patch-wise integration of a given space S p
r also opens up new possibilities for patch-wise reduced

integration schemes. In fact p and r can be selected by the user and are not required to be those for the
exact integration of the problem space.

Being that in patch-wise rules the number of integration points n can be different element-by-element,
the strain energy can then be evaluated as

Φe[de]≡
1
2

n

∑
g=1

εg[de]
T Cgεg[de] wg (18)

where subscript g denotes quantities evaluated at the integration point [ξg,ηg], wg is the product of the
corresponding weight and the determinant of the Jacobian matrix J evaluated at the integration point and
Cg is Cε at the integration point.

3.2 The mixed integration point strategy

The fundamental idea of MIP strategy is to relax the constitutive equations at the level of each integration
point. This is made by rewriting the strain energy in a pseudo Hellinger-Reissner form on the element

Φe[ue]≡
n

∑
g=1

(
σ

T
g εg[de]−

1
2

σ
T
g C−1

g σg

)
wg (19)
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where the stresses at each integration point σg are now independent variables being

ue =
[
σ1, . . . ,σn,de

]T (20)

From the stationary condition with respect to σg we obtain the constitutive law at the integration point g

sgσ ≡ εg[de]−C−1
g σg (21)

that, if substituted in Eq.(19), again furnishes the displacement formulation in Eq.(18).

3.3 The implementation of the Koiter method using mixed integration points

The asymptotic approach is based on a third order Taylor expansion of Eq.(16), in terms of load factor λ

and modal amplitudes αi. We refer readers to [3] for recent developments of the method and more detail.

Letting ui ∈ T be a generic variation of the displacement field and denoting with a bold symbol the
discrete FEM counterpart of the continuum quantities, and referring to the solid-shell finite element
model presented in [9], the construction of the reduced model of the perfect structure consists of the
following steps.

1. The fundamental path is evaluated as

u f [λ] = u0 +λû , K0 û = f , K0 ≡K[u0] (22a)

where K0 and f are obtained from the following energy equivalence

uT
1 K0u2 := Φ

′′
0u1u2 uT

1 f = p u1.

and requires the solution of a linear system to evaluate the initial path tangent û. A subscript will
denote, from now on, the point in which the quantities are evaluated, i.e. Φ′′0 ≡Φ′′[u0] and so on.

2. The buckling modes and loads are obtained from the linearised critical condition consisting of the
eigenvalue problem

K[λ]v̇≡ (K0 +λK1[û])v̇ = 0 (22b)

where K1 is obtained from the following energy equivalence

uT
1 K1u2 = Φ

′′′
0 ûu1u2.

3. The (m× (m+1))/2+1 quadratic corrective FE vectors wi j, ˆ̂w are obtained by the solution of the
linear systems

Kb ˆ̂w+ ˆ̂f+
m

∑
k=1

ck f̂k = 0 with ck = v̇T
k

ˆ̂f

Kbwi j + fi j +
m

∑
k=1

ck f̂k = 0 with ck = v̇T
k fi j

(22c)

in which Kb ≡K0+λbK1, f̂k = K1v̇k, λb is a reference value of the bifurcation cluster, usually the
first buckling load and fi j, f00 are defined as a function of modes v̇i and û by the energy equivalences

δwT fi j = Φ
′′′v̇ jv̇ jδw δwT ˆ̂f = Φ

′′′û2
δw
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Figure 1: Composite curved panel: geometry and boundary conditions.

4. The construction of the reduced system of equations (k = 1 · · ·m)

rk[λ,αi]≡ µk[λ]+ (λk−λ)αk−
1
2

λ
2

m

∑
i=1

αiCik +
1
2

m

∑
i, j=1

αiα jAi jk +
1
6

m

∑
i, j,h=1

αiα jαhBi jhk = 0 (22d)

is carried out by evaluating the energy terms for i, j,h,k = 1 · · ·m as sum of element contributions

Ai jk =Φ
′′′v̇iv̇ jv̇k, Cik = Φ

′′
b

ˆ̂wwik

Bi jhk =−Φ
′′
b(wi jwhk +wihw jk +wikw jh), µk[λ] =

1

2
λ

2
Φ
′′′û2v̇k

where
Φ
′′
bu1u2 = (Φ′′0 +λbΦ

′′′û)u1u2 ∀u1,u2.

