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Soeveral search algorithms for the interpolation of data associated
witlt unstructured grids are reviewed and compared. Particular em-
phasis is placed on the pitfalls these algorithms may experience
far grids commonly encountered and on ways to improve their
performance. It is shown how the most CPU-intensive portions of
the search process may be vectorized. A technigue for the proper
interpolation of volumetric regions separated by thin surfaces is
included. Timings for several problems show that speedups in ex-
cess of 1:5 can be obtained if due care is used when designing
interpolation algorithms. ® 1995 Academic Press, Inc.

1. INTRODUCTION

The need Lo interpolate quickly the fields of unknowns from
one mesh to another is common 1o many areas of computational
mechanics and computational physics. The following classes
of problems require fast interpolation algorithms:

(a}  Simudations where the grid changes as the solution
proceeds. Examples of this kind are adaptive remeshing for
steady-state and transient sitnulations [1--3], as well as remesh-
ing tor problems where grid distortion due to movement be-
comes too severe |4, 5].

(b)  Loose coupling of different codes for multi-disciptinary
epplications. In this case, if any of the codes in question are
allowed o perform adaptive mesh refinement, the worst
case scenario requires 2 new interpolation problem at cvery
timestep.

(c) [Interpolation of discrete data for the initialization or
comtinwaus  update of boundary conditions. Common ex-
amples are metevrological simulations, as well as climatologi-
cal and geotechnical data for seepage and surface flooding
problems.

(d) Visualization. This large class of problems makes ex-
tensive use of interpolation algorithms, in particular for the
comparison of different data sets on simikar problems.

The main reason that prompted us to revisit the search and
interpolation problem was the second class of applications, We
are currently developing a series of loosely coupled multidisci-

plinary codes. We have found that for these classes of problems,
interpolation can take a non-negligible portion of total CPU-
time, especialty for large applications running on multiproces-
sOr VCC[(]I'-C()I]]]’)U[CI'S.

In the following, we will concentrate on the fast interpolation
between different unstructured grids that are composed of the
same type of elements. In particular, we will consider linear
triangles and tetrahedra. The ideas developed are general and
can be applied to any type of element and grid. On the other
hand, other types of grids (e.g., cartesian structured grids) will
lend themselves to specialized algorithms that may be more
efficient and easier to implement.

The remainder of the paper is organized as follows. Section
2 describes the basic algorithm used to decide if a point of the
unknown grid is inside an element of the known grid. Sections
3-5 consider the fastest possible algorithms, given the amount
of information available; brute force if only one point needs
to be interpolated {Section 3), octree search for groups of points
(Scction 4), and the fastest known vicinity algorithm (Section
5). These algorithms are combined in Section 6, yielding the
fastest grid-to-grid algorithm, an advancing front vicinity algo-
rithm. We then focus on the main innovations of the present
paper: ways of impioving robustness and speed by minimizing
brute-force searches at corners and edges, vectorization of the
interpolation procedure, and techniques to interpolate properly
volumetric data separated by thin surfaces. Section 9 presents
some timings, showing the considerable speedups obtained
by the proposed approach. Finally, some conclusions are
drawn.

2. THE BASIC ALGORITHM

Consider an unstructured finite element or finite volume
mesh, as well as a point p with coordinates x,. A straightforward
way to determine if the point p is inside a given element e/ is
to determine the shape-function values of p with respect to the
coordinates of the points belonging to ef:

xP:EN"x,—. n
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Point 1o be inlerpolated

FIG. 1.

Possible nen-uniqueness for interpolation on bricks.

For triangles in 2D and tetrahedra in 3D, we have, respectively,
two equations for three shape-functions and three equations for
four shape-functions. The sum-property of shape-functions,

2 Ni=1, (2)

yields the missing equation, making it possible to evaluate the
shape-functions from the following system of equations:

xp X1 X2 X3 Nl

Bl n o» w| [N 3
Zp 21 2 3 N

1 1 1 N

or, in concise matrix notation,

x,=XN—>N=X"'x,. @}
Then, the point p is in element ef iff

min(N',1 — N) =0, Vi (&)

For other types of elements more nodes than equations are
encountered. The easiest way to determine if a point is inside
an element is to split the element into triangles or tetrahedra
and evaluate each of these sub-elements in turn. If the point
happens to be in any of them, it is inside the element. This
procedure may not be unique for highly deformed bricks, as
shown in Fig. 1. Depending on how the diagonals are taken
for the face A-B-C-D, the point to be interpolated may or may
not be inside the element. Therefore, subsequent iterations may
be required for bricks or higher-order elements with curved
boundaries. Other ways to determine if a point is inside a
bilinear element may be found in [6].

