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Abstract 

This paper presents a Dynamic User Equilibrium for bus networks where recurrent overcrowding results in queues at 

stops. The route choice model embedded in the dynamic assignment explicitly considers common lines and strategies 

with alternative routes. As such, the shortest hyperpath problem is extended to a dynamic scenario with capacity 

constraints where the diversion probabilities depend on the time the stop is reached and on the expected congestion 

level at that time. In order to reproduce congestion for all the lines sharing a stop, the Bottleneck Queue model with 

time-varying exit capacity, introduced in Meschini et al. (2007), is extended. The above is applied to separate queues 

for each line in order to satisfy the First-In-First-Out principle within every attractive set, while allowing overtaking 

among passengers having different attractive sets but queuing single file. 
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1. Introduction 

Transit assignment models describe and predict the patterns of network usage by passengers and are 

seen as fundamental input for justifying resource allocation in transport planning. Available models differ 
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on the assumptions made about traveller behaviour and congestion effects. To simulate high-frequency or 

low-reliability services, frequency-based (FB) models are usually preferred, because it is plausible to 

assume that passengers do not choose a particular run and do not time their arrival at the stop to coincide 

with vehicle arrivals. Furthermore, these models are capable of handling easily the common lines dilemma 

[1] faced by passengers, who do not know if it is better to board the first line approaching a bus stop or 

keep waiting for a more convenient service. Indeed, since the seminal works of Nguyen and Pallottino [2] 

and Spiess and Florian [3], travel strategies (or, equivalently, hyperpaths) have been successfully 

exploited in FB models to represent passenger travel choice in public transport networks. 

In the traditional formulation of the hyperpath concept [2-5], it is assumed that the strategy is chosen 

before the trip begins and, starting from the origin, it involves the iterative sequence of: walking to a 

public transport stop or to the destination, selecting the potentially optimal lines to board [formally 

defined attractive lines, 2] and, for each of them, the stop where to alight. If the only information 

available to passengers waiting at a stop is which bus arrives first and two or more attractive lines are 

available, the best option is to board the first approaching bus [4, 5]. As clarified by Bouzaiene-Ayari et 

al. [6] “The outcome of such a choice is a set of simple itineraries that can diverge, only at bus stops, 

along the attractive lines” and the realisation of the same travel strategy may change, from day to day, due 

to events at the stop, such as which attractive line becomes available first. 

In the context of strategy-based assignment, passenger congestion has increasingly received attention 

in the literature [7-10] because recurrent queuing and overcrowding have developed into a major problem 

affecting high-frequency transit systems of large cities. For example, during peak-hours passengers often 

experience an over-saturation waiting time at stops, because they are not able to board the first vehicle of 

their choice set that arrives. The queue of those who remain at the stop may also increase passenger 

congestion for subsequent vehicle arrivals, and thus lead to great Level Of Service (LOS) variations that 

cannot be properly captured by static models, even when capacity constraints are considered [7-9, 11]. 

Despite the increasing interest in the literature, no broad agreement seems to have been achieved yet on 

the most appropriate method to deal with the effect of overcrowding. Consequently, this paper proposes a 

Dynamic User Equilibrium (DUE) model with hyperpaths on transit networks, where overcrowding may 

lead to the formation of First-In-First-Out (FIFO) queues of passengers at stops.  

While strategy-based transit assignment with capacity constraints has been treated in a static 

framework [7-9, 11], only few dynamic models exist [10]. Moreover, previous work has dealt with 

capacity constraints in FB transit assignment with hyperpaths, either assuming that the extra waiting may 

affect the users’ perception of service frequency, or that crowding may increase the perceived cost of 

travelling through the fail-to-board probability. The first method, formally known as effective frequency, 

has been developed only in a static framework, either considering the “practical capacity” of the transit 

lines [7] or strict capacity constrains [8, 9]; on the other hand the method of fail-to-board probability [10, 

11] has been developed also in a dynamic framework. All the afore-mentioned methods assume that 

queuing takes the form of passengers mingling at the stop, without respecting any boarding priority. By 

contrast, it is assumed here that passenger congestion leads to the formation and dispersion of FIFO 

queues at transit stops. 

In order to reproduce this phenomenon, it is assumed, as in Meschini et al. [12], that flows are 

macroscopic time-continuous functions, formally known as temporal profiles [13], and transit services are 

conceived as a continuous flow of supply with “instantaneous capacity” (namely, the supplied capacity is 

expressed in terms of passengers per hour and not passengers per vehicle), which allows representing the 

effect of time-discrete services as average waiting time. 

Fig. 1 schematically presents the structure of the DUE model described in this work. The main inputs 

are: on the demand side, the time-varying Origin-Destination (OD) matrix; on the supply side, the 

network topology and the characteristics of the transit lines in terms of vehicle capacities, time-dependent 

service frequency and in-vehicle travel time.  
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The DUE can be generally regarded as a system of a demand model and a supply model. The former 

consists of: 

 the Stop Model (SM), which yields for any given attractive line set [2] the probability of boarding 

each line as the first available one in the attractive set, as well as the expected (Erlang-distributed) 

waiting time, depending on transit lines characteristics and passenger congestion; and 

 the Route Choice Model (RCM), which reflects the behaviour of a rational passenger travelling 

from an origin to a destination of the transit network for given arc performances (i.e. time-varying 

travel times and costs). The route choice in this paper is assumed deterministic and thus is 

modelled through a dynamic shortest hyperpath search. 

On the other hand, the components of the supply model for dynamic assignment [14, p. 425] are: 

 the Network Flow Propagation Model (NFPM), which aims at finding time-varying arc flows that 

are consistent with the arc travel times for given route choices (but not consistent with line 

capacities – this is the main difference between the NFPM and the Dynamic Network Loading 

Problem, where, instead, mutual consistence of flows and times through the APF is sought for 

given route choices);  

 the Arc Performance Functions (APF), which yields for each arc the exit time at any given entry 

time, depending on the transit lines characteristics and the passenger flows over the network. 

 

  

Fig. 1: Deterministic Dynamic User Equilibrium: model structure 

Building on the work of [12], the present study extends the concept of hyperpaths to transit networks 

with passenger congestion, where the traditional assumption that passengers always board the first line of 

their choice set approaching the stop [2] does not hold because of the formation and dispersion of FIFO 

passenger queues. More specifically, it is assumed that, regardless of the specific line(s) that passengers 

might consider to board, they join a single “mixed” queue in the case of congestion. Thus, in order to 

reproduce overcrowding effects for all the lines sharing a stop, the Bottleneck Queue model with time-

varying exit capacity, introduced in [12], is extended and applied to separate queues (one for each line of 
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the stop) in order to satisfy FIFO within every attractive set, allowing overtaking among passengers 

having different attractive sets. 

The rest of the paper is organised as follows. In next section, the background research is presented, 

while the notation and formulation is explained in Section 3. After detailing the methodology in Section 4, 

model implementation is presented in Section 5. Finally, Section 6 draws conclusions and identifies areas 

of future research. 

