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ABSTRACT. The reliable computation of shell structures requires a tool to assess and control the
quality of the finite element solution. For practical purposes, the quality of the numerical solu-
tion must be measured using a quantity of engineering interest rather than in the standard en-
ergy norm. However, the assessment of the error in an output of interest is based on a standard
energy norm error estimator. The standard error estimator has to be applied to both the original
problem (primal) and a dual problem related with the selected engineering quantity. In shells
with assumed-strain models, the combination of primal and dual error estimation is performed
differently than in the continuum mechanics case. Moreover, a part from the goal-oriented error
estimator, the adaptive process requires a remeshing criterion. This work introduces an specific
remeshing criterion for goal-oriented adaptivity and its particularization to the context of shell
elements.

RESUME. Pour obtenir des calculs de structures de coques fiables il est nécessaire évaluer la
qualité de la solution élément finis. Du point de vue pratique, il faut que la qualité de la so-
lution numérique soit mesurée a partir d’une grandeur qui intéresse l'ingénieur, un output of
interest. La mesure standard, en norme énergétique, n'est pas satisfaisante. Néanmoins, l’ana-
lyse de I’erreur dans I'output of interest se base dans la combinaison de deux estimations de
la norme énergétique. Il faut que I'estimation énergétique soit appliquée a deux problémes, le
probléme d’origine (primal) et un probléme dual défini & partir du output of interest. Ce tra-
vail révele dans les modeéles de coques qui utilisent la technique assumed-strains pour éviter le
verrouillage, la facon de combiner les problemes primal et dual et différente que dans le cas
standard. Le reste du travail est consacré a introduire un critére de remaillage pour l'adaptivité
orienté au résultat, ¢’est-a-dire une formule permettant de traduire 'erreur estimée localement
en la taille d’élément souhaitée dans le nouveau maillage du procés adaptatif. Le critere est
introduit de fagcon générale et particularisé aux problémes de coques.

KEYWORDS: goal-oriented adaptivity, remeshing criteria, shells, outputs of interest
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1. INTRODUCTION

Shell models are extensively used in the engineering practice for structural analy-
sis. It is therefore extremely important to assess and control the quality of the numeri-
cal computation of shell structures. The previous work on error assessment techniques
for shells [CIR 98, DIE 00, DIE , LEE 99, LAC 02, HAN 00] focus on the evaluation
of energetic error quantities. An additional difficulty must be accounted for because,
for practical purposes, the quality of the numerical solution has to be measured using
a quantity of engineering interest rather than the standard energy norm.

The usual approach to estimate the error in a quantity of interest is to solve a dual
problem. The dual problem describes the influence of every zone of the domain in the
specific output of the solution. In fact, the solution of the dual problem contains infor-
mation on the pollution error that affects the quantity of interest. The dual problem has
the same structure as the original problem (primal) but with a different right-hand-side
term, related with the considered output. Then, the error in the quantity of interest is
assessed combining the energy norm of the errors in the primal and the dual problems
[PAR 97, PRU 99].

2. ERROR IN OUTPUTS OF INTEREST

The most standard technique to assess the error in outputs of interests introduces
a dual problem and combines the errors in energy associated with the primal and dual
problems. The essential concepts of this approach are briefly revisited in this section,
2.1. Primal and dual problems

We use, for the sake of a simple presentation, the linear mechanical problem. The
strong form of the mechanical equilibrium equation is:

—V.o(u)=f in 2 (1a)
olu) =1t on 'y (1b)
u=wup onlp (1¢)

In the following, the problem described in its strong form by Equations (1) is denoted
as the primal problem.

The weak form of the primal problem is stated as follows: find u € & such that
a (u,'u) = l(v), forallv € V, (2)

where a(-, ) is the standard bilinear form associated with the internal energy,

a(w,0) 1= /ﬂu:r(u) : €(v) df2, (3)
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[ () is a linear form representing the energy of the external loads,

() i= [v- g+ [ oo, )
J 0 I'n

S is an affine functional space verifying the Dirichlet boundary conditions (1c¢), i.e.
S contains the solution, and V is is a functional space verifying the homogeneous
Dirichlet boundary conditions (test functions).

