
15th World Congress on Computational Mechanics (WCCM-XV)
8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)

Virtual Congress: 31 July – 5 August 2022
S. Koshizuka (Ed.)

TESTING THE USE OF RADIAL BASIS FUNCTION AUGMENTED
WITH POLYNOMIALS AS BASIS FUNCTIONS IN THE BOUNDARY

ELEMENT METHOD FOR HEAT TRANSFER PROBLEMS

FILIPE LOPES CRUZEIRO1 AND LUCAS SILVEIRA CAMPOS2

1 Universidade Federal do Espı́rito Santo
www.ufes.br

filipe.cruzeiro@edu.ufes.br

2 Universidade Federal do Espı́rito Santo
www.ufes.br

lucas.s.campos@ufes.br

Key words: Radial basis function, Boundary element method, heat transfer

Abstract. The accuracy of the numerical solution obtained by the Boundary Element Method (BEM)
is directly affected by the type of interpolation function used. Meanwhile, interpolation by radial basis
function augmented with polynomials has been shown to be more accurate than Lagrange interpolation
for a range of different functions.

Therefore, this paper is concerned with the application of such functions as the interpolation functions
for all boundary values in the boundary element method for the numerical solution of two-dimensional
heat transfer problems. Numerical examples with different geometries and temperature distributions are
presented and comparisons with both isogeometric and classical formulation are made to demonstrate
the accuracy of the proposed method.

1 INTRODUCTION

The Boundary element method (BEM) is one of most commonly used methods for solving problems
in continuum mechanics [1] and can be used in different areas of engineering. The method begins by ob-
taining the solution only at the boundary. After obtaining the solution at the boundary, the potential inside
the domain can be calculated, using the boundary integral equation, without further approximations, with
the from the boundary [2]. Therefore, a improvement at of the solution at the boundary also improves
the solution at the domain of the problem. For this reason, a good boundary solution is paramount. One
of the known improvements in the solution at the boundary is the improvement in the interpolation used
during the solution. The most common method of interpolation is by polynomial functions, being more
common the use of polynomials of first, second or third order. On the other hand, using NURBS in a
isogeometric setting has already shown to have a superior accuracy to that obtained by the polynomials
with the same number of collocation points.[3].

Another popular interpolation method is interpolation by radial basis function (RBF), RBF methods
appeared in the early 2000s as an alternative for solving differential equations in irregular domains [4, 5,
6]. Since then, different methods, such as the finite element method [7], the finite difference method [8]
and BEM[9], have shown good results with its use. In [9] BEM with RBF interpolation was used to solve
heat transfer problems. It presented a formulation that used Indirect RBF to interpolate the temperature
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and its normal gradient. The proposed method obtained improved better solutions not only in terms of
the accuracy but also in terms of the rate of convergence. However as the indirect RBFS introduced
new unknowns the method could only be solved in the least squares sense by using Singular Value
Decomposition technique. This makes the method unsuited for larger problems, as this the computational
cost increases rapidly at O(n3).

Recently it was proposed the addition of a polynomial element to the RBF [10], and thus improving
the accuracy of the method.

This work applies RBF augmented with polynomials as the interpolating function of the BEM for solv-
ing heat transfer problems in 2d. The accuracy and computational cost of the solution will be compared
with both the isogeometric and the classical formulation.

2 RBF INTERPOLATION AUGMENTED WITH POLYNOMIALS

Considering a set of known points s1,s2, ...,sn of a function y(s) unknown, the purpose of the RBF
interpolation is to obtain a function s(x) continuous such that:

y(x)≈ s(x) =
n

∑
j=1

λ jφ(||x− x j||) (1)

where φ(||x− x j||) is a radial basis function centered on x j , ||.|| is the standard euclidean distance, n is
the number of radial basis functions and λ(i) is the set of weights to be found.

When considering polynomial augmentation, the function s(x) is described by [11]:

y(x)≈ s(x) =
n

∑
j=1

λ jφ(||x− x j||)+
s

∑
k=1

βk pk(x) (2)

with the conditions
n

∑
j=1

λ j pk(x j) = 0,k = 1, ...,s, (3)

where pk corresponds to the polynomial augmentation, β is the polynomial coefficients and s is the order
of the polynomial.

