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Abstract. We investigate the acoustic behaviour of Micro-Electro-Mechanical-Systems (MEMS) with
a focus on shutter devices. These shutter devices can be used for a new method of sound generation
— which we call Advanced Digital Sound Reconstruction (ADSR) — where a redirection mechanism for
sound pulses is incorporated [1]. With the help of this redirection mechanism, sound pulses can be
generated which are superimposed to form an audio signal.

At MEMS-scales viscous effects can play a major role regarding sound transmission. Therefore, we
utilize the linearized flow equations in time domain in order to solve for the acoustic pressure while
incorporating effects caused by viscous boundary layers. Furthermore, the movement of the shutter
itself contributes to the overall generated sound in a negative manner. Since the generation of the sound
pulses is in the ultra sound range, the generated noise by the shutter might lead to adverse effects on the
human body [2]. Hence, modeling the shutter noise and understanding its generation process can help
to improve the design. To model the noise generated by the shutter, we apply the arbitrary Lagrangian-
Eulerian (ALE) framework to the linearized flow equations to be able to compute the noise generation
on the moving geometry. The geometry update itself is governed by an artificial quasi-static mechanical
problem which is solved in each step to get the new element deformation [3].

Assuming that the impact of the acoustic pressure is negligible, a simple forward coupling from the quasi-
static mesh-smoothing to the the linearized flow equations is employed. Furthermore, we use a direct
coupling approach to couple the acoustic wave equation to the linearized flow equations. The final
coupled system is then used to characterize the impact of the shutter movement on the overall system
behaviour of a certain embodiment.

1 Introduction

In this manuscript a shutter device based on Micro-Electro-Mechanical-Systems (MEMS) technology
is investigated. The modeling strategy for a particular valve based on the patent [4] revolves around
its usage for a new method of sound generation which we call Advanced Digital Sound Reconstruction
(ADSR) [5]. This method relies on the redirection of sound pulses with e.g. shutter devices which require
the consideration of multiple effects on the micro-scale. Besides standard acoustic wave propagation it
is important to incorporate viscous effects which will act on the wave passing through the narrow gaps
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of the shutter device. Furthermore, the shutter itself exhibits comparably large deformations which act
on the acoustic paths through the valve, hence, incorporating the computation on moving domains is
crucial. Based on previous investigations of the valve in [6], where a mechanical model was derived for
this particular embodiment, we present an iterative modeling strategy utilizing the linearized conservation
equations including viscous effects on moving domains.

2 Modeling strategy

For the investigations of shutter devices used for ADSR it is often times applicable to not fully model
the contact problem since full contact is not necessary for the operating principle from an acoustic point
of view. Instead it is enough, that the air passage is small enough so that viscous effects effectively act
as a sealing. In literature a wide variety of methods dealing with moving domains for the mixed wave
equation up to the full Navier-Stokes equations is available [7, 8, 9, 10, 11]. Due to the nature of the
underlying problem — where taking the contact into account is not a necessity — an Arbitrary Lagrangian-
Eulerian (ALE) approach has been used.

2.1 ALE-framework for viscous acoustics

Based on the conservation of mass - and momentum in ALE-formulation given in [12], the linearized
conservation equations in ALE-formulation can be derived with a perturbation ansatz. Furthermore,
using the adiabatic relation between pressure and density [13] finally leads to
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for the conservation of mass as well as
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for the conservation of momentum, where the fluid stress tensor [G] is given by
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In these equations py denotes the mean density, ¢ the speed of sound, p the perturbed fluid pressure, v
the perturbed fluid velocity and v, the grid velocity. Furthermore, I represents the identity tensor and u¢
the dynamic viscosity of the fluid. In (2) we already inserted the constitutive equations based on Stokes’
assumptions [13]. For the sake of brevity the authors refer to the linearized conservation equations as
linearized flow equations or in short LinFlow equations.

2.2 Geometry deformation

For the calculation of the deformed mesh as well as the grid velocity a quasi static solution of an
artificial mechanical problem is used. Although computationally more expensive than other schemes,
this approach brings additional flexibility since the mesh smoothing can be easily altered locally by
making e.g. the stiffness tensor location dependent [3]. For simpler problems an artificial material
constant in time and space is already sufficient which leads to

v. ([c] : ;(Vu+(Vu)T)> 0. 4)
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In this equation [c] denotes the stiffness tensor and u the displacement vector of the artificial mechanical
problem. The grid velocity v, can be calculated based on the displacement vector and a simple BDF2
scheme [3].