The finite element approximation u*? to u is taken in a finite dimensional space
SH ¢ & such that

a(uf?,v) = 1(v), forallv € V¥ C V. (5)

The goal of this analysis is to assess the error of a linear functional of the solution.
Let J () be a magnitude of engineering interest of the solution. The functional J ()
is assumed to be linear. Thus, the quantity to assess is the output of the error, e =
w—uH thatis, J(e) = J(u) —J (u). In the standard applications .J () may be the
value of the displacements or the stresses at some points. Other possible definitions for
J (u) are averaged displacements or stresses in parts of the domain where the solution
is interesting for the structural analyst.

In order to assess this quantity, a new problem is introduced, in which the output
J(-) is the right-hand-side term of the weak form. This problem is denoted dual
problem and it is stated as follows. Find ¢ € V such that

a.(*u, :,o) = J(*u), forall v € V. (6)

The solution of the dual problem, ¢, describes how the residue in every part of the
domain affects the error in the output. The function ¢ accounts for the influence in
the local magnitude J () of any perturbation in the solution, even if located at distant
zones. The function ¢ is often denoted extractor and contains useful information to
study the effects of pollution on the output.

The dual problem is also solved with the mesh of characteristic size . An ap-
proximation to ¢, ¢!’ € V! is obtained such that

a(v,0") = J(v), forallv e V", (/)

The error in the approximation of the dual problem is denoted by & := ¢ — ™.

2.2. Residual error equations

The errors of the primal and dual problems, e and € respectively, are the solution
of the following residual equations:

a(e,v) = l(v) — a(u,v) = R” (v), forallv € V (8)
a(v,€) = J(v) —a(v,o") = RP(v), forallv € ¥ 9)
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where the primal and dual residues, R” () and R (-), have been introduced.

In order to assess the error in energy norm, the residual equations (8) and (9) are
solved approximately. For all practical purposes, the error estimators may be analyzed
considering a reference error associated with much finer mesh, a “truth mesh”. Let
be S"* and V" the interpolation and test spaces associated with a reference mesh of
characteristic element size h (h <« H). Thus, the solutions u” and ¢" of the primal
and dual problems are much more accurate than u*! and ¥ and the corresponding

reference errors are fair approximations of the exact errors, that is e ~ e” := v —uH

and & =~ e := " — . The equations for the reference errors are the following:
a(e",v) = RP (v), forallv € V" (10)
a.(*t.r,s:h) = RD(’U), for all v € V. (11}

The error estimator procedure obtains a proper approximation to the reference er-
ror solving only local problems, that is local restrictions of (10) and (11).

2.3. Representations of the error in the quantity of interest

Recall that our goal is to assess the reference error in the quantity of interest,
J(e"). In order to drive the adaptive process, the contribution from every element £2;,
of the mesh to J (e") is also required. That is, we need a representation of .J (e) as a

sum of elementary contributions. Moreover, each of the local contributions to .J (")
must be a function of the (local) energy norm of e’ and ", which are the magnitudes
we are able to evaluate with standard error estimators.

The following expression is derived replacing v = e” in (11):
J(Eh) — ﬂv(ch,Eh) + fi(ﬂhi {’fo) _ a(eh}wﬂ)‘ ([2)
Using Galerkin orthogonality, the previous equation results in

J(e"") = ﬂ.(ehjsh). (13)

Equations (12) and (13) allow to identify the contributions to the error in the quan-
tity of interest, J(e"), of every element of the mesh of characteristic size H. Let

aq, (+,+) be the restriction of a(:,-) to element € of the mesh. Then, a(,) =
> aq, (+,+) and, consequently

1
J(e") = ) _aa,(e" ") = Zlle" +&"la, — 7 lle
ke

—e"|q,. (14)

The aim of goal oriented adaptivity is to design a mesh such that the local magnitudes

aq, (e, &™) are small enough to keep J (e”) under a prescribed tolerance.
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Figure 1. Computational H-mesh (left), refined mesh (h) build up without any addi-
tional geometry data (center, obviously a bad option) and refined mesh (h) build up
using real geometry description (right).

3. ERROR ASSESSMENT IN THE SHELLS CONTEXT

Basically, the additional difficulties associated with the use of a Reissner-Midlin
shell formulation come from 1) the geometrical approximation of the curved geom-
etry of the shell and 2) the assumed-strain model. In [DIE 00, DIE ] a residual type
error estimator is presented that overcomes these two difficulties. This estimator is a
modification of the estimator introduced in [DIE 98] and it is used to assess the error
measured with the energy norm. Two relevant features of this estimator in the shell
context are recalled:

— The reference discretization must be adapted to the real (curved) geometry of
the mesh. The CAD information describing the geometry of the mesh is used in the
error estimation strategy in a very simple manner. It suffices to locate the nodes of the
reference mesh (or h-mesh) in the proper positions, see figure 1 for an illustration.