In the following, we will vse the algorithm outlined above for
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triangles and tetrahedra as the starting point for improvements in
performance. These improvements depend on the assumptions
one can make with respect to the grids employed and the
information available.

3. FASTEST 1-TIME ALGORITHM: BRUTE FORCE

Suppose we only have a given grid and a single point p with
coordinates X,. The simplest way to find the element into which
point p falls is to perform a loop over all the elements, evaluating
their shape-functions with respect to X,

—DO: Loop over all the elements
— Evaluate &' from Eq. (4);
— IF: Criterion {5) is satisfied:
Exit
ENDIF
ENDDO

Because the central loop over all the elements can readily be
vectorized this algorithm is extremely fast. We will use it in
more refined algorithms both as a start-up procedure, as well
as a fall-back position.

4, FASTEST N-TIME START ALGORITHM:
OCTREE SEARCH

Suppose that, as before, we only have a given grid, but,
instead of just one point p, a considerable number of points
has to be interpolated. In this case, the brute-force algorithm
described before will possibly require a complete loop over the
elements for each point to be interpolated, and, on average, a
loop over half the elements. A significant improvement in speed
may be realized by only checking the elements that cover the
immediate neighbourhood of the point to be interpolated. A
number of ways can be devised to determine the neighbourhood
(see Fig. 2):

—Bins, i.e., the superposition of a cartesian mesh 7, §],

—Octrees, i.e., the superposition of an adaptively refined
cartesian mesh {9, 10], and

—Alternate digital trees [11].

We consider octrees here, as bins perform poorly for prob-
lems where the nearest-neighbour distances vary by more than
two orders of magnitude in the domain. One may form an
octree with the element centroids or points. In the present case,
we chose the latter option, as for tetrahedral grids the number
of points is significantly less than the number of clements. The
octree search algorithm then proceeds as follows:

— Form the octree for the points of the given mesh;
— Form the list of elements surrounding points for the
given mesh;
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FIG.2. Possible ways of subdividing space: (a) bins; (b) quadtree {ocitree);
(c) alternate digital tree.

— DO: Loop over the points to be interpolated
— Obtain close points of given mesh from the octree;
— Obtain the elements surrounding the close points;
-—DO: Loop over the close elements:
Evaluate N' from Eq. (4);
IF: Criterion (5) is satisfied:
Exit
ENDIF
ENDDO
— IF: We have failed to find the host clement:
Use brute-force over the elements
ENDDC

Several improvements are possible for this algorithm. One
may, in a first pass, evaiuate the closest point of the given mesh
to x, and only consider the elements surrounding that point.
Should this pass, which in general is successful, fail, the ele-
ments surrounding all the close points are considered in a second
pass. Should this second pass also fail (see Fig. 3 for some
pathological cases), one may either enlarge the search region,
or use the brute-force algorithm described above in Section 2.
The octree search algorithm is scalar for the first (integer) phase
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FIt:. 3. Possible problems with closest point algorithm: (a) boundary gap;
(b) distorted elements.

{obtaining the close points and elements), but all other stages
may be vectorized. The vector lengths obtained for 3D grids
are generally between 12 and 50, ie., sufficiently iong for
good performance.

S. FASTEST KNOWN VICINITY ALGORITHM:
NEIGHBOUR-TO-NEIGHBOUR

Suppose that, as before, we only have a given grid and a
considerable number of points need to be interpolated. More-
over, assume that for any given point to be interpolated, an
element of the known grid that is in the vicinity is known. In
this case, it may be faster to jump from neighbour to neighbour
in the known grid, evalvating the shape-function criterion [12]
{see Fig. 4). If the element into which x falls can be found in
a few attempts (<<10), this procedure, although scalar, will

arch Path

Starting Elsment
(IESTA}

Point 10 be
interpolated

FIG. 4. Nearest neighbour jump algorithm.
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FIG. 5. Failure of nearest neighbour search algorithm,

outperform all other ones. The neighbour-to-neighbour search
algorithm may be summarized as follows:

N.O. Form the List of Elements Adjacent to Elements for The
Given Mesh; )