2. Background research on transit congestion 

Although recurrent passenger congestion is one of the major problems faced by public transport 

networks in large cities, it is only very recently that some authors have started to consider this dynamic 

phenomenon, and it does not seem that a full agreement has been achieved yet on the most appropriate 

methodology to be used. Some authors [15-18] have used the diachronic graph because it has the 

advantage of being inherently dynamic, in the sense that travel times and passenger flows on transit lines 

are always referred to a specific run, and thus to a certain time of the day. Moreover, this method has the 

additional benefit that the dynamic equilibrium reduces to a static assignment on the time-expanded 

network since the time dimension is explicitly reproduced by the graph topology. However, these models 

present a shortcoming on the demand side, because it is assumed that users would choose specific runs, 

rather than lines, and try to synchronise their arrival at stops with the scheduled passages of carriers. 

While this assumption is acceptable for services with low frequency and high regularity, it is questionable 

in densely connected urban networks, where passengers perceive runs of the same transit line as a unitary 

supply facility with high frequency or low regularity of service, since they do not consider timetables, 

even if available, when making their travel choices. 

Alternatively, assignment models for congested transit networks can be developed using a frequency-

based (FB) approach, which has the main advantage of requiring less detailed input data, on the supply 

side, and of representing more easily the strategic behaviour of passengers, on the demand side. In fact, 

FB models assume that passengers do not consider explicitly the service timetable, but make their travel 

choice on the basis of line average frequencies, while implicitly handling the uncertainty of the common 

lines dilemma. 

Most of the research carried out in the realm of FB transit assignment with strategies (or, equivalently, 

hyperpaths), has dealt with overcrowding making the assumption that passengers mingle at the stop [7-11, 

19, 20]. This implies that no priority is satisfied in the waiting process, and, in case of oversaturation, all 

passengers have the same probability to board the next arriving carrier, provided it is attractive. Under this 

hypothesis, a possible simple solution would consider the effective frequency [7], namely the line 

frequency perceived by waiting passengers, which decreases as the probability of not boarding its first 

arriving carrier increases, or the fail to board probability [10]. 

In general, when passenger congestion occurs, the queuing protocol followed by travellers is 

determined by the stop layout. For example, for stations and stops with large platforms, it is correct to 

assume mingling passengers, so that the expected waiting time as well as the passenger distribution 

among the attractive lines can be calculated according to the methods presented in the afore-mentioned 

studies. However, in urban bus networks the stop layout is usually such that, when passenger congestion 

occurs, users arriving at the stop tend to respect the boarding priority of anybody who has arrived before 

them. Models based on the mingling queuing protocol are clearly not applicable to the latter scenario.  

The problem of modelling congestion in the form of passenger FIFO queues has proven to be even 

more challenging than the case of mingling. To the best of the authors’ knowledge, all models developed 

so far for FIFO queuing [6, 21-23] make use of the following stability condition [6]: passengers waiting at 

a stop would consider an attractive set that is never completely saturated, in the sense that, at least for one 

of the attractive lines, passengers can board the first vehicle coming. This rather strong assumption has 

two crucial shortcomings: 
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 as congestion increases, more (and hence “worse”) lines are included in the attractive set; and 

 if all lines are congested, passengers would rather walk than keep waiting (even if frequencies are 

high, so that the extra waiting time due to congestion is, anyhow, short). 

A schedule-based approach has also been used [17, 18, 24] to represent the behaviour of passengers 

that choose a ranked set of runs (that make up an ordered set of “back-up travel plans”) and know that, at 

each intermediate stop, they may not be able to board the best option, or that they may not be able to sit, 

because of capacity constraints. Thus, in this case the concept of hyperpath is applied to a different 

scenario: passengers know and trust the service timetable (this is one of the basic assumptions of 

schedule-based models) and can precisely select their best travel option; however, it is uncertain if they 

will be able to board/sit when congestion occurs. By contrast, the model presented here considers the case 

where passengers have a good estimate of congestion levels, but do not know the exact arrival time of the 

vehicles. 

Beyond the realm of hyperpaths in transit assignment, a different approach for dealing with formation 

and dispersion of passengers’ FIFO queues is presented by Meschini et al. [12], which is based on the 

formulation of a FB multimodal assignment by extending an existing approach for Dynamic Traffic 

Assignment (DTA) [13]. This considers flows as macroscopic time-continuous functions, and hence 

transit services are conceived as a continuous flow of supply with “instantaneous capacity” (e.g. 1000 

passengers per hour and not 100 passengers per vehicle), which allows representing the effect of time-

discrete services as the average waiting time. The limitation of that study, though, is that passenger 

strategies are not considered in the RCM, and it is not clear how the additional waiting time due to 

overcrowding should be accounted for when passengers in a queue are willing to board a set of lines 

(formally known as attractive set [2]) and passengers in the same queue have different attractive sets (e.g. 

because they are bound for different destinations). 

As in [25], in this work the additional queuing time at stops due to passenger flows exceeding line 

capacities is calculated by means of a bottleneck model. Also, addressing the limitation of [12], it is 

assumed that, in the context of commuting passengers who know by previous experience the number of 

carrier passages they must let go before being able to board, the route choice can still be represented as the 

selection of an optimal strategy. Therefore, expected waiting times and passenger distribution among 

attractive lines may be calculated by extending the formulas presented by Nguyen and Pallottino [2] and 

Gentile et al. [26].  

For clarity and simplicity, the current study concentrates solely on the transit assignment model and 

only delays due to queuing are considered. The extension to a multimodal assignment, as well as to other 

forms of transit congestion (dwelling times depending on boarding and alighting flows, on-board 

discomfort depending on in-vehicle overcrowding) can be easily carried out as in [12]. The next two 

sections give detailed insight into the proposed methodology, including network representation, 

mathematical notation and problem formulation. 

3. Network representation  

3.1. The transit network  

The topology of the transit network, including the line routes and the pedestrian network, is described 

through a directed base graph B = (V, E), where V is the set of vertices ( is the set of positive integer 

numbers), and E  V×V is the set of edges (Fig. 2). The generic edge eE is univocally identified by its 

initial vertex TLeV, or tail, and its final vertex HDeV, or head. The generic vertex vV is associated 

with a location in space, and thus is characterised by geographic coordinates; while the generic edge eE 

is characterised by e and e. The topology of each line ℓL is defined by its route Rℓ. The generic section 
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is referred to as (Rℓ,i-1, Rℓ,i)E, with i[2, σℓ], and corresponds to an edge of the base graph. For any given 

vertex vV and line ℓL, the function s(v, ℓ)[0, σℓ] yields, if it exists, the index such that Rℓ,s(v, ℓ) = v, and 

0 otherwise. 