— The transfer of the solution from the computational mesh (or //-mesh) to the
reference h-mesh has to be done carefully. The stresses associated with the solution
u™ must be transferred instead of the displacements. This is due to the assumed-strain
model: a direct interpolation of the generalized displacements would not preserve the
physical quantities (e.g. energy). This is discussed in more detail in the remainder of
the section.

3.1. Assumed-strain models

The assumed-strain model is used in order to avoid shear and membrane locking
[AYA 98, DON 87, LEE 99]. It introduces a correction in the strains and, hence, in
the stresses at the element level. The correction suppresses the polynomial terms of
higher degree in the expression of shear and membrane strains. Thus, these terms of
the strain tensor are not derived directly from the displacement by the usual kinematic
relation. In some sense, the strain operator, mapping the displacement vector into the
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strain tensor, depends intrinsically on the mesh. Obviously, the same remark stands for
the stresses. Thus, instead of writing €(u?) to design the strain tensor associated with
the approximate solution u*, in the shell context the notation € (uf) is preferred
(viz. ot (u'?)).

Consequently, the bilinear form a(-, -) depends also intrinsically on the mesh and
the notation ay (-, ) is introduced to denote

ap (u,v) = f ol (u): e (v) dS). (15)
p)
Note that the bilinear form associated with the reference mesh of characteristic size h,

a (-, -), 1s defined in the same fashion and now u,,r.,r(-, ) s f.a;,,(-, )

Thus, the equations giving the solutions of the primal and dual problems, associ-
ated with the H and h meshes are

ap (u™,v) =1(v), forallv € V¥ (16a)
an(u,v) = l(v), forall v € V" (16b)
ap (v, ") = J(v), forallv € YV and, finally, (16¢)
ap (v, ") = J(v), forallv € V" (16d)

Obviously, the equations giving u" and ¢", (16b) and (16d), cannot be solved glob-
ally due to their prohibitive computational cost. The error estimator procedure solves
local, usually element by element, restrictions of (16b) and (16d) to obtain the er-
ror estimates, that is approximations to e and £". The error estimator used here is
described in [DIE 00, DIE ].

3.2. Proper transfer from mesh I to mesh h

Once the approximate solutions, u’ and o, are computed, the goal is to obtain
fair approximations of the reference errors, e* 1= 1" — uff and e = " — H!,
In the shells context, a proper definition of the errors e and £* requires to transfer
the approximate solutions u* and ¢ to the fine h-mesh. For instance, in order to

H

evaluate the error norm ||e" ||, that is \/ ap(uht —uf uh — ut), the solution u* must

be transferred from mesh H to mesh A.

The use of an assumed-strain model induces an additional problem. Even if the
reference solutions " and " where computed, the proper definition of e’ and " is
non-trivial. The first idea is to assume that e” is in V" and, then, to transfer «/! from
S" to §". Thus, the interpolated displacements, denoted by [u7],, would allow to
compute " = u" — [u'!] . However, the interpolated displacements [u], do not
represent the physical features of u!. For instance, the global energy computed from

('], may be, in some cases, 10 times larger than the energy computed from u.
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Differentiation
+ constitutive law

Figure 2. Transfer of the solution from the computational (coarse, H ) mesh to the
reference (refined, h) mesh. The solution must be transferred to the truth mesh by
interpolation of the generalized stresses (top). Stresses on the fine mesh cannot be
properly computed from the interpolated displacements (bottom)

This is due to the assumed-strain approach. It has already been noticed that the strain
and stress operators are intrinsically related with the mesh. Thus, the stresses asso-
ciated with u!T are denoted by o (u*') and the stresses associated with [u''] are

denoted by o (|u ], ). The stress fields ot (u!) and o ([u' ] ,) are very different.

A proper transfer procedure in this context must account for the particularities of
the assumed-strain model and preserve the mechanical properties of the solution. The
solution adopted in [DIE 00, DIE ] is to directly transfer the stresses, o/ (uf') and
obtain then [of(u")],. The right transfer strategy is illustrated in figure 2. The
same must be done for the dual problem.

This transfer strategy preserves the mechanical properties of the solution ul,

In particular, the energy computed from o (u*!) and the energy computed from
o (u'")|, are practically identical. As a consequence of the adopted transfer pro-

cedure, the error e” cannot be expressed in terms of displacements. The only repre-
sentation of the error that makes sense is in terms of stresses. The same stands for the
solution of the dual problem, ¢!, and the corresponding error, £".