N.1. DG: Loop over the points to be interpolated
N.2. Obtain good starting element START _ELEMENT;
N.3. For START_ELEMENT: Evaluate N from Eq. (4);
N4, IF: Criterion () is satisfied THEN
Exit
ELSE
Set: START_ELEMENT to neighbour associated
with min(V');
GOTO N.3
ENDIF
ENDDO

The neighbour-to-neighbour algorithm performs very well
in the domain, but it can have problems on the boundary.
Whereas the brute-force and octree search algorithms can
“‘jump’’ over internal or external boundaries, the neighbour-to-
neighbour algorithm can stop there (see Fig. 5), Its performance
depends heavily on how good a guess the starting element
START_ELEMENT is; it can be provided by bins, octrees, or
alternate digital trees. On the other hand, due to its scalar nature,
such an algorithm will not be able to compete with the octree
search algorithm described in Section 3. Its main use is for
point-to-grid or grid-to-grid transfer, where a very good guess
for START_ELEMENT may be provided. This fastest grid-to-
grid interpolation technique is described in the next section.

6. FASTEST GRID-TO-GRID ALGORITHM: VECTORIZED
ADVANCING-FRONT VICINITY

The crocial new assumnption made here, as opposed to all
the other interpolation algorithms described so far, is that the
points to be interpolated belong to a grid and that the grid
connectivity (e.g., the points belonging to each element) is given
as input. In this case, whenever the element END_ELEMENT of
the known grid into which a point of the unknown grid falls
is found, all the swrrounding poiats of the unknown grid that
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have not yet been interpolated are given as a starting guess
END_ELEMENT and stored in a list of *‘front’” points
LIST_FRONT_PCINTS. The next point to be interpolated is
then drawn from this list, and the procedure is repeated until
all points have been interpolated. The procedure is sketched in
Fig. 6, where the notion of ‘‘front’” becomes apparent. The
complete algorithm may be summarized as follows:

A.l. Form the list of elements adjacent to elements for the
given mesh;

A2 Form the list of points surrounding points for the un-
known grid;

A.3. Mark points of the unknown grid as untouched

A4 Tnitialize list of front points LIST_FRONT_PCINTS
for unknown grid

A.5.DO: For every non-interpolated point
NON__INTERP_POINT
A From LLIST_FRONT_POINTS:
A.6. Obtain starting element START_ELEMENT in
known grid
AT Attempt nearest neighbour search for NTRY at-
tempts;

— IF unsuccessful: use brute force

- Interpolate Front Points

- Obtain Flrst Polnt - Update Active Front of Close Points

- Otaln Active Front of Close Points

Step 3...

B—& Known Grid
@ — -@ Unknown Crid
= = me « Active Front

- interpolate Front Points
- Update Active Front of Close Points

FIG. 6. Advancing front vicinity algorithm.
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B— Known Grid
@ — - @ Unknown Grid

FIG. 7.

Problems at concave boundaries.

— IF unsuccessful: stop or skip
— END_ELEMENT

A8, Store shape-functions and host elements
A9 Loop over points surrounding
NON_INTERP_POINT:
-— IF: point has not been marked:
— Store END_ELEMENT as starting ele-
ment for this point;
— Include this point in front
LIST_FRONT__POINTS;
ENDTF
A10. Mark point NON_INTERP_POINT as interpolated
ENDDO

A.ll.IF: LIST_FRONT_POINTS not empty: GOTC A.5

Several possible improvements for this algorithm, layering
of brute-force searches, inside-out interpolation, and vectoriza-
tion, are detailed in the following.

6.1. Layering of Brute-Force Searches

In most instances (the exception being grids with very large
disparity in element size where NTRY attempts are not suffi-
cient), the neighbour-to-neighbour search will only fail on the
boundary. Therefore, whenever a brute-force search is required,
it is advisable to test first the elements connected to the bound-
ary. This wili reduce the brute-force search times considerably.
Note, however, that we have to know the boundary points in
this case. In the present case, the elements of the known grid
are renumbered in such a way that all elements with three or
more nodes on the boundary in 3D and two or more nodes
on the boundary in 2D appear at the top of the list. These
NR BOUNDARY ELS <X NELEM elements are scanned first
whenever a brute-force search is required. Moreover, after a
front has been formed, only these elements close to boundaries
- are examined whenever a brute-force search is required.