 

 

Fig. 2. Base Graph representation of a small network 

Transit Network Nomenclature: 

 

e+ : length of edge e (+ is the set of non-negative real numbers) ; 

e+ : speed on edge e; if e = 0 it means that a connection is not available; 

L: set of lines included in the transit network; 

ℓL: generic transit line; 

Rℓ  V: route of line ℓ. Ordered sequence of σℓ (not repeated) vertices, each of which is denoted 

Rℓ,iV with i[1, σℓ]; 

ℓ+ : the vehicle capacity of its carrier; 

ℓ()+ : base frequency. Instantaneous flow of departures from the origin terminal Rℓ,1 at time  ;  

ℓ,i()+ : line time. Time when a carrier of line ℓL, departed from Rℓ,1 at time , reaches the i-th 

vertex along its route, with i[1, σℓ] ; 

ℓ,i{0,1} : if a stop is made or not at the i-th vertex along the route of line ℓL, with i[1, σℓ]; 

 

3.2. From the base graph to the model graph  

The physical topology of the transit network represented by B is not sufficiently detailed for modelling 

purposes. As such a model graph G = (N, A) is introduced, where N is the set of nodes, A  N×N is the set 

of arcs; the generic arc aA is univocally identified by its initial node TLaN, or tail, and its final node 

HDaN, or head, that is: a = (TLa , HDa). The model graph is built on the grounds of the base graph, 

which is usually organised in a GIS database, considering the transit line routes and the transit and 

pedestrian speeds. Each node iN is indeed the triplet of: a vertex ViV, a type Ti{P, C, S, B, A, Q}, a 

line LiL0. N  (V×{P, S, B, A, Q}×L0). 

Specifically, the node set and arc set are constructed as the union of the following subsets, detailed in 

the box below:  

N = NPNCNSNBNANQ;  

A = APALADAZAAAWAQ. 
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Model graph Nomenclature: 

 

NP: pedestrian nodes, NP = {(v, P, 0) : vV}; 

NC: centroid nodes, NC = {(v, C, 0) : vV}; 

NS: stop nodes, NS = {(Rℓ,i , S, 0) : ℓL, i[1, σℓ-1] , ℓ,i > 0}; 

NB: boarding nodes, NB = {(Rℓ,i , B, ℓ) : ℓL, i[1, σℓ-1]}; 

NA: alighting nodes, NA = {(Rℓ,i , A, ℓ) : ℓL, i[2, σℓ]}; 

NQ: queuing nodes, NQ = {(Rℓ,i , Q, ℓ) : ℓL, i[1, σℓ-1] , ℓ,i > 0}; 

AP: pedestrian arcs. Represent walking time: AP = {(i , j) : iNP, jNP, e = (Vi , Vj)E, e > 0}; 

AL: line arcs. Represent in-vehicle travel time:   

AL = {(i , j) A: iNB, jNA, Vi  Rℓ,k , Vj  Rℓ,k+1 , ℓL, i[1, σℓ-1])}; 

AD: dwelling arcs. Represent the time spent by the bus at a stop while passengers alight/board     

AD = {(i , j) A: iNA, jNB, Vi  Rℓ,k , Vj  Rℓ,k+1 , ℓL, i[2, σℓ-1])}; 

AZ: dummy arcs. Introduced for algorithmic purposes to identify more easily arcs representing the 

waiting process. They connect the line stops and the pedestrian network: AZ = {(i , j) A: iNP, 

jNS, Vi  Vj}; 

AA: alighting arcs. Represent the time passengers need to disembark:   

AA = {(i , j) A: iNA, jNP, Vi  Vj}; 

AQ: queuing arcs. Representing the over saturation waiting time, i.e. the “time spent by users queuing at 

the stop and waiting that the next service becomes actually available to them” [12]: AQ = {(i , j) 

A: iNS, jNQ, Vi  Vj}.  

AW: waiting arcs. Represent the under saturation waiting time, i.e. the average delay due to the fact that 

the transit service is not continuously available over time: AW = {(i , j) A: iNQ, jNB, Vi  Vj}; 

FSi : forward star of node iN. Set of arcs sharing the same tail i: FSi = {aA: TLa = i}; 

BSj : backward star of node jN. Set of arcs sharing the same head j: BSj = {aA: HDa = j}. 

 

3.3. Hypergraph and hyperpaths 

The Network Flow Propagation Model, which yields the inflow temporal profile of each arc, exploits 

the above graphic representation of the transit network as a directed graph G. On the other hand, the Stop 

Model, which yields the arc conditional probabilities at each node for every destination, and the Route 

Choice Model relate to a different graphic structure, that is a directed hypergraph H = (N, F), built on the 

graph G. Let F be the set of forward hyperarcs [27], henceforth simply referred to as hyperarcs, included 

in hypergraph H. We assume: F = A \ {AW  AQ}  AH, such that: 

 AH: is the set of waiting hyperarcs [28]. Represent the total expected waiting time (i.e. under 

saturation plus over saturation delay) for the considered set of attractive lines serving a stop: 

AH  {(i , j) F: iNS, J  NB, jJ, Vi  Vj}. 

 HFSi : the hyper-forward star of node iN, i.e. the set of hyperarcs sharing the same stop tail i    

HFSi = {aAH: TLa = i}. 

Because a waiting hyperarc hAH is univocally identified by a singleton tail TLhNS and by a set head 

HDh  NB, the hyperarc may be conceived as made up of “branches”, each of which represents the total 
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waiting and queuing time before boarding one specific line of the attractive set (more rigorously, a branch 

of the hyperarc represents the total waiting time conditional to boarding that specific line as the first 

available at the stop among all the lines in the considered attractive set). In the remainder of the paper, the 

following notation will be used to identify the branch of a hyperarc: ah∙AH.  

The alternatives considered in the RCM are hyperpaths, and are defined as follows: a hyperpath k 

connecting origin oN to destination dN is a sub-hypergraph Hk,o,d = (Nk, Fk) of H, where Nk  N, Fk  

F, such that: 

 Hk,o,d is acyclic; 

 o has no predecessors and one successor hyperarc; 

 d has no successors and at least one predecessor hyperarc; 

Each other node has one successor hyperarc and at least one predecessor hyperarc. 

 

a

b 

Fig. 3. Model graph (a) and hypergraph (b) representation of the same network of Stop 2 of Fig. 2  

It should be noted here that, in contrast to what is assumed in [12, 25], the supply and demand models 

are represented by means of different graphic structures. This theoretical complication has important 

advantages from the algorithmic side, as it allows great flexibility in representing different phenomena 

that are relevant only in the demand or supply model.  

For example, it is assumed that when travelers make their travel choices (demand model), they do not 

distinguish between the under-saturation waiting and the over-saturation queuing time. Moreover, they 

tend to group together partially overlapping lines that share the same stop and consider them as a unique 

travel alternative, with its own total waiting (plus queuing) time and travel time upon boarding. The 

hyperarcs of the hypergraph H are crucial to represent this combined waiting plus queuing time for a set 

of attractive lines considered together as a unique travel alternative.  