[n all the numerical tests, the adopted transfer procedure does preserve every en-
ergetic quantity. In the following, the integral operator in the fine mesh, ay, (-, -) is
also applied to the quantities expressed in the coarse H-mesh. It is assumed that the
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quantities are transferred from mesh /7 to mesh h using the above described strategy.
For instance, the notation ay, (u, u") is used and means

ml(u‘r’r,u‘i‘r) = /E;[JH(HH)]&:[EH(uH)]h d()

Using this notation, the following equalities are verified

m,,(u”,u‘l'f) = ay (u‘r‘r,uH), (172)
HI;(@H,@H) = G (C,O”,QGH), (17b)
and ay, (u”,ap""’) = ayy (uH, ) = J (W) = (™). (17¢)

These results are verified in the numerical tests and, therefore, they do demonstrate
the efficiency of the transfer procedure.

Remark 1 Note that the above introduced notation is used also to combine in ay, (*, )
arguments from different functional spaces, namely V* and V". In this case ay, (-, ) IS

acting over each argument in a different manner. For instance, if we write ay, (t.r,""', 99”)
we must understand

an (u", ™) =/ o (uh): [Ehr(qs”)]h dSQ.
0

3.3. Representation of the error in the context of shells

In the shell context, due to the assumed-strain model, the Galerkin orthogonality
does not stand anymore, that is for every v € VH

, (e"‘,t,oH) # 0 and ay (u”,,Eh) £ 0. (18)

This is due to the fact that, in general, for v € Y,

ap (u”,v) = ‘/ﬂu'h(u“):[e‘l"r(v)]h df)

£ [ Hu)sehi) dn = 1),

that is, for v = ¥,

ﬂ}t(‘lﬂh,ﬁpﬂ) 4 -'f(‘PH) and ﬂ-h.('?—h:‘#”) _ ﬂh(uh,gaH)—m;(uH,tpH) - t_’:,h(uh,{,aﬁ)—ﬂ(gaﬂ) % 0.

The same rationale is followed to derive a;, (uH : Eh“) %0,

Moreover, we have already mentioned that the error e” can only be expressed in

terms of stresses, never in displacements. Then, in the general case, the transferred
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stresses [0 (u!')], do not derive from any displacement field in the fine h-mesh.

In other words, it does not exist any v € V" such that o*(v) = [o¥ (u'")],. Note
that this is due mainly to the boundary conditions: the transferred stress field does not
represent a kinematically admissible solution with the resolution of the fine mesh. A
direct consequence of this is that the error €™ cannot replace the test function v in the
weak residual equation (11).

Thus, the representation of the error in the output of interest, J(e”), given by
equations (12) and (13) is therefore no longer valid in the context of shells. This is
due to two factors: 1) Galerkin orthogonality does not stand and 2) the error e” cannot
be fairly introduced as a test function in the residual equation.

In the context of shells, an analogous but different representation of the error in
the output of interest must be used. It follows from equations (17) that

a, (e“,sh) = oy (uh —uH,tph - ‘F’H) _ J(ch) _— (Eh:‘wﬁ) — i (uH,Eh), (19)

That 1s,
J(Eh) - ﬂ-h(Eh,Eh) 4 ﬂah(ﬂhjlpff) L an (HI{, Eh). (20)

Equation (20) shows that, in the context of shells, the standard error representation
used in the literature on goal oriented adaptivity, see equation (13), must be modified
by adding the terms ay, (e”, ™) and aj, (u?,e"). Note that these terms vanish in the
standard case due to Galerkin orthogonality and that equation (13) is therefore recov-
ered. In the case of shells, the terms ay (€”, !7) and ay, (u!?, ") are not negligible in
front of ay, (e“ , E“): the numerical tests show that in all the examples they are at least
of the same order of magnitude.

3.4. Error assessment in quantities of interest for shells

In the standard case (continuum mechanics), the error assessment in energy norm
of the primal and dual problems suffices to estimate the error in the quantity of interest.
This is shown by equation (14), once the local approximation to e and e (standard
error estimates) are computed, an estimate for J (e”*) follows easily.

