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Abstract. The fatigue phenomenon is difficult to be modeled and simulated because of its natural prop-
erty, which does not happen imminently but rather after a larger number of cycles. Usually, the simu-
lation of fatigue fracture behavior also requires a lot of computation effort which can be seen as very
time-consuming. In this work, we represent an efficient phase field model aiming to handle the cyclic
fatigue fracture.

1 INTRODUCTION

The core idea of the phase field model is to represent a discrete, discontinuous phenomenon with
a smooth function. For fracture mechanics an additional field variable is introduced to describe the
crack. The biggest advantage of the phase field fracture model is its unified framework of the entire
crack evolution behavior, including nucleation, propagation, branching, kinking. These phenomena can
be covered by one single model. The phase field fracture has been successfully applied to a quasi-
statics case. However, there is still a lack of studies on how to efficiently simulate the fatigue fracture
phenomenon. In this work, we propose an efficient phase field schemata for cyclic fatigue simulation.

We extend the model from Kuhn and Müller [1] with an additional potential energy term, which pro-
vides the necessary driving force for the fatigue fracture evolution. This additional potential is related
to the newly introduced damage parameter, representing the damage caused by cyclic fatigue. The ad-
ditional potential energy is coupled with fatigue parameters from the S-N diagram, which allows the
model to generally and elegantly integrate all the influence from the environment to the fatigue propaga-
tion behavior. The evolution of the crack field is derived from the total energy with the help of variational
principle. The model is consistent with the empirical fatigue propagation property and also robust under
complex load simulations.

Traditionally, the fatigue simulation suffers from its huge computational effort since the fatigue crack
will only occur after a large number of loading cycles. The cycle number increment influences the com-
puting time of the fatigue simulation and impacts the crack patterns. Thus, the cycle number increment
choice is a critical point in the phase field fatigue simulation. We introduce an adaptive cycle increment
algorithm, where the cycle number increment is associated with the fatigue damage increment. Our algo-
rithm provides a moderate computing time without losing accuracy compared to the classical computing
strategies. Our method is also suitable for parallel computing.

The model has been applied to three-dimensional problems with the real material property. The fatigue
life obtained from the phase field model can be verified by experimental and analytical findings.
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2 A PHASE FIELD MODEL FOR FATIGUE

A phase field fracture model introduces an additional field variable to represent cracks. In the phase
field model from [1] for a quasi-static case, the crack field s is 1 if the material remains undamaged and
is 0 where cracks occur. Furthermore, it is to postulate that the displacement field u and crack field s
locally minimize the total energy of a loaded body Ω. The total energy E is given as

E = E e +Γ, (1)

where E e is the elastic strain energy, which is the energy stored inside of an elastic body. With ψe

denoting the elastic strain energy density, the elastic strain energy is given as

E e =
∫

Ω

(g(s)+η)ψedV =
∫

Ω

1
2

(
(g(s)+η)εεε : [Cεεε]

)
dV. (2)

The degradation function g(s) models the loss of the stiffness of the broken material. η is a dimensionless
parameter used to avoid numerical difficulties, εεε is the infinitesimal strain tensor and C is the stiffness
tensor. The fracture surface energy representing the energy to separate the material to generate cracks, is
assumed to be proportional to the broken surface area As

Γ =
∫

Ω

ψ
sdV = GcAs, (3)

where Gc is the cracking resistance, which models the ability of a material to resist fracturing; and ψs is
the fracture surface energy density. With the surface density functional, which is related to the gradient
of the crack ∇s and the crack s itself, the fracture surface energy is given as

Γ =
∫

Ω

Gc

(
(1− s)2

4ε
+ ε|∇s|2

)
dV. (4)

When ε comes close to zero, the surface density functional approximates the fracture surface. The length
parameter ε controls the width of the transition zone between the broken and undamaged material.