The evaluation of the equilibrium path, to be repeated for each additional imperfection, is obtained by
solving the modified reduced system

rk[λ,αi]+ µ̃k[λ,αi] = 0

where µ̃k represents the effect of the imperfection, and can be evaluated as in [3].

4 NUMERICAL RESULTS

The proposed numerical tool is now tested in a common composite structure. The test regards a curved
panel under compression whose geometry, loads, and boundary conditions are represented in Fig.1. The
postbuckling response of this panel has been optimised in [4, 2]. The material properties are E11 = 30.6,
E22 = E33 = 8.7, ν12 = ν13 = 0.29, ν23 = 0.5, G12 = G13 = 3.24, G23 = 2.9, while the stacking sequence
is [45,−45,0]s. Tables 1 and 2 show the convergence of the first 4 linearised buckling loads. The S̄2

0 for
C1 and S4

1 and S̄3
1 for C2 represent the best choices in terms of accuracy and efficiency.

The study of the initial post-buckling behavior of the panel is carried out considering the presence of a
geometrical imperfection ẽ that is a combination of the first and the second buckling modes. In particular,
it is the difference between them scaled in order to obtain ‖ẽ‖∞ = 0.1t. Four buckling modes are used for
constructing the ROM. The initial post-buckling exhibits a limit load, as shown in in Fig.2 and 3 . C1-S̄2

0,
C2-S̄3

1 and C2-S4
1 are the best performing strategies, providing a good estimate of the limit loads with a

8×8 mesh, which became practically exact using a 16×16 mesh.
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4 elm. 8 elm. 16 elm.

S̄2
0 S3

0 S4
0 ANS S̄2

0 S3
0 S4

0 ANS S̄2
0 S3

0 S4
0 ANS

1.096 1.144 1.263 1.165 1.016 1.018 1.095 1.054 1.001 1.002 1.015 1.004
1.082 1.201 1.656 1.106 1.013 1.010 1.078 1.036 0.998 0.999 1.011 1.001
1.080 1.346 ∗ 1.333 1.007 1.010 1.157 1.061 0.998 0.999 1.010 0.999
1.235 1.456 ∗ 1.848 1.035 1.073 1.228 1.119 1.003 1.012 1.049 1.011

∗ > 2

Table 1: Composite curved panel: first 4 normalized buckling loads for [45,−45,0]s with C1 interpola-
tion.

4 elm. 8 elm. 16 elm.

S̄3
1 S4

1 S6
1 S̄3

1 S4
1 S6

1 S̄3
1 S4

1 S6
1

0.995 1.097 1.110 1.006 1.014 1.018 1.002 1.005 1.004
1.014 1.044 1.068 1.006 1.012 1.015 1.001 1.003 1.003
1.002 1.121 1.167 1.003 1.007 1.014 1.001 1.003 1.002
1.062 1.205 1.280 1.041 1.022 1.061 1.001 1.003 1.003

Table 2: Composite curved panel: first 4 normalized buckling loads [45,−45,0]s with C2 interpolation.
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Figure 2: Composite curved panel: equilibrium path for [45/−45/0] and C1 interpolation
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1
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0

0.5

1

16×16 elements

u

λ

C2-S̄3
1

C2-S4
1

C2-S6
1

C2 64×64

Figure 3: Composite curved panel: equilibrium path for [45/−45/0] and C2 interpolation

5 CONCLUSIONS

In this work an isogeometric version of Koiter’s method has been proposed. The main purpose was to
develop a numerical tool to be used within postbuckling optimisation problems. A solid-shell structural
model is adopted and Green-Lagrange strain measures are used. A Mixed Integration Point formulation
has been used in order to avoid the extrapolation locking that occurs in displacement-based formulations.
On the other hand, interpolation locking has been cured by using reduced patch-wise integration rules,
thereby allowing low order NURBS interpolation functions to be employed. The numerical test has
confirmed that the proposed tool is accurate and efficient.
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