In the shell context, in order to evaluate J ("), the extra terms ay (", *') and

an (u'?,e"), must also be accounted for. The standard error estimates for el and "

are designed to evaluate norms, and hence the estimates for ||¢”|| and ||€"|| are reliable
and accurate. These terms may be therefore bounded using the Schwarz inequality,
that 1s

jan (e, ™) < lle™lle” || and Jan(u,e")| < lu™[|]le*| (21)

Unfortunately, the angle between e” and o and the angle between u!! and £" is
almost straight and, consequently, the inequalities in equation (21) are not sharp. The
values for the ratio ||e”|||l¢*||/|an (e, ¢™ )| obtained in the numerical examples are
of the order of 100. That means that the orthogonality condition between e and ¢!
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1s not rigorously fulfilled but that the angle is close to 90° (arccos0.01 = 89.4°).
Thus, if the value of ay (", ") and a) (u?,e") is estimated using the quantities
le™ ||l || and | |[||€"]|, the overestimation is extremely large. If these values were
used in an adaptive process, the obtained meshes would be excessively refined.

When the error estimates are used as functions to directly compute ay, (e"‘*, Ta )

and ap, (u'?,e"), the results are very poor in the coarse meshes but quite accurate

in the adapted meshes. In the coarse meshes, compared with the reference solution,
the numerical tests yield effectivity indices from -1 (estimate of opposite sign with
respect to the reference) up to 6 (estimate six time larger than the reference). In the
adapted meshes, the quality of the assessment of theses error quantities is much better
(effectivities from 80% to 170%).

As already noted, in all the studied examples we do observe that the terms ay, (e®, 1)
and ay, (u”,,a“) in equation (20) are of the same order of the remainder term of the
right-hand-side, ay, (e"‘, Eh‘). This 1s also verified along the remeshing process: when
ay (", ") is reduced, the term ay, (e”, ™) +ay, (u?, ") that completes J (e") is re-
duced proportionally. Note that the analysis of the behavior of the term a, (e”, ™) +

ap (u!! ") along a refining process (when H decreases) is not easy. In order to obtain
a priori estimates, one has to account for the reduction of the errors e’ and €™ with H,
which is standard, but also for the dependence on H of the orthogonality defaults. The
combination of the two effects yields likely an expression of ay, (€”, o) +ay, (ul? | ")

as a function of H similar to the expression for ay, (e, e").

Thus, in the following, the remeshing strategy is derived assuming that the be-
havior of the error in the quantity of interest, .J(e"), is the same as the behavior of
ap(e",e"). That is, we assume that the term ay, (€”, ™) +ay, (uf , ") does not mod-
ify the dependence of J(e") with respect to the mesh parameter /. The remeshing
strategy is therefore the same that has to be used in the continuum mechanics case.
In other words, it is assumed that it exists a constant factor that maps J(e”) into
an(e",&"). Of course, in the shells context, ay, (e",&") does not coincide with the
error in the output of interest, J(e"). Thus, in the remeshing criterion derived in the

next section, one has to replace ay, (€”,€") by the complete expression of J (e”). The
numerical evidence shows that this assumption is fair and that the adaptive process
reduces and controls J (e”) efficiently.

4. REMESHING CRITERION

An 1mportant part of the adaptive loop is the definition of the new mesh from
the error estimate. The remeshing criterion is an expression allowing to compute the
desired element size as a function of the error in the previous mesh. The desired
clement size is then the input for a mesh generator. Two ingredients are needed in
order to derive a remeshing criterion, 1) a priori error estimates and 2) an optimality
criterion, see [DIE 99] for details.
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4.1. A priori estimates

The a priori error estimates are used to assess the convergence rates of the finite
element approximations. They indicate the evolution of the error during a refinement
process.

The usual expressions for the a priori error estimates are for the primal and dual
problem

le|| = CHP and ||e|| ~ C*H?, (22)

where H is the characteristic size of the mesh, p is the complete degree of interpolation
of the finite elements and C' and C* are constants independent of H and p.

The local (element by element) counterparts of the previous equation are

lellq, ~ CHPY? and ||e||q, ~ C*HET/2, (23)

where ||-||q,. is the restriction of the energy norm to element €2, [ is the size of {2
and d is the dimension of the manifold in which €2 is included (d = 2 for 3D shells
or standard plane problems). To derive equation (23) from (22) it 1s assumed that

O ~ HE.

The same estimate is assumed to hold in the new mesh of the remeshing process,

that 1s
léllg, = CHEY? and |8, =~ C* gPta? (24)

where €, ~ H{ and it is assumed that the element §2i of the new mesh is included
in €. The parameter [}, stands for the element size in the new mesh in the zone

occupied by 2, € and £ are the errors associated with the solutions of the primal and
dual problems in the new mesh.