6.2. Inside-Out Interpolation

This improvement is directed towards complex boundary
cases, We group under this category cases where the boundary
has sharp concave corners or ridges, or those cases where, due
to the concavity of the surface points, the boundary may be
close but outside of the known grid (see Fig. 7). In this case,
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it is advisable to form two front lists, one for the interior poinis
and one for the boundary points. The interpolation of all the
interior points is attempted first, and only then are the boundary
points interpolated. This procedure reduces drastically the num-
ber of brute-force searches required for the complex boundary
cases listed above. This may be seen from Fig. 8, where the
brute-force at the corner was avoided by this procedure. As
before, knowledge of the boundary points is required for this im-
provement.

6.3. Vectrorization

The third possible improvement is vectorization. The idea
is to search for all the points on the active front at the same
time. It is not difficult to see that for large 3D grids, the vector-
lengths obtained by operating in this manner are considerable,
leading to very good overall performance. To obtain a vec-
torized algorithm we must perform steps N.3, A.7 as described
above in vector mode executing the same operations on as
many uninterpolated points as possible. The obstacle to this
approach is that not every point will satisfy criterion (5) in
the same number of attempts or passes over the points to be
interpolated. The solution is to reorder the points to be interpo-
lated after each pass such that all points that have as yet not

Nearest Neighbour Algorithm Will Fail Here

Boundary

By Interpolating Volutme Polnts First, The Problem Is
Avoided

Boundary

FIG. 8. Avoiding brute-force searches during interpolation.
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FIG. 9. Measuring surface concavity.

found their host element are at the top of the list. Such an
algorithm proceeds in the following fashion:

V.0. Set the remaining number of points NR_REMATNING_
POINTS=NR..FRONT_POINTS, where NR_FRONT_
POINTS is the total number of points to be interpolated
on the current front.

V.1. Perform steps N.3, A.7 in vector mode for all remaining
points NR_REMAINING. POINTS.

V.2, Write the NR_NEXT_POINTS points that do not satisfy
criterion (5) into a list LIST_OF _CURRENT_POINTS
{1 :NR_NEXT_PCINTS). If NR_NEXT_POINTS=0:
stop.

V.3, Write the NR_REMAINING_POINTS — NR_NEXT_
POINTS points that do satisfy criferion (5) into
LIST_OF _CURRENT_POINTS(NR_NEXT__POINTS
+1 : NR_REMAINING_POINTS).

V.4 Reorder all point arrays using LIST_OF _CURRENT_
POINTS. In this way, all points that have not yet found
their host element are at the top of their respective lists
(locations 1 : NR_NEXT_POINTS).

Set NR_REMATINING_PQINTS=NR_NEXT_POINTS
and go to V.1.

V5.

One can reduce the additional memory requirements associ-
ated with indirect addressing by breaking up all loops over the
MR_REMAINING_POINTS remlaining points into subgroups.
This is accomplished automatically by using scalar temporaries
on register to register machines. For memory to memory ma-
chines, a user-specified maximum group vector length must
be specified.

7. CONCAVE SURFACES

For concave surfaces, criterion (12.5) will not be satisfied
for a large number of surface points, prompting many brute-
force searches. The algorithmic complexity of the interpolation
procedure could potentially degrade to O(N3), where N, is the
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Domain 1

pomain 2

FIG. 10. Thin surface separating volumetric data.

number of boundary points. A considerable reduction of brute-
force searches may be attained if the concavity of the surface
can be measured. Assuming the unit face-normals n to be
directed away from the domain, a possible measure of concavity
is the visibility of neighbouring faces from any given face.
With the notation of Fig. 9, the concavity of a region along
the boundary may be determined by measuring the normal
distance between the face and the centroids of the neighbouring
faces. The allowable distance from the face for points to be
interpolated is then given by some fraction e of the minimum
distance measured:

d = a|min(0, n- (%, — x))|. (6)

Typical values for e are 0.5 < « < 1.5, If a neighbour-to-
neighbour search ends with a boundary face and all other shape-
functions except the minimum satisfy Eq. {5), the distance of
the point to be interpolated from the face is evaluated. If this
distance is smaller than the one given by Eq. (6). the point is
accepted and interpolated from the current element. Otherwise,
a brute force search is conducted. The application of this proce-
dure requires some additional arrays, such as face-arrays, a
distance-array to store the concavity, and the relation between
element faces and the face-array.