2.3 Coupling strategy

When the back-coupling of the perturbed fluid-pressure on the real mechanical problem can be ne-
glected, it is sufficient to employ a simple forward coupling strategy. Assuming that the deformation
profile is known, Dirichlet boundary conditions (BCs) can be used for the calculation of the deformed
mesh. Hence, the artificial mechanical problem is solved in a first step. In the next step the updated
(deformed) geometry as well as the grid velocity is used to solve (1) and (2) accordingly. Since the cal-
culation of (1) and (2) is computationally quite expensive, it is important to keep the deforming region
quite small. Hence, we couple to the standard (non-ALE) version of (1) and (2) as soon as possible. The
formulation for these equations is only a subset of the presented ones and can be obtained by setting the
grid velocity to zero. Finally, it has to be said that the linearized conservation equations themselves also
require a lot more computational effort than the standard acoustic wave equation given by

1.0%p,
ct or?

—V.Vp, =0. (5)

Here, the acoustic pressure p, is the only scalar variable to be solved for. Therefore, coupling conditions
regarding the continuity of surface traction

—pan=0-n (6)
as well as continuity of normal acceleration
ov 1
- n=——Vp,- 7
at n p() pa n ( )

are employed similarly to [6]. Here, n denotes the outward facing normal vector of the LinFlow domain.
Since the acoustic wave equation is also solved on an undeformed domain, we can simply couple it
directly to the linearized conservation equation, thus, minimizing computational effort.

3 Model setup

The presented framework has been applied to model and simulate an electrostatic valve based on the
patent [4]. The general structure of this valve can be seen in Fig. 1. The simulation itself is split into
two parts due to its complexity. In a first step, the presented ALE-framework is used to determine the
acoustic response of the valve. Here, an axi-symmetric model with effective hole diameters are used in
order to keep the computational effort reasonable. In a second step, the acoustic response of the valve
is surface averaged and applied to the second purely acoustic propagation model which represents the
measurement setup.

3.1 Valve model

Regarding the model of the valve the real geometry has been used to construct an effective 2D axi-
symmetric model. Since we focus on the propagated sound, the most important factor for the effective
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Figure 1: Structure of the investigated valve. Two inversely perforated back plates with a small gap in
between allow the sound to pass through. When a voltage is applied, the electrostatic force pulls the
plates together and effectively seals the acoustic path [4].

2D model is the surface area. Hence, the 2D model is tuned to have equal radially averaged area leading
to an equivalent perforation grade for the 2D and 3D model. Due to this averaging, the hole size is
altered leading to differences in the interaction of the two plates as well as the viscous dissipation. The
difference regarding the interaction of the plates would be the result of a different pressure build-up
between the plates. By imposing the displacement and neglecting the back-coupling, we also effectively
suppress this negative effect with the chosen modeling approach. Regarding the different hole size and
the inherent influence regarding the viscous effects we assume that this effect is negligible. The reason
for this is that the effective lengths responsible for dissipating acoustic energy are very low. Furthermore,
the sound radiated from the movement of the back-plates is mainly influenced by the actual area — which
has been prioritized. Additionally it has to be said that locally the Knudsen number can get comparably
high which would violate continuum theory [14]. Similar to before though, the effect is negligible for
this case — mainly the deforming shutter in combination with the accompanying change of impedance is
of importance.

3.1.1 Simulation setup

The model for the ALE-based computation can be seen in Fig. 2. The center region denoted as LinFlow
(ALE) is the model of the valve itself including some surrounding air where the LinFlow equations in
ALE-formulation are solved. In order to ensure that only a fully developed flow field is coupled to
the acoustic wave equation, an additional LinFlow region called LinFlow (undeformed) is used where
no geometry update is considered. Afterwards, non-conforming interfaces are used to couple to the
propagation domains Propagation 1 and Propagation 2 where only the acoustic wave equation is solved.
Finally, the propagation domains are terminated with a perfectly matched layer (PML) to model free
radiation. Regarding boundary conditions we prescribe the displacement for the bottom back plate (BBP)
directly on I'ggp and for the top back plate (TBP) on I'rgp. The outer boundaries combined in ['sx of the
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Figure 2: Model of the axi-symmetric valve where the positive z-direction points towards the measure-
ment channel used for the subsequent propagation simulation. At both ends a perfectly matched layer
(PML) has been used to model free radiation. Besides the prescribed velocity at the boundaries due to
the deformation, no-slip BCs have been used for the LinFlow domain. The acoustic domain features
natural sound hard boundary conditions.

blue region are simply fixed. For the linearized conservation equations we prescribe the velocity at I'ggp
and ['rgp wheres the rest of the boundaries are equipped with no-slip BCs. For the regions Propagation
1 and Propagation 2 we only use natural sound hard boundary conditions on all boundaries I'ycoy €xcept
for the coupling surfaces where we couple to the LinFlow equations or to the PML region.