  9 

On the other hand, when passenger flows are propagated across the network by the NFPM (supply 

model) it is very important to separate the waiting from the queuing time in order to ensure consistency 

between the flow that leaves a queuing arc and the capacity available on the vehicle; consequently, in the 

model graph G it is chosen to distinguish waiting and queuing arcs. Moreover, “combining” the total 

waiting times of several lines through a hyperarc is not effective in the NFPM, because it is necessary to 

build a model with separate queues. For example, if overcrowding occurs at a bus stop, the layout is 

usually such that all passengers wait in a single “mixed” queue, regardless the specific line(s) they may 

consider to board. Assume the first passenger in the queue does not board the first bus arriving at the stop 

because it is not attractive for him/her. Then, if there is available capacity on board, the first passenger can 

be overtaken by the second, third, etc. in the queue, if the service is in their attractive set. This overtaking 

among passengers with different attractive sets of lines, would violate the FIFO discipline of the “mixed” 

queue, but can be disregarded by developing a model with separate queues.  

If the same graphic structure (hypergraph) is to be used to model the supply and demand when 

hyperpaths are considered in the RCM for dynamic assignment, then the under-saturation waiting and 

over-saturation queuing time have to be represented in the inverse order, as in [25]. Although this allows 

for representing separate queues even when passengers queue in a single file, this modelling assumption is 

questionable from a phenomenal point of view, since exactly the opposite occurs in reality, and does not 

guarantee the same flexibility of two separate models (supply and demand) that are referred to different 

graphic structures (model graph and hypergraph). 

In order to clarify the difference between G and H, Fig. 3 shows the different representation of Stop 2 

in Fig. 2 in the model graph and hypergraph. It is important to notice here that each branch of the hyperarc 

(a*h∙AH) in the hypergraph H is associated with a line and corresponds to a queuing arc (a’AQ) and 

the following waiting arc (a”AW) in the model graph G, such that VTL
a*

 = VTL
a’

 and VHD
a*

 = VHD
a’’ 

.  

4. Methodology 

4.1. Problem definition 

The extension of the first principle of Wardrop to a dynamic scenario allows for formulating the strategy-

based dynamic transit assignment model studied here as a User Equilibrium (UE) that represents 

configurations in which no user can improve his/her travel cost at the time he/she is travelling by 

unilaterally changing hyperpath. The DUE can be specified as a fixed-point problem [14, p. 305, 464-

467] by combining the supply and demand models or, equivalently, Network Loading Map ([13, 29], 

which combines the RCM and NFPM) and APF, as done here.  
Therefore the following sub-components need to be specified and will be examined in the remainder of 

this section:  

 Arc Performance Functions, that yield, for given passenger flows and transit supply, the temporal 

profiles of exit time for each arc; 

 Stop Model, that yields for each destination, the temporal profiles of diversion probabilities pa|h(), 
when passenger flows and transit supply are known;  

 Route Choice Model, which reflects the behaviour of a rational passenger travelling from an origin 

to a destination for given profiles of: generalised costs, travel times and diversion probabilities. For 

each destination, it yields the (hyper)arc conditional probability, i.e. the probability that the 

considered (hyper)arc is included in the minimal hyperpath; 

 Network Flow Propagation Model, which calculates temporal profiles of link flows that are 

consistent with line capacities for given (hyper)arc conditional probabilities. 
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Dynamic User Equilibrium Nomenclature: 
 

a(): instantaneous frequency (instantaneous flow of carriers) of the line corresponding to a, if a is 

entered at time . a()   a AW
 A, or ahAH F; 

ta(): exit time from arc a for users entering it at time  ; 

ta
-1(): entry time to the arc a for users exiting it at time  ; 

κa(): congestion parameter, expressed as the number of vehicle arrivals that passengers, reaching the 

stop corresponding to the vertex VTLa at time , have to wait before boarding the line associated 

with a. κa()>0  aAQ A, or ahAH F. 

wh(): expected waiting time for passengers reaching the stop of vertex VTLh at time  and considering 

the attractive line set represented by hyperarc hAH; 

ca(): travel cost on arc a for users entering it at time :a APALADAZAA
F; 

ch(): travel cost of the waiting hyperarc for passengers reaching the stop of vertex VTLa at time  and 

considering the attractive line set represented by hyperarc hAHF  

ηa(κa()): value of time on a for users entering it at time , a APALADAZAA
F or it may be a 

branch of an hyperarc hAH. ηa is a function of the congestion at time ;  

ta|h():conditional exit time, for passengers reaching the stop of vertex VTLa at time  and considering 

the attractive line set represented by waiting hyperarc hAH, relative to the event of boarding 

the line LHDa associated with the branch ah ; 

pa|h():conditional probability, for passengers reaching the stop of vertex VTLa at time  and 

considering the attractive line set represented by waiting hyperarc hAH, relative to the event 

of boarding the line LHDa associated with the branch ah; 

gi,d(): total travel cost from node i to destination dNC at time τ; 

ra,d(): diversion probability of using hyperarc aF for passengers entering it at time  and directed to 

destination dNP, among the hyperarcs of its tail forward star; 

, ( )
a

dem

TL dq  : instantaneous demand flow from TLa to dNC at time  . It is ≠0 only if TLaNC; 

)(in

aq : instantaneous in-flow of passengers entering arc aA at time ; 

)(, in

daq : instantaneous in-flow of passengers entering arc aA at time  and directed to destination 

dNC; 

)(IN

aq :cumulative in-flow of arc aA at time , resulting from the network loading; 

)(out

aq : instantaneous out-flow of passengers leaving arc aA at time ; 

)(, out

daq : instantaneous out-flow of passengers leaving arc aA at time  and directed to destination 

dNC; 

)(OUT

aq : cumulative out-flow of arc aA at time , resulting from the network loading; 

ea(): instantaneous exit capacity of arc aA at time  ; 

)(CUM

ae : cumulative exit capacity of arc aA at time  ; 

qdem: vector of demand flows; 
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q: vector of instantaneous arc (in/out) flows; 

g: vector of travel cost to destinations; 

r: vector of conditional probabilities. 

 

4.2. Arc Performance Functions 

4.2.1. Flow independent performances 

The APF of each arc aA determines the temporal profile of the exit time for given entry time  
depending on the inflows of the arc itself and of its adjacent arcs at previous instants resulting from the 

network loading. Thus, in general the travel costs are not separable in either time or space.  

In this particular formulation, except for the queuing arcs, all other arcs have a flow-independent exit 

time provided by the following equations, based on the exogenous inputs: 

 

  ij

a

ij

t


 


      a  AP, (1) 

    1

, , 1a s st    

     a  A,L (2) 

  
 

1
,

1
,

( )

1

s

s

a

  
















     a  AW,

 

(3a) 




 
)(

1
)(

a

aat     a  AW, (3b) 

( )a at           a  AZADAA, (4) 

 

where: ij = (VTL
a
, VHD

a
); = LHDa = LTLa is the line corresponding to HDa and TLa; s = s(LHDa ,VHDa ); s -1 

= s(LTLa ,VTLa ); δa is a constant representing alighting, boarding dwelling time and, for algorithmic 

purposes, also the travel time on dummy arcs. 