In order to include the fatigue fracture feature in the phase field model, we extend the phase field model
from [1] by an additional term for cyclic fatigue. The phase field model for fatigue fracture now reads

E = E e +Γ+P , (5)

where P stands for an additional free energy term for the sum of additional driving forces caused by
fatigue damage. This additional fatigue energy consists of two parts

P =
∫

Ω

h(s)ψad(D) =
∫

Ω

h(s)q < D−Dc >
b, (6)

where h(s) is a degradation function, which models the loss of stiffness of broken material caused by
cyclic fatigue. ψad is the fatigue energy density, which provides additional driving forces for cyclic
fatigue. The fatigue energy density is related to a fatigue damage parameter D. This concecpt of cumu-
lative damage model inspired by Miner’s rule [2], in which the damage parameter will be continuously
accumulated during the simulation

Dn+1 = D0 +dDn, (7)
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where D0 is the previous fatigue damage of the last simulation iteration. The quantity dD is the damage
increment, which is associated with the cycle increment in the fatigue simulation

dD = dN
1

nD

(
σ̂

AD

)k

. (8)

Dc is a damage threshold. The parameters AD, k and nD can be obtained from the S-N curve. The term
σ̂ is the driving force for the fatigue crack propagation, corresponding to the first principal stress of the
stress tensor σσσ = Cεεε in this case. The Macauley brackets

〈x〉n =

{
0 if x≤ 0
xn if x > 0,

(9)

allows the fatigue energy term takes contribution into total energy density only when the damage param-
eter D reaches the damage threshold Dc. After that, the regularization parameters q and b determine the
speed of fatigue damage energy growth. Allocating all above definitions, the additional fatigue energy
density reads

ψ
ad = h(s)q < D0 +

dN
nD

(
σ̂

AD

)k

−Dc >
b . (10)

It is to postulate that the displacement field and crack field minimize the total energy E (Eq. (5)), which
yields the entire crack propagation behavior. In recent work, the phase field model can be adapted to a
more general form with a mean stress correction term, which allows the mean effect of materials to be
included [3] [4].

The phase field model is capable to recapture different important fatigue features. The growth behavior
of a macro crack can be described by Paris’ law [5], which describes the fatigue crack growth rate in
relation to the stress intensity factor range. It is to notice that according Paris’ law the relation between
crack growth rate and crack intensity factor range will be displayed as a straight line on a logarithmic
scale. Figure 1 shows the crack growth rate for different levels of maximum stress amplitude. Even if
different stress amplitudes for the simulation are applied, the rate of crack growth can be described with
the same Paris’ law. Radhakrishnan [6] shows that the constant C and the slope m depend on the mean
stress of the load in some materials. Figure 2 displays the effect of mean stress on the crack growth rate,
where the stress ratio R is defined as the ratio between the minimum stress and the maximum stress. The
depicted diagram reflects that higher mean stress increases the rate of crack growth. Figure 3 reports the
effect of the loading sequence on the crack growth rate. Results show that a high-low loading sequence
results in short fatigue life. This phenomenon is called the loading sequence effect. It has been shown
that the material with a low-high load sequence results in a longer fatigue life. It is because the low
load level is mostly involved in the crack nucleation and the high load level is contributed to the crack
propagation [7]. Although Miner’s rule does not include the loading sequence effect, the damage quantity
D with a low load level reaches later the critical damage state Dc in the phase field model.

3 ACCELERATION METHOD IN PHASE FIELD SIMULATION

Traditionally, the fatigue simulation suffers from its huge computational effort. In order to reduce
the computing time and without losing accuracy, two acceleration approaches are applied in the phase
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Figure 1: crack growth rate for different levels of maximum stress amplitude.

Figure 2: load sequence effect on the fatigue life.
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Figure 3: crack growth rate for different mean stress ratios.

field simulation: adaptive cycle number adjustment algorithm (ACNAA) and parallel computing(message
passing interface MPI). One is based on the algorithmic perspective and the other is on the programming
perspective.

3.1 Adaptive cycle number adjustment algorithm (ACNAA)

In contrast to other fracture phenomena, fatigue damage occurs only after a large number of load
cycles. This requires a large amount of computational effect in the simulations. In addition, the choice of
the number of cycles is usually determined by a compromise between simulation time and its accuracy.
The choice of the increment of the number of cycles is a key point of the phase field fatigue model: not
only because it determines the simulation time, but also strongly influences the shape of the crack. If
the cycle number increment is too large, the crack trace is very wide and irregular. Moreover, too large
cycle increments cause a sharp increase in fatigue energy, which can lead to an unstable energy state in
the simulation [4].