8. VOLUMETRIC DATA SEPARATED BY
THIN SURFACES

The interpolation of volumetric data for regions separated

by thin surfaces is commonly encountered in computationat
physics. Examples for problems of this kind are flow simula-

Domain 1

Demalin 2

FIG. 11. Comparison of face and point normals. Note, 1J: normal of face
1J; I: normal of point I.
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FIG. 12, Surface grids for a cube: NELEM = 34,661 (left); NELEM = 160,335 (right}.

tions with thin separating sheets, such as trailing edges of
wings, parasols, sails, airbags, shells, and others. In many
of these cases, the surface points belonging to one of the
two sides may lie inside an element that is attached to the
other side. The situation is sketched in Fig. 10. Point A,
although inside element Eli, i.e., satisfying Criterion 3, shouid
be interpolated from element E2. In order to avoid such an
erroneous interpolation, the surface normals of the faces of
the known grid are compared with the point normals of the
points to be interpolated (see Fig. 11). If the scalar product

of these normals falls below a preset tolerance (e.g., —0.5),
the host element is rejected, and a brute search is performed.
The surface point normals are obtained by averaging the
normals of the faces surrounding them. While averaging, a
comparison of the normals for all the surrounding faces is
conducted. If these normals differ substantially, an edge or
comer is detected, and the points are marked accordingly.
For these points, the surface normal is considered as undefined,
and no comparison of surface normals is conducted. The
alignment test for surface normals just described can be

FIG. 13. Surface grids for a train: NELEM = 180,670 (left); NELEM = 243,068 (right).
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TABLE 1

Interpolation Timings

Case NELEM, NELEM, # BFS CPU-scalar CPU-vector Speedup
Cube, 34,661 30,801 O 0.1399 0.0283 4.94
Cube, 34,661 160,355 ] 0.5360 0.1104 4.86
Train; 180,67 243,068 3 1.1290 0.3405 3.32
Train, 180,670 243,068 ) 0 (19905 0.2020 4.90

incorporated into the vectorized advancing front search proce-
dure without complications.

9. EXAMPLES

The interpolation techniques described were tested on several
3D grids that discretized the volume inside a cube or around
a train configuration with varying degrees of mesh density.
Figures 12 and 13 show the surface grids of some of these
grids. Table | summarizes the performance recorded on the
CRAY-C90 for the advancing-front vicinity algorithm. Both
the scalar and vector version of the algorithm were carefully
optimized for speed. We therefore regard this as a fair com-
parison.

One can observe speedups between 1:3.3 and 1 :5.0 for the
vectorized version. The interpolation speed per point per full
interpolation varied between 3.7 X 107 s/pt and 7.4 X 10°®
s/pt. This number, as well as the speedup obtained, depends
on the number of brute-force interpolations required, as well
as the average number of tries required in order to find the
host element for each point to be interpolated. The more tries
required, the higher the speedup achieved by the vectorized
version, as the transcription and rearrangement costs are amor-
tized over more vectorized CPU-intensive operations. For the
third and fourth cases, the only difference is the number of
brute-force interpolations required. The train configuration,
which is typical of CFD runs with moving bodies that require
many re-inierpolations of the solution during a run [5], had a
few concave surfaces. Some of the points of the second grid
were outside the first mesh, prompting a search over all elements
with three or more nodes on the boundary. As one can see,
this exhaustive search, which runs at 325 Mflops on the CRAY-
C90, does not affect the performance of the scalar version
significantly. The timings for the vectorized version, however,
are deteriorated significantly for this case. We note that the
number of elements with three or more nodes on the boundary
only constitutes about 9% of the total number of elements.
Doing an exhaustive search over the complete mesh would
therefore have led to a dramatic increase in interpolation times.

16. CONCLUSIONS

Several search algorithms for the interpolation of unstruc-
tured grids were reviewed and compared. Particular emphasis
was placed on the pitfalls these algorithms may experience for
grids commonly encountered in practice and ways to improve
their performance. It was shown how the most CPU-intensive
portions of the search process may be vectorized. Timings for
several problems were given, indicating that speedups of 1:5
can be obtained if the algorithm is properly vectorized.

Common areas of computational mechanics that will benefit
from the higher speeds achieved for the vectorized interpolation
process are: field simulations with moving bodies, interdisci-
plinary problems approached via loose coupling, initialization
and boundary condition update for field solvers attached to a
discrete data base, and visualization.
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