Using Equation 2 for the specific points, s(xi) = fi, i = 1, ...,n together with Equation 3, we can gener-
ate the following system of equations:

[
A P

PT 0

][
λ

β

]
=

[
f
0

]
(4)

where A is the square matrix with elements

Ai, j = φ(||xi − x j||), i, j = 1, ...,n, (5)
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and P is the n× s matrix

P =


p1(x1) p2(x1) . . . ps(x1)
p1(x2) p2(x2) . . . ps(x2)

...
...

. . .
...

p1(xn) p2(xn) . . . ps(xn)

 . (6)

Using Equation 2 directly on the BEM is not straightforward, as the unknowns would only be calcu-
lated

2.1 Expression for radial basis function augmented with polynomial

In [10] an alternative equation for s(x) where the coefficients are not explicitly needed is obtained. The
most important results for this work are summarized in this section.

Considering A and P to be full rank, the radial basis function augmented with polynomials will be

s(x) = fT [I +WPT ]A−1
φ(x)+ fTWp(x) (7)

where W is an n× s array defined by:

W = A−1P(PT A−1P)P−1 (8)

the vector φ(x) contains the spatial basis for the RBF:

φ(x) = [φ(||x− x1||),φ(||x− x2||), ...,φ(||x− xn||)]T (9)

and p(x) is the polynomial space Πd
l

p(x) = [p1(x), p2(x), ..., pn(x)] (10)

Equation 7 can be rewritten as:
s(x) = E(x)f (11)

Where E(x) is defined by:

E(x) = [I −WPT ][A−1
φ(x)]T +W T p(x)T (12)

and is the shape function that will be used for the proposed BEM formulation.

2.2 Interpolating examples

To test the radial basis functions augmented with polynomials, two functions will be interpolated:

y1 = 5s+10 (13)

and
y2 = 0.02(12+3s−3.5s2 +7.2s3)(1+ cos(4πs)(1+0.8sin(3πs)). (14)

In both examples the independent variable s will be analyzed from 0 to 1. The system accuracy will be
measured by the relative error norm defined by:

Ne =

[
(∑

q
i=1(y(s

i)− f (si))2

∑
q
i=1 y(si)2)

]1/2

. (15)
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2.2.1 A linear function

The first example is intended to demonstrate the difficulty that the standard RBF has when trying to
interpolate a simple straight line, y1. In Figure 1 it becomes clear that by augmenting the RBF with
a polynomial the interpolant is now able to correctly interpolate y1 even with a the lowest number of
points. An significant increase in the error is observed for both options when the number of points
becomes larger than 103. For this we will use the Equation 13.

Figure 1: Interpolation error of y1 for straight lines

It is known that the interpolation by radial basis functions has a weakness, which is the interpolation
of straight lines, this can be verified in Figure 1, where the error for the interpolation by RBF has errors
greater than RBF+pol, even we can see that the interpolating functions after a certain time have a rapidly
growing error. Thus, we can say that the argument with the polynomial is important since cross sections
are widely used in engineering.

2.2.2 A smooth function

This example will be used to compare the interpolation of the smooth function y2 obtained by the
augmented RBF with traditional interpolation methods. The errors for different discretization levels can
be viewed in Figure 2.

In this example both RBF and RBF+pol interpolation have a similar error profile, while outperforming
interpolating splines of order 3 and 4 and a piece-wise fourth order polynomial interpolation.

Also, for this interpolation method it is important to correctly define the point distribution, as this
factor directly affects the quality of the solution. The concentration of points at the end of the segments
has the power to improve the quality of the interpolation and of its derivative [8]. So for this work
we will use the Gauss-Legendre quadrature to distribute the points on the boundary of the problems.
Figure 3 contains the normalized error for the two interpolation methods, note that the interpolation with
the Gauss-Legendre distribution proves to be superior for a large range of points, and for this reason this
will be the distribution to be used in this article.
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Figure 2: Interpolation of function y2

Figure 3: Interpolation for different point distribution

3 THE BOUNDARY ELEMENT METHOD

A direct collocation form of the BEM consists in constructing a system of equations by taking a
collocation point for every unknown and integrating along the boundary. For potential problems, the
integral equation that relates the potential and its derivative is given as [12]:

cu(x′) =
∫

Γ

∂u
∂n

(x)u∗(x,x′)dΓ−
∫

Γ

u(x)
∂u∗

∂n
(x,x′)dΓ (16)

where c is a jump term that arises from the limiting process of the integral equation and is dependent
on the geometry at the source point x′, u(x) and ∂u

∂n(x) are the potential and its derivative in the normal
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to the boundary direction, respectively, while u∗(x,x′) and ∂u∗
∂n (x,x

′) refers to fundamental solutions, and
finally Γ is the boundary to be studied.