In the phase field model, the damage parameter D is introduced to model the damage of the material
related to fatigue. The idea of the adaptive cycle number adjustment algorithm is to associate the cycle
number increment with the damage increment of each simulation iteration. According to the damage
state, the simulation of fatigue fracture is divided into three stages:

1 the fatigue damage is below the fatigue damage threshold D < Dc: The fatigue energy term van-
ishes at this stage, thus it can be seen as a pure static mechanical state. The cycle increment should
be chosen as large as possible in order to quickly reach the critical fatigue state.

2 the fatigue damage is near the fatigue damage threshold D ≈ Dc: At this moment, the material is
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about to break and the cycle number increment dN should be chosen in such a way that the damage
increment dD small enough to simulate the transient process.

3 the fatigue damage is above the fatigue damage threshold D > Dc: After the fatigue damage is
over the fatigue damage threshold, the fatigue damage begins. At this stage, the maximum damage
increment max[dD] of the entire computation domain is regulated in order to obtain a moderate
growth rate of the fatigue energy.

Fig. 4 illustrates how the ACNAA works. It has been shown that the computing time can drop to nearly
3% using our method, compared to constant cycle number increment with dN = 5 [4].

Figure 4: The idea of ACNAA is to divide the entire fatigue simulation into three stages and associate the cycle
increment with damage increment. Dα, Dβ and Dγ are the numerical parameters for the algorithm.

3.2 Parallel computing (MPI)

For a large and complicated problem raised in the computational science domain, using a single pro-
cessor to sequentially complete the task is usually not suited. Parallel computing breaks down the large
problem into smaller, independent parts and executes them simultaneously by communicating with mul-
tiple processors. One of the parallelization concepts is via the message passing interface.

The message-passing model uses a set of processors, which only have local memory; however, these
processors are capable to communicate with each other by sending and receiving messages. In infinite
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element computing, the huge number of finite elements is processed by multiple processors simulta-
neously, where the information and memory during the parallel computing can be shared via message
passing among all the processors. The entire mesh is after a sequential computing forked into different
pieces of small meshes, which will be computed individually by every processor; and after this parallel
computing phase, the information, the result as well as the mesh will be joined again as a single task.
This is the so-called ”fork-and-join” strategy in parallel computing (see Fig. 5).

Figure 5: The “fork-and-join” concept.

Figure 6 reports the computing time to the number of processors in 2D problems (Fig. 6a) as well as 3D
problems (Fig. 6b), where the Newton’s method is separately solved with the direct solver (MUMPS)
and the iterative solver (CG with preconditioner hyper amg) in each case. It is clear to observe that
increasing the number of processors reduces the computing time in most cases. Parallel computing with
8 processes only requires around 8 hours to complete the task for a 3D problem, which is only 2% of
the time compared to sequential computing. The speed-up performance reveals differently, depending on
the type of Newton’s method as well as the dimension of the problem: for a 2D problem, the MUMPS
solver can dramatically accelerate the simulation when the number of processors from 1 raising to 4;
however, it requires even more time when using 8 processors. On the other side, parallel computing
works effectively by using 2 processors with the CG solver. In contrast to the two-dimensional cases,
the speed-up is obvious for 3D simulation when the number of processors rises no matter which solver
is used.

This contrastive performance might be explained by Amdahl’s law [8]. The productivity of the phase
field simulation program can not be improved further due to the overhead of parallelism, like the syn-
chronizations, the data communications, etc.. Weighing the gains and losses, the best paralleling strategy
is to use a MUMPS solver with 4 processors for a small task (e.g. 2D problems) or 8 processors for a
complex task.

It is to be noticed that the adaptive cycle number adjustment algorithm needs to be modified in order to
be suited to a parallel algorithm. Only the main processor has access to adjust the damage increment dD
and the cycle increment dN in each simulation iteration to avoid synchronization issues. The cycle num-
bers N will be synchronized and broadcast to the other processors after the cycle increment is adjusted
by the main processor.