4.2.2. Bottleneck queuing model with variable exit capacity 

The queuing process can be seen as a “gate system”. As soon as passengers reach the stop they join a 

queue that can be thought of as being behind a gate; whoever is at the front of the queue passes through 

the gate (so the queuing time due congestion is over) and starts waiting for the next arrival (this is the 

under-saturation delay due to the discontinuity of the service).  

Equation (3b) only considers the latter contribution, while the contribution due to overcrowding is 

considered in the performance function of queuing arcs, which in turn depends on the current length of the 

queue at the stop by means of a Bottleneck Queuing Model with time-varying exit capacity (equations (5) 

- (10)).  

Although these equations may appear somehow complicated, their algorithmic implementation [13] is 

fairly straightforward, and only a conceptual explanation is given here.  

With reference to Fig. 3b, consider the waiting arc a”. Its exit capacity at  may be calculated as in 

equation (5), where bAD is the dwelling arc that enters the same boarding node of the waiting arc a”, and 

the out-flow is defined as in equation (6) by applying the FIFO and flow conservation rules [30]. 
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" ''( ) ( ) ( )out

a a be q        (5) 

   
1

1 ( )
( )out in b

b b b

t
q q t


 




 

 


 

(6) 

 
 ''1

' " 1

"

( )
( )

a

a a

a

e
e t

t
















 
(7) 

 

The exit capacity of a”AW coincides with the instantaneous capacity available on board (5) at the 

same time . On the other hand, for those who leave a’AQ at )(1

'' 


at  and leave a”AW at , the exit 

capacity  )(1

"' 

aa te  does not coincide with the instantaneous capacity available on board at the same time 

 )(1

"" 

aa te , but the exit capacity ea” () needs to be propagated backwards in time (7). 

The temporal profiles of the exit capacity and inflows of the queuing arc a’AQ are then used to obtain 

the cumulative values of exit capacity and inflows (8). 

 

        





0

''

0

''    , deedqq a

CUM

a

in

a

IN

a   (8) 

           :min ''''

CUM

a

CUM

a

IN

a

OUT

a eeqq   (9) 

     
' ( )

' ' '

at

IN OUT

a a aq q e d





       (10) 

 

At this point, the cumulative flow leaving arc a’AQ is calculated in the spirit of the bottleneck model 

(9). If it is assumed that the queue at time  began at a previous instant   , then qa’ 
OUT() = qa’ 

IN(), 

and from  to  the cumulative flow of passengers that leave the arc a’AQ is ea’ 
CUM() - ea’ 

CUM(), then 

equation (9) yields the cumulative number of passengers that have left the queue at time  as the minimum 

among each cumulative outflow that would occur if the queue began at a previous instant  ≤ . 

On the other hand, the number of passengers queuing on arc a’AQ at time , which is qa’
IN() - 

qa’
OUT(), based on equation (10) can be expressed also as the integral of the exit capacity from  to the 

exit time ta’ (). The latter is consistent with the temporal profile of variable exit capacity of the queuing 

arc and is the output of the above bottleneck model.  

During this period of time [, ta’ ()] some buses of the line associated with a’AQ approach the stop, 

but queuing passengers cannot board them because of capacity constraints. Therefore, the number of bus 

passages that the passengers must let go before boarding is given by equation (11), where  x indicates the 

floor function of x.  

 

   
' ( )

' '1

at

a a d





    
 
  
 
 
  (11) 

 

This result will be, then, used as an input of the SM. Considering Fig. 3, if a*is a branch of hAH such 

that VTL
a*

 = VTL
a’

 and VHD
a*

 = VHD
a”

, then κa*() = κa’ (). 
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4.3. Stop Model 

Once congestion is known for each line, the Stop Model yields: the diversion probabilities pa|h,(); the 

total (waiting plus queuing) time spent at the stop wh,() for users that have selected the hyperarc h at time 

; and the exit time from ah ta|h,(), conditional to the event of boarding the line corresponding to a if 

users have selected he attractive set corresponding to h. 

When making their choice, passengers do not distinguish between under-saturation and over-saturation 

waiting time. Moreover, they tend to group together partially overlapping lines that share the same stop 

and consider them as a unique travel alternative, with its own total waiting (plus queuing) time and travel 

time upon boarding. wh is this combined waiting (plus queuing) time for the set of attractive lines 

represented by the hyperarc h. 

The model is formally described by equations (12) – (14) [31]: 

 

| 0

( ) ,  
( )

0,                  

a

a h

dw a h
p

a h

 





 




 , (12) 

dww
p

t a

ha

ha 




0|

|   )(
)(

1
)( 


 , (13) 

| |( ) ( ) ( )h a h a h

a h

w p t  


  , (14) 

 

where a(τ) is the probability to board the line associated with a at time τ and is defined as: 

 

( ) ( , ) ( , ),  a a b

b h

f w F w a h   


    , (15) 

 

and ),( wf a and ),( wFa are respectively the Probability Density Function (PDF) and the survival 

function at time  of the total time w before boarding the line associated with branch ah AH.  

Given the conventional assumptions about passenger and carrier arrivals [2, 3], the total waiting time w 

before boarding the κ-th carrier of the line associated with a may be described as a time dependent 

stochastic variable with Erlang distribution of parameters κa() and φa(). Equation (16) shows the Erlang 

PDF of w, where, in order to improve readability, κa() and φa() are expressed as κa and φa. 

 

 
 
 


















otherwise,0

0 if,
! 1

exp

,

1

w
ww

wf
a

aa

a

aa









 (16) 

 

It should be noted here that the results of the Stop Model are not destination specific and are used as an 

input by the Route Choice Model. 
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4.4. Route Choice Model 

The Route Choice Model calculates (hyper)arc conditional probabilities on the grounds of: travel costs, 

travel times, diversion probabilities and total waiting costs. As for the Stop Model, the total waiting time 

wh is associated with the hyperarc h.  

Travel costs are assumed to be dependent on travel times through the value of time (VOT) function ηa, 

as in equations (17) – (19). The VOT is the sum of a constant parameter αa and an increasing function of 

the congestion βa(κa(τ)), which is non-null only if: ahAH. 

 

   )()(  aaaaa   (17) 

    | |( ) ( ) ( ) ( )h a h a h a a a

a h

c p t       


    
 

(18) 

  ( )a a ac t        a APALADAZAA

 

(19) 

 

In order to avoid explicit hyperpath enumeration, the formulation of the RCM can be seen as a 

recursive local choice that starts from the destination dNC and proceeds backwards to the origin(s). At 

each intermediate node iN, passengers select the arc / hyperarc of its (hyper)forward star that minimises 

the total travel cost to d, as in equation (20). 

 

    

   
, ,

| , |

0,if 

min ( ) : , if 

( ) ( ) : , if 

a

a

S

i d a HD d a i

S

h a h HD d a h i

a h

i d

g c g t a FS i N

c p g t h HFS i N

  
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


 


   


   




 (20) 

 

As said, passengers do not distinguish between the under-saturation delay and the over-saturation 

queuing time, but consider the total waiting time at the stop. Nonetheless, one would expect that the 

additional queuing time due to denied boarding will be perceived more negatively than the normal waiting 

time. Consequently, when calculating the cost of waiting ch, the contribution of “total waiting time” 

brought by each line is weighted by the value of time, which is an increasing function of the congestion 

parameter κa. 