4.2. Optimality criterion

[n order to derive a remeshing criterion the a priori error estimates given above are
not sufficient and further hypothesis are required. The optimality criterion is an addi-
tional condition that prescribes some equidistribution of the error in the domain. Dif-
ferent optimality criteria can be defined based on different rationale [DIE 99, LI 95b,
LI 95a, ONA 93].

The simplest hypothesis is to assume that, in the optimal mesh, the contribution to
the error of every zone of the domain is uniform, that is

- s Sk
aq, (€,€) = J(€) —ﬂf’- (25)
S

prescribed

This criterion is derived recalling the expression

J(@) =) aq, (58, (26)
ke



12 Revue européenne des éléments finis. Volume X - n°® X/2003

which stands in the standard (continuum mechanics) case and is also used here in the
adaptive procedure. The k-th term of the sum in the right-hand-side of (26) is imposed
to be proportional to the measure (area) of €2;..

An additional assumption is used in the next developments. The scalar product

aq, (e, e") is assumed to verify

lag, (e*,e")| = Cllella.llelle. = CCC*HFP*, (27)

where C' < 1 is a constant accounting for the “cosine” of the angle between e” and
h
en,

4.3. Derivation of a remeshing criterion

The remeshing criterion gives H. as a function of Hy, and the corresponding local
errors. The expression of the remeshing criterion is derived from the a priori estimates
and the optimality criterion. The a priori estimates describe the evolution of the error
as a function of the element size and the optimality criterion sets the local distribution
of the error that has to be attained with the new mesh [DIE 99].

Using the previous assumptions, after some algebra, the following remeshing cri-
terion is obtained
1

lag, (€,€)|

a(e,€)

2p+-d
Q2 Ay

HP = (28)

A slight variation based on the assumption introduced by equation (27) may also
be used

~op _ |lellllell 1y2p+d 1
s _ (29)
€]l €]l
This expression is more consistant with the nature of the energy norm error estimator

we are applying to the primal and dual problem: the estimates are assumed to properly
approximate the error norms, ||e||||€||, and not necessarily the product a(e, €).

In the numerical test we use both the expressions given by equations (28) and (29).
We refer as Criterion I to the first and Criterion 2 to the latter.

In the adaptive loop, the remeshing criterion plays an important role. Once the
error 1s estimated (in this case the primal and dual errors), the mesh is designed fol-
lowing the element size distribution prescribed by the remeshing criterion. It is worth
noting that in the examples shown in the next section, the use of the different criteria
lead to different meshes. Even if the two expressions of equations (28) and (29) are
very similar, the resulting meshes are quite different.

As already mentioned, the remeshing criteria must be adapted to the shells case by
replacing a (e, €) by the complete expression for J (e) given by equation (20).
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5. NUMERICAL EXAMPLES
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Figure 3. Problem statement for example 1. Deformed shape and Von Mises stress
distribution for the primal problem (left) and the dual problem (right).

5.1. Example 1: bending plane shell

Let us consider the uniformly loaded plate of figure 3. The selected output of inter-
est is the vertical displacement of the point located at the extreme of the center cross
section. Consequently, the dual solution results of applying a concentrated vertical
force at this point.

The distributions of error, for both the primal and dual problems, are depicted in
figure 4. The quality of the error assessment in energy norm is analyzed in figures 4
and 5. Figure 4 shows that the estimated error map is very similar to the reference
(“exact”) error map. The good quality of the local error estimate is analyzed in figure
5, where the distributions of the local effectivity indices in both problems are shown.
The effectivity index is found to be uniformly distributed in space with a large number
of elements having the same local values (see histograms). As expected, the assess-
ment of the error (both of the primal and dual problems) in energy norm is accurate.