4 NUMERICAL EXAMPLES

The phase field fatigue model is tested with different loading scenarios and the results are demonstrated
in this section. The first example is the block geometry adapted from SPP-1748 Benchmark [9]. This
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Figure 6: The computing time with help of parallel computing in 2D (a) and 3D (b).

example is straightforward and disregards particular distinction problems between tension and compres-
sion since the cracks should only occur in the tension region. A specific area of its top surface (marked
in red) is loaded with a prescribed displacement, and the bottom of the box is fixed. Furthermore, to
distinguish this loading situation from a simple monotonous pure tension loading, we assume this loaded
area of top surface will never be broken. It is to notice the crack begins at the top surface of the box as
shown in Fig. 7, which is different from the pure elastic shown in [9]. The reason for these differences
is that the first principal stress is the driving force in phase field fatigue model, the crack extends as the
maximum first principal stress is found.

Our model has also been tested with CT specimen in different fracture modes (see Fig. 8). The material
of the CT specimen is assumed to be AISI316L stainless steel, where the material parameters are taken
from [10] [11] [12]. The crack patterns are varied as long as the loading is in different fracture modes:
the direction of the crack propagation from mode I is horizontal (0◦); from mode II is around 55◦ and
mode III is around 70◦. These different propagation behaviors are predicted by the principal stress and
the strain energy density criteria and can be verified by the experiment findings [13] [11] as well as the
analytical calculation [14]. Based on the maximum tangential stress (MTS) criterion from Erdogan et
al. [14], the crack grows in a direction where it has the maximum tangential stress σθ and the shear
stress τrθ vanishes. The stress components of a straight extending crack tip in a 2 dimensional cylindrical
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Figure 7: The crack evolution of a 3d block geometry.

coordinate setting is given in [14]

σr =
1√
2r

cos
θ

2

[
k1

(
1+ sin2 θ

2

)
+

3
2

k2 sinθ−2k2 tan
θ

2

]
(11)

σθ =
1√
2r

cos
θ

2

[
k1 cos2 θ

2
− 3

2
k2 sinθ

]
(12)

τrθ =
1

2
√

2r
cos

θ

2
[k1 sinθ+ k2(3cosθ−1)], (13)

where k1 and k2 are the symmetric and skew-symmetric components of the stress intensity factors and r
and θ are the radial and angular coordinates of the crack tip. For the mode I loading situation, only the
symmetric-part of stress intensity factor remains k2 = 0, which leads to the horizontal crack propagation
behavior

θ = 0◦. (14)

As in the theoretical analysis of the mode II and mode III loading situation, the stress state is skew-
symmetric with k1 = 0. The angle of crack extension θ can be obtained from Eq. (11)

θ =−arccos
1
3
=−70.5◦. (15)

The derivation of fracture mode II from the phase field simulation and theoretical calculation can be
explained by the mixed stress situation due to the complex geometry of CT specimen. The crack angle
in those situations can be determined from the maximum tangential stress with the relation

k1 sinθ+ k2(3cosθ−1) = 0. (16)
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Figure 8: CT specimen under different fracture modes: a: mode I; b: mode II; c: mode III.

5 CONCLUSION

In this work, a phase field model for cyclic fatigue is presented. Originally, only the elastic energy
and fracture surface energy are considered in the phase field fracture model. To incorporate the fatigue
situations, we introduce an additional fatigue energy term accounting for the fatigue driving force into the
total energy density. The entire crack propagation behavior can be derived by minimizing the extended
total energy equation. Due to the natural property of fatigue fracture, which happens not immediately,
the phase field simulation always requires a huge number of computational effects. In this work, we
provide two computation accelerations methods, which lie in the algorithm and programming points of
view. Results show that the phase field model is capable to handle complex fatigue fracture scenarios. In
future work, the internal friction and thermal fatigue are going to be built into the phase field model.

6 ACKNOWLEDGEMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 252408385
–IRTG 2057

10



Sikang Yan, Ralf Müller

REFERENCES

[1] Kuhn, C. and Müller, R., “A continuum phase field model for fracture”, Eng. Frac. Mech.,
48(4):797-826, (2000).

[2] Miner, M. A.,”Cumulative damage in fatigue”, (1945).
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