In order to make Equation 16 suitable for numerical implementation, the continuous fields u(x) and
∂u
∂n(x) have to be represented in a discrete manner. In the conventional BEM, the idea is to split the
boundary into elements using a Lagrange interpolation while in this proposed formulation Equation 11
is used to approximate each variable and the geometry. This leads to:

cu(x′) =
∫

Γ

u∗(x,x′)
(

∂uc

∂n
E(x))

)
dΓ−

∫
Γ

(ucE(x)))
∂u∗

∂n
(x,x′)u(x)dΓ. (17)

The boundary integrals in the conventional BEM must be divided into multiple elements whereas in
this formulation there is only a need to separate the boundary at the corners or at the change of the type
of boundary condition. Each integral can then be easily integrated numerically using Gauss-Legendre
quadrature.

4 HEAT TRANSFER EXAMPLES

In this section, the proposed formulation is compared with classical BEM with discontinuous quadratic
an cubic elements and with an isogeometric formulation that uses cubic splines. All errors are evaluated
according to Equation 15. Finally, first-order polynomial is used to augment all RBFs.

4.1 Heat transfer in a square plate

In this example the capability of the proposed method to represent geometries with straight edges will
be tested. A closed square domain, with dimensions of 6 x 6, is used. The prescribed temperatures on
the right and on the left are respectively 300 and 0, while at the top and bottom the heat flux is equal to
zero. With these boundary conditions, the temperature will vary linearly along the plate. The analytical
solution can be written as:

u(x1,x2) = 300−50x1. (18)

The error will be evaluated at 25 evenly spaced internal points, as shown in Figure 4, and thus ensuring
that the solution is evaluated at the same coordinates for all methods. The results for the different methods
can be seen at Figure 5.

BEM with radial basis function augmented with polynomials presented a smaller error when compared
to the other methods. The minimum error of the proposed formulation had a minimum error of 1.09e−
10, while the best of the other methods achieved the smallest error of 1.73e−8.

4.2 Heat transfer in a hollow cylinder

The second example is a hollow cylinder as shown in Figure 6. The temperature is known at the inner
boundary Si and the flux is known at the outer surface Se. The analytical solution for the temperature will
be given by the following equation:

For this problem, the following will be adopted: ri = 1, r2 = 2, Ti = 100, qe = 200 and k = 1, the outer
and inner contours will have the same number of points. The results for different interpolation methods
in BEM can be seen in Figure 7. The analytical solution for the temperature is given by:

T (r) = Ti +qere log
(

r
ri

)
(19)
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Figure 4: Geometry example 1

y

x

q = 0

u = 300 u = 0

q = 0

6

6

Figure 5: Example numerical 1

and for the flux:
q(r) = qe

re

r
(20)

where Ti e qe are the temperature and the flux at the internal and external boundaries, respectively.
For this example, unlike the first, the method with RBF+pol interpolation did not achieve the lowest

errors for the same level of discretization, where BEM with third-order polynomials presented the lowest
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Figure 6: Annular region of Numerical example 2

re

ri

r

Si Se

Figure 7: Example numerical 2

errors, the method with RBF+pol interpolation managed to reach a minimum error in the order of 10e−3
with 128 points.

4.3 Heat transfer in a rectangular plate

This example will be used to study a square plate with dimensions of 2×1 that is shown in Figure 8.
The following boundary conditions are considered for this structure:

q =− 1
2
√

r

(
cos

θ

2
cosθ+ sin

θ

2
sinθ

)
in BC, (21)

q =− 1
2
√

r

(
cos

θ

2
cosθ− sin

θ

2
sinθ

)
in CD, (22)

8



Filipe Lopes Cruzeiro and Lucas Silveira Campos

Figure 8: Geometry example 3

C

B

D

A O

r
θ

q =
1

2
√

r

(
cos

θ

2
cosθ+ sin

θ

2
sinθ

)
in DA, (23)

T = 0 in AO (24)

and
q = 0 in OB. (25)

This problem has an analytical solution given by:

u =
√

r cos
θ

2
; (26)

qx =
cos θ

2
2
√

r
(27)

and

qy =
sin θ

2
2
√

r
. (28)

The Figure 9 shows the normalized error for the different methods. Where the solution for the proposed
method, with a number of points larger than 128, has the lowest error.