In the goal oriented adaptive process, the relevant local error quantities are ag, (e, &™)
and ||e"||q, ||€" ||, , because they are the input for the remeshing criteria 1 and 2 (de-
scribed by (28) and (29) respectively). The effectivity on the assessment of these error
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Figure 4. Error distribution for the primal (left) and dual (right) problems. The esti-
mated error (top, plots a and ¢) is in good agreement with the reference error (bottom,

plots b and d).
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Figure 5. Distribution of the local effectivity index for the primal (left) and dual (right)
problems. The spatial distribution is quite uniform and, consequently, the histogram
showing the number of elements with a given local effectivity index is narrow.
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Figure 6. Distribution of the local quantity aq, (e"‘ o ‘). The estimated values (a) are
fair approximations of the reference values (b). The effectivity index associated with
this quantity: spatial distribution (c¢) and histogram showing the number of elements
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Figure 7. Distribution of the local quantity ||e"||q,.||e"||q.. The estimated values (a)
are fair approximations of the reference values (b). The effectivity index associated
with this quantity: spatial distribution (¢) and histogram showing the number of ele-
ments with a given local effectivity index (bottom right).
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Criterion 1 Criterion 2

Figure 8. Meshes obtained in the adaptive process for the two criteria. The prescribed
relative error in the output of interest is 2.5 x 1014,

Criterion 1 Criterion 2

Estimated

Reference

Estimated

Figure 9. Distribution of the error magnitudes used in the remeshing criterion:
aq, (e,€") for criterion 1 and ||e"||q, ||€" ||, for criterion 2.
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quantities is described in figures 6 and 7. These figures show that the estimates for

both aq, (e",") and |le"||q,|le"|lq, are sharp. It is worth noting that the estimate

for ag, (e,€") is not anymore a lower bound while the estimate for [|e"||q, [|€"]la,

obviously preserves the lower bound character of the original error estimate.

The distributions of ag, (e",&") and ||e"||q,|le" ||, are used in the remeshing
criteria 1 and 2 to obtain two series of adapted meshes. The prescribed accuracy
(relative error) in the output is set to 0.025% (2.5 X 10~%). The meshes obtained with
the two criteria are shown in figure 8. In order to evaluate the remeshing strategy,
the error associated with every mesh in figure 8, J(e")/J (u.h), is computed from
the reference solution. Note that the reference solution is obviously not used in the
adaptive process. As already mentioned in the previous section, the remeshing criteria
accounts for an estimated error quantity, ap (e“,s“), that does not coincide exactly

with the output of the error, J ("), that is the two additional terms in equation (20) are
neglected. Nevertheless, the adaptive process converges to a mesh with the prescribed
value also for the actual output. In the adaptive process following criterion 1, it can
be noted that the accuracy in mesh 1 is lower than in mesh 0. This is due to the fact
that the number of elements has been slightly reduced (from 125 to 123) and, more
important, to the fact that in mesh 1 there are very distorted elements in the zone where
the output is evaluated. The final meshes (mesh 2 for both the criteria) display an error
lower that the targeted value of 2.5 x 10~%. The error quantity associated with criterion
2, ap (", ™), is larger than the quantity associated with criterion 1,ap (u,€"), and,
consequently, the number of elements of the mesh obtained with criterion 2 is also
larger.

Table 1 displays the values of all the relevant error quantities, both estimated
and computed using the reference solutions. It can be observed that the estimates
of the error norms are quite sharp and that the estimates of the cross products with

the error functions are less accurate. In particular, the estimates for aj, (", ™) and

ap (u,e") are very bad for the initial mesh, mesh 0, but they improve significantly

in the following.

Finally, figure 9 shows the error distributions used in every remeshing criterion.
For every mesh (meshes 1 and 2 of the two criteria) the corresponding error quantity
is displayed, both the estimated and the reference error distributions. The plots show
that all along the remeshing process the assessment of the relevant error quantities 1s
accurate both in global value and spatial distribution.

5.2. Example 2: cooling tower

The following example is introduced in [CIR 98]. A cooling tower with periodic
supports in the bottom is loaded with a vertical force uniformly distributed along the
top edge, see figure 10 for a complete problem statement. In this example, the geom-
etry is a curved surface and therefore the error estimation procedure must account for
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it. Thus, the reference mesh is build up using the exact description of the geometry, in
this case the surface is a hyperboloid.

The results are shown following the same structure of example 1: the energy norm
estimates for the primal and dual problems are shown in figure 11. The analysis of
the quality of these estimates is performed in figure 12. The distributions of the local
values for a(e, ) and |le]|||e|| are shown in figures 13 and 14. Then, the adapted
meshes obtained with both criteria are shown in figure 15. Here, the prescribed relative
error in the output of interest is set to 5 x 1072, In this case, the output exhibits a