The deterministic RCM can also be formulated as the following complementarity problem, formally 

known as Wardrop inequalities, referred to the decision of passengers leaving node iN at time  and 

directed toward destination dNC: 

 

  
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
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, if iNS 
(21.1) 
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 ', , *|( ) ( ) ( ) , '

TLa

Q

a d h d a h i

h HFS

r r p a FS A  


     , if i NS 
(21.3) 

 

Equation (21.3) transforms the output of the RCM (hyperarc conditional probabilities, referred to 

elements of the hypergraph H) in the input of the NFPM (arc conditional probabilities, referred to 

elements of the model graph G). Thus, with reference to Fig. 3, the conditional probability of hAH F 

and the diversion probability of its branch a* are transformed into the conditional probability of the arc 

a’AQ A. 

4.5. Network Flow propagation Model 

This model gives the temporal profile of inflow and outflow on the grounds of the time-dependent 

travel demand and the results of the Route Choice Model. 

The flow is propagated forward across the network, starting from the origin node(s). Once the 

intermediate node i is reached, the flow propagates along its forward star, according to equation (22).  

The inflow )(, in

daq  on arc aA at time  directed to destination dNC is given by the arc conditional 

probability ra,d() multiplied by the flow on node i (i.e. TLa) at time . The latter is given, in turn, by the 

sum of: the flows  out

dbq ,
 that leave each arc bBSi at time ; and the demand flow 

, ( )dem

i dq  at the same 

time.  out

dbq ,
 is calculated as in equation (6) by applying the FIFO and flow conservation rules [30]. 

The arc flows directed towards different destinations are, then, combined together as in equation (23). 

 

 , , , ,( ) ( ) ( ) ,  in dem out

a d a d i d b d i

b BSi

q r q q a FS   


 
     

 
  (22) 

,( ) ( )
C

in in

a a d

d N

q q 


 
 

(23) 

 

4.6. Formulation of the Dynamic User Equilibrium as a Fixed-Point Problem 

In order to formulate the DUE as a Fixed-Point Problem (FPP) with implicit path enumeration, the 

RCM (20) and the NFPM (22) are expressed in compact form respectively by equations (24) and (25) 

(RCM), and (26) and (27) (NFPM).  

 

g = g(c, t, p) (24) 

r  r(g, c, t, p) (25) 
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q = q(r, t, qdem) (26) 

e = e(q, t) (27) 

 

It should be noted here that, as in [12], because the RCM considered is deterministic, when more than 

one arc in the forward star of a node minimises the total travel time from the node to destination, than the 

set of arc conditional probabilities solving equations (21) is not unique. Consequently, in equation (25), 

the symbol “=” is substituted by “”. On the other hand, differently from [12], the compact formulation of 

the RCM clearly shows that the vector of conditional probabilities (r) also depends on the vector of 

diversion probabilities (p). 

 

 

Fig. 4. Variables and models of the fixed-point problem formulation for the strategy-based Dynamic User Equilibrium 
of Fig.1. 

Combining the RCM (24) – (26) and the NFPM (26), the following Network Loading Map ([13, 29]) is 

obtained  

[q, e]  ξ(t, c, p, qdem) (28) 

 

On the other hand, the APFs also imply equations (29) and (30), while the diversion probabilities 

calculated by the SM may be expressed in compact form as in (31). Thus, if the generalised arc cost 

functions (18), (19) are consolidated as in equation (32), then exit times, arc costs and diversion 

probabilities, which represent the supply, are expressed as in (33) 

 

        t = t(q, e) (29) 
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       κ = κ(t) (30) 

p = p(κ) 
(31) 

c = c(p, κ, t) 
(32) 

[t, c, p] = υ(q, e) (33) 

 

In conclusion, the DUE is obtained as a FPP combining equations (28) and (33): 

[q, e]  ς (q, e, qdem) (34) 

 

Fig. 4 summarises the FPP and shows the inputs and outputs of the sub-models included in the DUE 

represented in Fig. 1. 

Following [14], it is possible to prove the existence of the network equilibrium because all the maps 

and functions, defined over the nonempty, compact, and convex set of arc flows, are (upper semi) 

continuous. Conversely, it is not possible to prove mathematically the uniqueness of the equilibrium 

because the problem does not have separable APFs (as in [32]), but the generalised travel cost for queuing 

arcs depends on the link flow on the queuing arc considered, as well as on adjacent dwelling arcs 

(equations (5) – (7)). 

Finally, it is important to note that the formulation of a deterministic UE, as in this case, implies the 

assumption that users have a full and correct perception of generalised travel costs and choose travel 

alternatives with minimum cost. Thus, at the equilibrium, the same od pair may be connected by several 

minimal hyperpaths or the total generalised travel cost may be minimised through a split of the demand 

flows among different strategies, as shown in [8, 33].  

5. Model implementation and numerical examples  

In order to implement the strategy-based dynamic assignment procedure detailed in Section 4, a 

solution procedure is developed, which extends to the dynamic setting the original formulation given by 

Nguyen and Pallottino [2] and Spiess and Florian [3] in their seminal works on static strategy-based 

transit assignment. 

Obviously, in the case of interest the algorithm structure is more complicated because the presence of 

congestion requires an additional feedback loop expressing the dependency of generalised travel times on 

flows. This loop, formalised with the FPP illustrated in Section 4.6, can be solved, as usual, by means of 

the MSA. Thus, the algorithm includes 3 parts: 

 Part 0: Equilibrium arc flows initialisation to zero. 

 Part 1: Hyperpath search.  

For every possible destination, shortest all-to-one hyperpaths (or hypertrees) are found scanning 

the network in reverse topological order; 

 Part 2: Assign demand according to shortest hyperpaths.  

For every possible origin, the travel demand is loaded scanning the network in topological order. 

Loading flows are obtained; 

 Part 3. MSA 
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If the difference between equilibrium and loading flows is greater than a fixed quantity, apply the 

MSA. 

Because the proposed model requires to consider explicitly the time dimension, a solution algorithm 

can be devised extending the Decreasing Order of Time (DOT) method, proposed by Chabini [34] for the 

Dynamic Shortest Path Problem (DSPP) solely, to the problem of strategy-based dynamic assignment. 

Therefore, although the proposed model has a continuous time representation, a discrete-time 

representation for its numerical solution has been adopted. The main idea is to divide the analysis period 

AP = [0, Θ] into T time intervals, such that AP = {T-1}, with  = 0 and T-1 = Θ, and to 

replicate the network along the time dimension, forming a time-expanded hypergraph HGT containing 

vertices in the form (i, ), and edges in the form ((i, ), (j, tij())).  

If time intervals are short enough to ensure that the exit time of a generic edge tij() is not earlier than 

the next interval , for   T-2, it is ensured that the network is cycle-free and the vertex chronological 

order is equivalent to the topological one.  