4.4 Heat transfer in a square plate under different boundary conditions

In this example a square plate with dimensions 1×1 is analyzed, where in the entire structure k = 1,
the boundary conditions are defined as in Figure 10.

The analytical solution to this problem is given as:

u(x1,x2) =
2
π

∞

∑
n=1

(−1)n+1 +1
n

sin
(nπx1

L

) sinh
(nπx2

L

)(nπ

L

)
cosh

(nπW
L

) (29)

In Figure 11, it can be seen that the proposed formulation had smaller errors than the other methods.
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Figure 9: Example numerical 3

Figure 10: Geometry example 4

∂u
∂y (x1, 1) = 1

u(x1, 0) = 0

u(1, x2) = 0u(0, x2) = 0

x1

x2

5 COMPUTATIONAL COST

Another important factor is how computationally expensive each method is. To measure this cost, the
necessary time that each method takes to solve numerical example 3 for different discretizations will be
compared. The simulations were made in a laptop with a Intel Core I7-10750H processor with 8GB of
RAM.

In Figure 12 it can be seen that the proposed method was slower than traditional BEM and faster than
the isogeometric formulation.
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Figure 11: Example numerical 4

Figure 12: Solution time for example 4

6 CONCLUSION

In this work, BEM with radial basis functions augmented with polynomials as interpolation function
was used to solve heat transfer problems. The proposed method presented the lowest error for all ex-
amples with straight geometries. It did not perform as well on the problem with circular section, this
behavior might be explained by the difficulty on representing that geometry exactly. Finally, the pro-
posed method was also faster then the isogeometric formulation.

The method can be further improved by testing different radial basis functions, including functions
with compact support. The resulting interpolating matrix presented very high condition number as the
number of points was increased. Testing different nodes distributions is also desired, as the condition
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number is directly related to the smallest distance between two nodes.
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[3] L. S. Campos, É. L. de Albuquerque, L. C. Wrobel, An aca accelerated isogeometric boundary ele-

ment analysis of potential problems with non-uniform boundary conditions, Engineering Analysis
with Boundary Elements 80 (2017) 108–115.

[4] C. Shu, H. Ding, K. Yeo, Local radial basis function-based differential quadrature method and its
application to solve two-dimensional incompressible navier–stokes equations, Computer methods
in applied mechanics and engineering 192 (7-8) (2003) 941–954.

[5] A. Tolstykh, D. Shirobokov, On using radial basis functions in a “finite difference mode” with
applications to elasticity problems, Computational Mechanics 33 (1) (2003) 68–79.

[6] G. B. Wright, B. Fornberg, Scattered node compact finite difference-type formulas generated from
radial basis functions, Journal of Computational Physics 212 (1) (2006) 99–123.

[7] J. Long, C. Farquharson, Three-dimensional controlled-source em modeling with radial basis
function-generated finite differences: A meshless approach, in: 2017 SEG International Exposi-
tion and Annual Meeting, OnePetro, 2017.

[8] B. Fornberg, T. A. Driscoll, G. Wright, R. Charles, Observations on the behavior of radial basis
function approximations near boundaries, Computers & Mathematics with Applications 43 (3-5)
(2002) 473–490.

[9] N. Mai-Duy, T. Tran-Cong, Rbf interpolation of boundary values in the bem for heat transfer prob-
lems, International Journal of Numerical Methods for Heat & Fluid Flow (2003).

[10] V. Bayona, An insight into rbf-fd approximations augmented with polynomials, Computers &
Mathematics with Applications 77 (9) (2019) 2337–2353.

[11] G. E. Fasshauer, Meshfree approximation methods with MATLAB, Vol. 6, World Scientific, 2007.
[12] P. K. Banerjee, P. K. Banerjee, R. Butterfield, Boundary element methods in engineering science,

McGraw-Hill (UK), 1981.

12


	INTRODUCTION
	RBF INTERPOLATION AUGMENTED WITH POLYNOMIALS
	Expression for radial basis function augmented with polynomial
	Interpolating examples
	A linear function
	A smooth function


	THE BOUNDARY ELEMENT METHOD
	HEAT TRANSFER EXAMPLES
	Heat transfer in a square plate
	Heat transfer in a hollow cylinder
	Heat transfer in a rectangular plate
	Heat transfer in a square plate under different boundary conditions

	COMPUTATIONAL COST
	CONCLUSION