Reference Estimated Effectivity
mesh0
™ 4.51831E-04  4.12688E-04 91.337 %
™|l 3.88149E-05 4.28817E-05 110.48 %
an (e, ") | -6.10104E-09 -5.22305E-09  85.609 %
an (e, o) | -5.35515E-09 5.23393E-09 -97.736 %
ap(u?,e") | -1.32695E-09  5.26470E-09  -396.75 %
mesh1 (criterion 1)
™| 2.87600E-03  1.98910E-03  69.162%
"] 1.09848E-04  7.63506E-05  69.505%
an (e, ") | -2.91905E-07 -1.37278E-07  47.028 %
ap(e”, ™) | 1.29266E-07  1.36600E-07  105.67 %
ap(u',e") | 1.44084E-07  1.37508E-07  95.436 %
mesh2 (criterion 1)
e 1.30523E-03  8.73299E-04  66.907%
(& 5.08303E-05  4.63589E-05  91.203%
ap (e, e") | -4.98772E-08 -2.19034E-08  43.915 %
a Ee”, o) | 2.22072E-08  2.18822E-08  98.536 %
ap(u',e") | 2.35119E-08  2.20091E-08  93.608 %
mesh1 (criterion 2)
l|e™]| 2.37382E-03  1.53062E-03  64.479%
™| 9.35916E-05  6.90501E-05  73.778%
ap(e",e) | -2.02252E-07 -8.52264E-08  42.139 %
an (e, o) | 9.57736E-08  8.45073E-08  88.237 %
ap(u',e") | 9.78280E-08  8.60860E-08  87.997%
mesh2 (criterion 2)
™| 1.22797E-03  7.99258E-04  65.088%
e 4.76003E-05  4.44252E-05  93.330%
ap (e ") | -4.38068E-08 -1.84664E-08 42.154 %
an(e”, o) | 2.02565E-08  1.84478E-08  91.071 %
ap(ufl,e) | 2.10556E-08  1.85151E-08  87.934 %

Table 1. Example 1. Summary of the relevant error quantities along the adaptive
processes. Reference and estimated values and effectivity index (estimated/reference).
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singularity. The error associated with the the mesh obtained with criterion 2 in the first
iteration is larger than the error of the mesh obtained with criterion 1. Nevertheless,
the mesh obtained with criterion 2 is finer than the mesh obtained with criterion 1.
Thus, the remeshing process is stopped at the first iteration. In only one iteration,
the remeshing criteria give meshes where the elements are concentrated around the
point where the output is measured and also, in the vicinity of the supports (sources
of pollution errors).

Table 2 displays the values of the relevant error quantities for all the meshes. The
remarks of example 1 are also valid here.

1 N/
z
Mmax: 15 m
-+ Yy
18°
X
Thickness : 0.04 m 7 2
Young's modulus: 65.82 10 N/m
- Paisson ratio : 0.3
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Figure 10. Problem statement for example 2. Deformed shape and Von Mises stress
distribution for the primal problem (left) and the dual problem (right).
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Figure 11. Error distribution for the primal (left) and dual (right) problems. The
estimated error (top, plots a and ¢) is in good agreement with the reference error
(bottom, plots b and d).
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Figure 12. Distribution of the local effectivity index for the primal (left) and dual
(right) problems. The spatial distribution is quite uniform and, consequently, the his-
togram showing the number of elements with a given local effectivity index is narrow.
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6. CONCLUSIONS

A method to assess and control the error in quantities of interest is presented in
the context of Reissner-Mindlin shell models with assumed-strains. The Assumed-
strain model for shells bring an additional difficulty in the representation of the error
that differs from the usual representation. The Galerkin orthogonality does not stand
in this framework and, consequently, two additional terms appear in the expression
of the error in the output of interest. These additional terms are difficult to evaluate
accurately using the standard estimates.

In order to perform adaptive computations, a remeshing criterion is introduced for
the general case of goal-oriented adaptivity. The remeshing criterion is formulated in
oder to control the standard representation of the error. Numerical tests demonstrate
that the adaptive procedure reduces the error in the output of interest such that the
prescribed accuracy is reached.
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Figure 13. Distribution of the local quantity aq, (e“‘, E‘h’). The estimated values (a)
are fair approximations of the reference values (b). The effectivity index associated
with this quantity: spatial distribution (¢) and histogram showing the number of ele-
ments with a given local effectivity index (bottom right).
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Figure 14. Distribution of the local quantity ||e"||q, ||[€"||q.. The estimated values
(a) are fair approximations of the reference values (b). The effectivity index associ-
ated with this quantity: spatial distribution (¢) and histogram showing the number of
elements with a given local effectivity index (bottom right).
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