Thus, in Part 1 of the algorithm HGT is scanned starting from the last temporal layer to the value 

assumed for  =  and, within the generic layer, no topological order is respected. When a generic vertex 

(i, ) is visited, its forward star is scanned in order to set the minimal travel cost to the destination and the 

successive edge by means of equation (20). On the other hand, in Part 2 and 3 HGT is scanned in 

chronological order without respecting any topological order within the same time layer. Firstly (Part 2), 

when a generic vertex (i, ) is visited, the flow is loaded along its forward star by means of equation (22), 

then (Part 3) if the convergence criterion is not met, the MSA is applied. Finally the APF and congestion 

parameters are updated for every edge according to equations (1) – (11). 

 

 

Fig. 5. Model graph representation of the example network. 

The proposed methodology and solution algorithm have been applied to solve dynamic assignment 

problems for the small example network depicted in Fig. 2, whose model graph is shown in Fig. 5. Nodes 

1, 2, 3, 4  NS and represent, respectively, Stop 1, Stop 2, Stop 3 and Stop 4 of Fig. 2, while nodes 17, 18, 

19, 16  NC and represent centroids connected, respectively, to Stops 1, 2, 3, and 4. Also the two different 

route sections connecting Stop 2 and Stop 3 are represented by distinct line arcs (7, 9) and (8, 10), and 
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similarly the two route sections connecting Stop 3 and Stop 4 are represented by distinct line arcs (11, 14) 

and (12, 15). 

In order to highlight the different hyperpath selection when passenger queues arise, travel times and 

frequencies are assumed to stay constant during the analysis period [07:30-09:00], and are displayed in 

Table 1, together with the vehicle capacity. The analysis period is divided in one-minute intervals, and the 

travel time on alighting, dwelling and dummy arcs is assumed to be of one minute. Finally, for every 

arc/branch of hyperarc, ηa is assumed to be constant and equal to 1.  

Table 1. Frequencies, in-vehicle travel times and vehicle capacity of the lines associated with line arcs of the network. 

Line  Route section Frequency 

(vehicles/min) 

In-vehicle travel time 

(min) 

Vehicle capacity 

(passengers) 

2 Stop 1 – Stop 4 1/6 25 50 

1 Stop 1 – Stop 2 1/6 7 50 

1 Stop 2 – Stop 3 1/6 6 50 

3 Stop 2 – Stop 3 1/15 4 50 

3 Stop 3 – Stop 4 1/15 4 50 

3 Stop 3 – Stop 4 1/3 10 25 

Table 2. Time-dependent OD matrix during the analysis period for the first example considered 

Origin Centroid Destination Centroid Travel demand (passengers/min) 

17 16 5 

18 16 7 

19 16 7 

16 16 0 

 

 

Fig. 6. All-to-one shortest hyperpaths in uncongested conditions. The figure also depicts diversion probabilities and 
travel times to destination when the network is not congested. For clarity the diversion probability is here indicated as 
pi-j, where i is the stop node where passengers are waiting and j is the boarding node corresponding to the attractive 
line considered. 
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In the first example studied, the only destination considered is node 16 and it is assumed that the OD 

matrix is in the form given by Table 2. In this setting, at the beginning of the analysis period [07:30 – 

07:55] no congestion occurs in the network and the model yields the same results that could be obtained 

by applying static models as in [2, 3]. Fig. 6 shows the hypergraph representation of the all-to-one shortest 

hyperpaths in uncongested conditions. 
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Fig. 7. Variation of congestion parameter κa (a), boarding probability pa*|h (b) and exit capacity ea (c) at Stop 3 during 
the analysis period [07:30 – 09:00]. a represents respectively queuing arc (3, 25), corresponding to Line 3, and 
queuing arc (3, 26), corresponding to Line 4. On the other hand, a* represents a branch of the waiting hyperarc in the 
hypergraph H, and corresponds, respectively to Line 3 and Line 4.  

When congestion occurs, static models (with and without capacity constraints) are not able to 

reproduce the dynamic phenomenon of the formation and dispersion of FIFO queues, nor its effect on 

route choice. Namely, with reference to the model graph of Fig. 5, a passenger who is at origin node 17 at 

07:30 and boards Line 1 reaches node 7 at 07:46 and is joined by other passengers who, from stop node 2, 

board the same line. These travellers have to disembark through arc (9, 19) and reach stop 3 at 07:54. 

Therefore, from this moment onwards the total flow from Stop 3 to the destination exceeds the total 

available capacity and, when the next vehicle arrives, Line 3 and Line 4 become heavily congested (Fig. 

7a and Fig. 7c). The decreased available capacity of Line 3, combined with a lower frequency of the 

   a 

   b 

   c 
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service, results in a fall of its diversion probability, while the diversion probability of Line 4 increases 

(Fig. 7b). 

It is important to note here that the value of the diversion probability solely depends on the frequency 

of the line and on its congestion level at the considered stop. On the other hand, the inclusion of a line in 

the attractive set depends on its total travel time upon boarding. 

The analysis of congestion patterns at Stop 3 suggests that the model is able to simulate “forward 

effects”, i.e. effects produced by what happened upstream in the network at an earlier time of the day 

(passengers boarding Line 1 at 07:30), on what happens downstream at a later time (queue of passengers, 

wishing to board Line 3, that occurs at stop 3 at 07:55). 

Additionally, the model also simulates “backward effects”, namely effects produced by what is 

expected to happen downstream in the network at a later time, on what happens upstream at an earlier 

time. The analysis of Line 1 helps to clarify this concept. 

Line 1 never becomes congested at Stop 1 or 2 (Fig. 8a and Fig 9a). However, because at 08:12 a long 

queue forms at Stop 3 for Line 3, then, since 07:53, the travel time upon boarding Line 1 from Stop 1 

increases to 35 minutes (Fig. 10) and therefore it is excluded from the attractive set of Stop 1 (Fig. 8b). 

Line 1 is included again from 08:25 onwards, namely when the travel time upon boarding decreases again 

because, by the time Stop 3 will be reached (08:44), congestion on Line 3 dissipates. 
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Fig. 8. Variation of congestion parameter κa (a), boarding probability pa*|h (b) and exit capacity ea (c) at Stop 1 during 
the analysis period [07:30 – 09:00]. a represents respectively queuing arc (1, 5), corresponding to Line 1, and queuing 
arc (1, 20), corresponding to Line 2. On the other hand, a* represents a branch of the waiting hyperarc in the 
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Fig. 9. Variation of congestion parameter κa (a), boarding probability pa*|h (b) and exit capacity ea (c) at Stop 2 during 
the analysis period [07:30 – 09:00]. a represents respectively queuing arc (2, 23), corresponding to Line 1, and 
queuing arc (2, 24), corresponding to Line 3. On the other hand, a* represents a branch of the waiting hyperarc in the 
hypergraph H, and corresponds, respectively to Line 1 and Line 3. 
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Fig. 10. Travel time to destination (gi,d) upon boarding Line 1 or Line 2 from Stop 1 during the analysis period. 
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Similarly, at Stop 2 (Fig. 9b) starting from 08:00 passengers would board only Line 3. Should they 

board Line 1, they would reach Stop 3 at 08:09, when a queue for boarding Line 4 arises and, 

consequently, the travel time upon boarding Line 1 increases to 23.4 minutes. Afterwards (at 08:33, Fig. 