3.1.2 Excitation

For the ALE-based model the displacement of the membrane has been prescribed analytically. The
basis for this has been presented in [6] where a one degree of freedom (1-DOF) model was used to
accurately model the displacement of the back plates. This model includes non-linearties based on the
electrostatic force but also caused by non-linear stiffness as well as squeeze film damping based on mod-
els presented in [15] and [16] respectively. It has to be noted that the actual deflection profile has been
calculated by a mixture of measurements of the actual valve as well as shape measurements of a slightly
different device from [17]. Combining the center displacement and the shape function interpolator intro-
duced in [6], the overall displacement assuming axisymmetric deformation can be calculated. With this
approach, the back-coupling of the pressure build-up is inherently incorporated. The center displacement
based on the 1-DOF compared to the measured center displacement of the actual actuator can be seen in
Fig. 3a. For the analytical description of the shape function of the back-plate the results from [6] have
been fitted to analytical functions. The analytical function prescribing the deflection profile is given by

-1
w(t,r) = Ween (1) (fc(r) + fa(r)ca(t) (1 —exp (@) )) (8
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(a) Comparison of the measured and simulated cen-
ter deflection based on the 1-DOF model [6].

(b) Value of the time dependent weighing factor
cq(t) representing the weight of f4(r).

Figure 3: Excitation signals used for the analytical prescription of the shutter deflection. The displace-
ment is shown for the BBP — for the TBP a simple scaling factor is used as shown in [6].

In this equation w(z,r) is the deflection profile and ween(?) the center displacement of the back plate as
seen in Fig. 3a for the BBP. Furthermore, ¢ represents time, » the radius in terms of a function and a the
actual value of the radius of the valve. The base curvature function f; as well as the deviation function
fa are fitted to the measurement data and represented by simple polynomial functions of order o in the

form

0= Fa(Z)

where the coefficients are given in Tab. 1. The time dependent weighting factor c4(r) has also been fitted
to measurements and can be seen in Fig. 3b. It can be clearly seen from Fig. 3b that the deviation of

(©))

Table 1: Coefficients for the polynomial representation of f; and fy

f c f d

ap 1.00086252e+00 -2.01446299¢-03
a; -7.55222479e-02  2.84258704e-01

a, 1.97804624e+00 -9.95036852e+00
az -2.27194589e+01  1.30675137e+02
as  9.86336712e+01  -7.94195752e+02
as -2.36089945e+02 2.64045851e+03
as  3.09304956e+02  -4.99587778e+03
a7 -2.09088868e+02 5.34844701e+03
ag 5.70566097e+01 -3.01786134e+03
ag - 6.98031551e+02

the initial shape is zero at the beginning and increases sharply over time. Since according to Fig. 3a
increasing time corresponds to increasing deflection, the influence of non-linearities plays a major role
for larger deflection. Figure 4 shows the normalized shape functions of the back plates in their final
position where the effect of the non-linear deflection profile can be clearly seen.
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Figure 5: Simplified propagation model used for comparison to the measurements (dimensions given in
mm). The model features 16 valve-channels, where the individual valves are not resolved but replaced
by an effective normal velocity boundary condition. The mesh supports frequencies up to 200 kHz [6].

3.2 Propagation model

For the comparison of the model results to the measurements an additional simplified propagation
model has been used. Similar to [6] an effective velocity is used as a boundary condition to excite the
system. The propagation model used can be seen in Fig. 5. The effective normal velocity used for the
boundary condition has been calculated based on the results from the ALE-model, where the acoustic
particle velocity of the channel has been evaluated and surface averaged via

27 f(;l va,ALE(t,r) rdr
a’w

Vetf, ALE () = (10)
This strongly suppresses radial modes and alters the results but can be justified for this application. First
of all, since the mesh only supports frequencies up to 200 kHz, all radial modes would not be resolved
by the mesh anyway. This also applies to the measurements where frequencies up to only 100 kHz are
supported. Additionally, the radial modes start just right before the contact where the electrostatic force
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Figure 6: Snapshot of the axi-symmetric ALE-based computation. The two close-ups show the different
pressure distribution at the symmetry axis as well as in between where the perforation switches.

is so strong, that an additional acceleration peak can be observed for the plate deflection. Since the
model is inherently deviating from the measurements after the contact due to the fact, that the oscillation
of the two plates after the snap-in is not represented in the 1-DOF model. Hence, the influence on the
representative time which can be used for comparison to the measurements will be negligible.