10a), because Line 3 becomes congested at Stop 2, Line 1 is reintroduced in the attractive set of Stop 2 

(Fig. 9b).  

Fig 8c and Fig 9c complete the example and respectively depict the available capacity of Line 1 and 

Line 2 at Stop 1 and Line 1 and Line 3 at Stop 2. 

Table 3. Time-dependent OD matrix during the analysis period for the second example considered. The travel demand 
is expressed in passengers per minute 

 Destination Centroid 

Origin Centroid 16 17 18 

17 5 5 1 

18 4 0 3 

19 6 0 0 

16 5 5 1 

 

In the second example studied, the OD travel demand matrix is given by Table 3. In this case the travel 

demand is not only directed to node 16 (centroid connected to Stop 4), but also to nodes 18 and 19 of Fig. 

5 and is assumed to be constant during the analysis period [07:30 – 09:00]. The solution algorithm (Fig. 

11) converges to  = 0,001 in 30 iterations and to  = 0,0001 in 67 iterations. 

 

 

Fig. 11. Algorithm convergence. 

The results show that the only queue in the network occurs at Stop 3, where between 08:25 and 08:55 

passengers have to wait the second passage of Line 4 if they want to board this service. Therefore the 

diversion probabilities and, thus, the inflow on waiting arcs, at Stop 3 is greatly affected by congestion, as 

depicted in Fig. 12, and the inflow on arc (3, 13) increases (08:20 – 08:50) when passengers know that, by 

the time the next carrier of Line 4 arrives, it will be full. 

Notwithstanding the queue at Stop 3, the increase in total travel time from node 20 and node 7 to node 

16 is not remarkable and, as opposed to the first example, Line 1 is always kept in the attractive sets of 

Stop 1 and Stop 2, whichever the final destination node is. As a consequence (Fig. 13 and Fig. 14), the 

inflow on queuing arcs (1, 21) and (1, 22) at Stop 1 and (2, 23) and (2, 24) at Stop 2 stays constant during 

all the analysis period. 

 

 

 
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Fig. 12. Variation of congestion parameter κa (a) and  inflow qin
a (b) at Stop 3 during the analysis period [07:30 – 

09:00]. a represents respectively queuing arc (3, 25), corresponding to Line 3, and (3, 26), corresponding to Line 4.  
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Fig. 13. Variation of congestion parameter κa (a) and inflow qin
a (b) at Stop 1 during the analysis period [07:30 – 

09:00]. a represents respectively queuing arcs (1, 22), corresponding to Line 1, and (1, 21), corresponding to Line 2.  
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Fig. 14. Variation of congestion parameter κa (a) and inflow qin
a (b) at Stop 2 during the analysis period [07:30 – 

09:00]. a represents respectively queuing  arcs (2, 23), corresponding to Line 1, and (2, 24), corresponding to Line 3.  

6. Conclusion 

A vast literature, produced since the late 1980s, has demonstrated that in FB networks with partially 

overlapping services, the route choice can be best modelled as a shortest hyperpath problem rather that 

single path. However, a broad agreement on how to most appropriately represent dynamic congestion 

phenomena and their impacts on travel choices has not been attained so far. Therefore, the major 

contribution of this work has been the consideration of the effects of the formation and dispersion of FIFO 

queues at transit stops in networks, where users have no explicit information of the service schedule, 

should any schedule exist, and minimise their travel time to destination by selecting the dynamic shortest 

hyperpath. 

A FB approach has been chosen to build the model, as it handles more suitably the inherent uncertainty 

faced by passengers who travel in densely connected transit networks, in which several alternatives may 

be available from the same stop/station. While FB models have been exploited so far to reproduce, 

mainly, the effect of mingling queuing on travel strategies, the concept of travel strategies has been 

extended here in order to address the case where passenger congestion results in FIFO queues at transit 

stops. Consequently, a Bottleneck queuing model with time-varying exit capacity is adopted to evaluate 

the queuing time at transit stops. On the other hand the Route Choice needs to be modelled in the form of 

all-to-one dynamic hyperpath search.  

To this aim four main theoretical implications have been addressed: 

 

 From a graph theory point of view, the hypergraph H, which is built on the model graph G, is 

introduced. H = (N, F), where the set of forward hyperarcs is formally defined as F = A \ {AW  

AQ}  AH. This is a substantial innovation with respect to [25], where a first hypothesis of dynamic 

assignment with hyperpaths is developed. In this previous work, the use of the same graphic 

structure for the demand and supply models leads to a representation of the waiting / queuing 

   b 

   a 



26  

process which is questionable from the phenomena point of view and does not allow the great 

flexibility that can be attained detaching completely the supply and demand models as done here. 

 The Stop Model and Route Choice Model refer to the hypergraph H, whose waiting hyperarcs 

graphically represent the process of waiting for the set of attractive lines. When making their travel 

choices, passengers do not distinguish between the under-saturation delay, due to the inherent 

transit service discontinuity, and over-saturation queuing time. Thus the total waiting cost wh for a 

waiting hyperarc h includes both components and depends on the lines that are included in the 

attractive set. In order to account for the increased perceived cost of waiting when boarding is 

denied because of capacity contraints, it is assumed the VOT for hyperarcs it an increasing 

function of congestion by means of the parameter a. 

 The Network Flow Propagation Model and Arc Performance Functions refer to the model graph 

G. In order to ensure that inflows/outflows are consistent with arc exit times, in the NFPM and 

APF, the waiting arcs aAW only represent the under-saturation delay, while the cost of queuing, 

as it results from the Bottleneck Queuing Model, is represented by queuing arcs aAQ. The queuing 

time calculated in the APF is used to calculate congestion parameters a(), which are used, in 

turn, in the SM to derive specific diversion probabilities and waiting times. 

 The stop layout considered is such that passengers wait in a unique “mixed” FIFO queue, 

regardless of the specific line(s) they may consider to board. Thus, while passengers having the 

same attractive set respect a FIFO rule, there can be overtaking between those who consider 

different sets of attractive lines.  

The resulting DUE is capable of reproducing the results from the static model by Spiess and Florian [3] 

in the uncongested scenario with time-independent (constant) travel variables, but clearly demonstrates 

the changes in the hyperpath, total travel cost and flow pattern when these become dynamic.  

Future work will concentrate on extending the approach to other transport modes, where the usual 

assumption of Poisson-distributed carrier arrivals is not applicable. Moreover, the new model will also be 

tested on large transit networks, in order to verify the value of heuristics solution methods (for example 

when selecting the set of attractive lines at each intermediate stop) and algorithm speed-up techniques. 
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