4 Simulation results

Based on the presented model the simulation results for the ALE-based computation as well as the
propagation model are presented. All simulation results have been obtained with our in-house open
source FEM-solver openCFS [18].

41 ALE

Regarding the ALE-based computation an exemplary field result is shown in Fig. 6. Here it can be seen
that the wave propagation through the different computation domains (LinFlow ALE, LinFlow non-ALE
and acoustic) is working well. Furthermore, the LinFlow equations enable solving the closing process
of the valve accurately. As shown in the close-ups, the pressure distribution is highly dependent on the
actual local velocity of the plates. Since they vary strongly due to the highly non-linear electrostatic
forcing as well as the squeeze film damping incorporated in the 1-DOF model, the pressure distribution
varies locally. Up to about 5 s the influence is not that strong, but the second velocity peak stemming
from the snap-in effect introduces strong locally varying velocity profile. The main reason for these local
differences is that the center of the back plate gets flattened when getting close to contact — as seen in Fig.
4. Hence, at some point the acceleration over the diameter will increase for larger values of r, resulting in
the local variation of the velocity inducing radial modes. As previously mentioned the effective velocity
has been calculated by surface averaging the acoustic particle velocity. The resulting effective particle
velocity as well as the filtered one suitable for the propagation grid can be seen in Fig. 7. This plot shows
that the radial modes excited by the locally varying velocity profile are of very high frequency which are
filtered out due to the fact that they could not be measured with the used measurement setup.
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Figure 7: Comparison of the surface averaged velocity to the surface averaged and filtered version used
for the propagation model. The upper frequency for the filtering stage was set to 140 kHz.
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Figure 8: Snapshot of the first time derivative of the acoustic potential denoted as acouPotentialD1 at
the time ¢t = 250ps. The propagation direction is from left to right and only four of the overall 16 valves
have been excited. Although the input velocity has already been filtered, the sound field is quite complex
and features longitudinal as well as transversal modes.

4.2 Propagation

Applying the surface averaged and filtered particle velocity show in Fig. 7 and using it as an inhomo-
geneous boundary condition for the propagation model from Fig. 5 gives us the acoustic response of the
valve during the closing process. For the simulation at hand, only four of the overall 16 valves have been
excited. Since the model is symmetric and linear, the resulting sound pressure at the microphone position
shown in Fig. 5 can be calculated by superposition. The advantage of this approach is that the excitation
of just one or multiple groups can be investigated. The resulting sound pressure at £ = 250us can be
seen in Fig. 8. For the evaluation of the results at the microphone position it has to be noted, that the
time signal was filtered afterwards to match the filtering conditions of the measurement process where
a B&K Nexus Conditioning Amplifier was used. Hence, the final filtering stage features a Butterworth
filter of second order with 1 dB attenuation at 100 kHz. Finally, the obtained simulation result compared
to the measurement can be seen in Fig. 9. The results show that the initial peaks are captured very well.
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Figure 9: Comparison of the measured- and modeled sound pressure at the microphone position.

Afterwards, deviations from the measurement signal occur, which is to be expected since the combined
oscillation of the back plates snapping together is not modeled in the simplified mechanical model that
has been used for the prescription of the movement.

5 Conclusion

An iterative solving process based on solving the linearized conservation of mass - and momentum
equations of a compressible fluid in an ALE-framework coupled to the acoustic wave equation has been
presented. We have shown that already an axi-symmetric ALE-based model utilizing equal radially
averaged surface areas in combination with a fitted plate deflection model is enough to accurately model
the highly non-linear process of closing the valve in snap-in mode. Based on the results of the 1-DOF
model presented in an earlier publication the ALE-model has been impinged with these displacement
boundary conditions, implicitly modeling the contact problem. Furthermore, the solution of the ALE-
model has been successfully applied to the propagation model in a simple forward coupling step and
compared to measurements. The comparison of the results have shown good agreement with expectations
as well as the measurements verifying the proposed solution strategy.
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